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Abstract. In this paper by using the theory of elasto-plastic processes and adjacent-
equilibrium criterion the governing equations of the elasto-plastic stability problem of conical
shells are derived. The Bubnov-Galerkin’s method combined with the loading parameter
method are applied in solving the mentioned problem. The influence of the hardening
characteristics of material on the critical load is investigated.

1. INTRODUCTION

Analysis of the elasto-plastic stability problem of shells with homogeneous membrane
stress of the prebuckling state was considered by some authors [1÷ 4], but in the case when
the prebuckling state is non- homogeneous many difficulties arise in solving the problem,
because now stability equations are a set of partial differential equations with variable
coefficients. Otherwise we can get more difficulties in determination of material functions
occured in the constitutive relations, for example the secant modulus and tangent modulus
which become functions of point coordinates. Furthermore in the shell occur elastic and
plastic zones, the boundary of which is unknown, it must be determined simultaneously
in the solution process.

In this paper the governing equations of the elasto-plastic stability problem of conical
shells are developed based on the theory of elasto-plastic processes and the adjacent-
equilibrium criterion. The Bubnov-Galerkin’s method combined with the loading param-
eter method can be applied in solving considered problem. A piece-wise linearization
procedure of the material function figured in constitutive relations is demonstrated for
material with general hardening characteristics and the influence of this characteristics on
the critical load is investigated.

2. PREBUCKLING STATE OF A CONICAL SHELL.

Points in the middle surface of a conical shell may be referred to coordinates (x, θ),
where x is a coordinate taken from the shell top to the considered point in the generatrix
direction, θ- a circumferential coordinate, α- an open angle at the shell top, l- the length
of shell anh h- the shell thichness. The stress occurs in the prebuckling state depending
on loading process, here we restrict ourselves the applied load is axisymmetric and the
linear bending equations are used for the prebuckling deformation. If the shell is acted on
by external pressure with intensity p, the prebuckling stress state is of the form

σ0
x = −p x

2 h
tgα, σ0

θ = −p x

h
tgα, σ0

xθ = 0, σ0
u =

√
3 p x

2 h
tgα;



112 Dao Huy Bich and Vu Khac Bay

N0
x = −p x

2
tgα, N0

θ = −p x tgα, N0
xθ = 0.

It is clear that along the shell generatrix the stress intensity increases linearly with respect
to x. Thus at points 0 6 x 6 xs elastic state occurs, while xs 6 x 6 l the shell is in plastic
state, the boundary of two zones is determined by

xs =
2 σs h√
3 p tgα

,

where σs- yield stress (when σ0
u = σs), xs- elastic- plastic zones boundary. This boundary

will be determined simultaneously in the solving process. Putting

t =
x

l
, σ0

u =
√

3 p l

2 h
tgα

x

l
= σ0

M t,

where

σ0
M =

√
3 p l

2 h
tgα,

one can get
0 6 t 6 1, σs = σ0

M ts, ts =
xs

l
=

σs

σ0
M

.

3. STABILITY EQUATIONS

Applying stability equations [5] for conical shells subjected to external pressure yields

R2 → ∞, lim
R2→∞

R2dϕ = dx, r = x sinα,

ϕ = π/2− α, sin ϕ = cos α, cos ϕ = sin α,

∂

∂x
(x δNx) +

1
sin α

∂δNxθ

∂θ
− δNθ = 0,

1
sin α

∂δNθ

∂θ
+

1
x

∂

∂x
(x2 δNxθ) = 0, (3.1)

∂2

∂x2
(x δMx) +

2
sin α

(∂2δMxθ

∂x∂θ
+

1
x

∂ δMxθ

∂θ

)
+

1
x sin2 α

∂2 δMθ

∂θ2
−

− ∂ δMθ

∂x
− δNθ cotgα + p tgα

(
x

∂ δw

∂x
+

x2

2
∂2 δw

∂x2
+

1
sin2 α

∂2 δw

∂θ2

)
= 0,

with the following boundary conditions:
- at the fixed point 0 of the shell top

δu = δv = δw = 0 with x = 0; (3.2)

- the end cross section of the shell is simply supported such that

δw = 0, δv = 0, δMx = 0, δNx = 0. (3.3)
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Remark:
• With α = π/2 equations (3.1) reduce to stability equations for a circular plate.
• With x sin α = a = const and α = 0, equations (3.1) become stability equations for

a circular cylindrical shell of radius a.
According to the elasto-plastic process theory [3] the expressions for internal forces in-

crements and internal moments increments of a conical shell subjected to external pressure
are obtained as follows

