Ứng dụng mô hình học máy trên dữ liệu vệ tinh địa tĩnh cho bài toán nhận dạng và cảnh báo sớm bão nhiệt đới trên khu vực Tây Bắc Thái Bình Dương và Biển Đông

  • Chu Thị Huyền Trang
  • Lê Quang Đạo
  • Trần Huy Hoàng
  • Lưu Việt Hưng
  • Bùi Quang Hưng
  • Mai Khánh Hưng
  • Nguyễn Thu Hằng
  • Đỗ Thùy Trang
  • Dư Đức Tiến
  • Đặng Đình Quân
  • Hoàng Gia Nam
Từ khóa: Nhận dạng bão; Mạng nơ-ron tích chập hai luồng

Tóm tắt

Bài báo trình bày ứng dụng phương pháp học sâu để xác định vị trí và phân loại xoáy thuận nhiệt đới (XTNĐ) một cách tự động. Phương pháp học sâu trong bài báo là ứng dụng mạng nơ-ron tích chập hai luồng (CNN) cùng các đặc điểm theo không gian và thời gian của dữ liệu vệ tinh địa tĩnh. Bộ dữ liệu vệ tinh địa tĩnh Himawari-8/9 cho các XTNĐ trên Tây Bắc Thái Bình Dương và Biển Đông từ năm 2015 đến năm 2019 đã được thu thập và sử dụng trong nghiên cứu. Đầu vào bổ sung cho phương pháp học sâu là vectơ chuyển động khí quyển (AMV) được tính toán từ dữ liệu vệ tinh liên tiếp theo thời gian. Kết quả cho thấy khả năng ứng dụng cao của phương pháp học máy trong bài toán nhận dạng XTNĐ. Ngoài ra, một thử nghiệm cụ thể cho cơn bão Doksuri vào năm 2017 cho thấy khả năng cảnh báo sớm trước so với phát báo của Cơ quan khí tượng Nhật Bản (JMA).

điểm /   đánh giá
Phát hành ngày
2024-05-09