δNx = h
[(

N +
Φ

′

3
)∂δu

∂x
+

2
3
Φ

′( 1
x sinα

∂δv

∂θ
+

δu

x
+

δw

x
cotgα

)]
,

δNθ = h
2
3

Φ
′
[∂δu

∂x
+ 2

( 1
x sinα

∂δv

∂θ
+

δu

x
+

δw

x
cotgα

)]
,

δNxθ = h
N

3

[∂δv

∂x
− δv

x
+

1
x sinα

∂δu

∂θ

]
,

δMx = −h3

12

[(
N +

Φ
′

3
)∂2δw

∂x2
+

2
3
Φ

′( 1
x2 sin2 α

∂2δw

∂θ2
+

1
3

∂δw

∂x

)]
,

δMθ = −h3

18
Φ

′
[∂2δw

∂x2
+ 2

( 1
x2 sin2 α

∂2δw

∂θ2
+

1
x

∂δw

∂x

)]
,

δMxθ = −h3

18
N

( 1
x sinα

∂2δw

∂x∂θ
− 1

x2 sin α

∂δw

∂θ

)
, (3.4)

where N = σ0
u/s = Φ(s)/s plays a role of a secant modulus and Φ

′
(s) - tangent modulus

of the hardening material. In this case N and Φ
′
are functions of x alone, δu, δv, δw are

displacement increments in generatrix, circumferential and normal to the shell directions,
respectively. Since then without mistakes we can omit the word “δ” in the denotation of
increment quantities.

Substituting (3.4) into (3.1) leads to equations

x
(
3N + Φ

′)∂2u

∂x2
+

(
3N + Φ

′
+ 3x

∂N

∂x
+ x

∂Φ
′

∂x

)∂u

∂x
+

(
2x

∂Φ
′

∂x
− 4Φ

′)u

x
+

+
N

x sin2 α

∂2u

∂θ2
+

(
N + 2Φ

′) 1
sin α

∂2v

∂x∂θ
−

(
N + 4Φ

′ − 2x
∂Φ

′

∂x

) 1
sinα

∂v

∂θ
+

+ 2Φ
′
cotgα

∂w

∂x
−

(
4Φ

′ − 2x
∂Φ

′

∂x

)
cotgα

w

x
= 0;

xN
∂2v

∂x2
+

(
N + x

∂N

∂x

)∂v

∂x
−

(
N + x

∂N

∂x

)v

x
+ 4

Φ
′

x sin2 α

∂2v

∂θ2
+

(
N + 2Φ

′) 1
sinα

∂2u

∂x∂θ
+

+
(
N + 4Φ

′
+ x

∂N

∂x

) 1
x sinα

∂u

∂θ
+ 4

Φ
′

x sinα
cotgα

∂w

∂θ
= 0;

x
(
3N + Φ

′)∂4w

∂x4
+

(
6N + 2Φ

′
+ 6x

∂N

∂x
+ 2x

∂Φ
′

∂x

)∂3w

∂x3
+

+
(
3x

∂2N

∂x2
+ 6

∂N

∂x
− 4

Φ
′

x
+ 4

∂Φ
′

∂x
+ x

∂2Φ
′

∂x2

)∂2w

∂x2
+

( 4
x2

Φ
′ − 4

x

∂Φ
′

∂x
+ 2

∂2Φ
′

∂x2

)∂w

∂x
+
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+ 4
(
N + Φ

′) 1
x sin2 α

∂4w

∂x2∂θ2
− 4

(
N + Φ

′ − x
∂N

∂x
− x

∂Φ
′

∂x

) 1
x2 sin2 α

∂3w

∂x∂θ2
+

+ 4
(
N + 3Φ

′ − x
∂N

∂x
− 2x

∂Φ
′

∂x
+

x2

2
∂2Φ

′

∂x2

) 1
x3 sin2 α

∂2w

∂θ2
+ 4

Φ
′

x3 sin4 α

∂4w

∂θ4
+

+
48Φ

′

h2
cotgα

(1
2

∂u

∂x
+

1
x sinα

∂v

∂θ
+

u

x
+

w

x
cotgα

)
+

− 36p

h3
tgα

(
x

∂w

∂x
+

x2

2
∂2w

∂x2
+

1
sin2 α

∂2w

∂θ2

)
= 0. (3.5)

4. SOLVING METHOD

a) In the case of elastic conical shells

N = Φ
′
= 3G,

equations (3.5) reduce to ones of elastic stability equations considered in [7].

b) In the case of conical shells made of material with linear hardening characteristics

Φ
′
(s) = g = const, N =

σ0
u

s
=

gσ0
u

σ0
u − (σs − gεs)

= g +
gb

σ0
u − b

,

where b = σs − gεs, the set of equations (3.5) can be written as

x
(
3N + Φ

′)∂2u

∂x2
+

(
3N + Φ

′
+ 3x

∂N

∂x

)∂u

∂x
− 4Φ

′ u

x
+

N

x sin2 α

∂2u

∂θ2
+

+
(
N + 2Φ

′) 1
sin α

∂2v

∂x∂θ
−

(
N + 4Φ

′) 1
sin α

∂v

∂θ
+ 2Φ

′
cotgα

∂w

∂x
− 4Φ

′
cotgα

w

x
= 0;

xN
∂2v

∂x2
+

(
N + x

∂N

∂x

)(∂v

∂x
− v

x

)
+ 4Φ

′ 1
x sin2 α

∂2v

∂θ2
+

(
N + 2Φ

′) 1
sinα

∂2u

∂x∂θ
+

+
(
N + x

∂N

∂x
+ 4Φ

′) 1
x sinα

∂u

∂θ
+ 4Φ

′ 1
x sinα

cotgα
∂w

∂θ
= 0;

x
(
3N + Φ

′)∂4w

∂x4
+

(
6N + 2Φ

′
+ 6x

∂N

∂x

)∂3w

∂x3
+

(
3x

∂2N

∂x2
+ 6

∂N

∂x
− 4

Φ
′

x

)∂2w

∂x2
+

+ 4
Φ

′

x2

∂w

∂x
− 4

(
N + Φ

′ − x
∂N

∂x

) 1
x2 sin2 α

∂3w

∂x∂θ2
+ 4

(
N + Φ

′) 1
x sin2 α

∂4w

∂x2∂θ2
+

+ 4
(
N + 3Φ

′ − x
∂N

∂x

) 1
x3 sin2 α

∂2w

∂θ2
+ 4Φ

′ 1
x3 sin4 α

∂4w

∂θ4
+

+
48Φ

′

h2
cotgα

(1
2

∂u

∂x
+

1
x sinα

∂v

∂θ
+

u

x
+

w

x
cotgα

)
+

− 36p

h3
tgα

(
x

∂w

∂x
+

x2

2
∂2w

∂x2
+

1
sin2 α

∂2w

∂θ2

)
= 0. (4.1)

By using these equations the stability problem has been investigated in [6]. Later equations
(4.1) will be used as basic equations for solving step - by -step the stability problem of
conical shell made of material with general hardening characteristics.
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c) In the case of conical shells made of general hardening material, relation σ0
u = Φ(s)

represents a material function precisely determined for a given material, it is a curve of
the stress intensity σ0

u versus the arc - length s of strain trajectory. In general the slope of
a tangent to the material curve varies from point to point. Otherwise in the considered
conical shell subjected to external pressure

σ0
u =

√
3 p x

2 h
tgα = σ0

M t,

i.e. at each point on the generatrix we can know the value of stress intensity σ0
u , which

is respect to one point on the material curve with coordinates (σ0
u, s). Therefore within

s and t there is a relation one - to - one, it means that with each value t we can get the
value σ0

u, then according to the graph σ0
u = Φ(s) we determine the value s respectively

and then the value Φ
′
(s) (the slope of tangent to the material curve) and N = σ0

u/s.
Implementing a linearization of the general hardening curve as a piecewise linear hard-

ening one, such that in each interval [si, si+1] we obtain Φ
′
(s) = Φ

′
(si) = gi = const.

Consequently at different intervals the quantity Φ
′
(s) gets different but constant values,

then:
∂Φ

′

∂x
=

∂2Φ
′

∂x2
= 0 or

∂Φ
′

∂t
=

∂2Φ
′

∂t2
= 0,

N = gi + N with N =
gibi

σ0
u − bi

=
gibi

σ0
M t − bi

,

where
bi = σi − gisi, σi = σ0

u(si), ti =
σi

σ0
M

.

With respect to each interval [si, si+1] the stability equations are in the form similar to
(4.1).
Taking the solution

u =
N0∑

n=1

AnU(t) cos nθ, v =
N0∑

n=1

BnV (t) sin nθ, w =
N0∑

n=1

CnW (t) cos nθ.

where An, Bn, Cn - constants and substituting them into equations (4.1) we obtain

Φ(t, θ) ≡
N0∑

n=1

{
An

[
(4U

′′
t + 4U

′
)Φ

′ −
(
4 +

n2

sin2 α

)U

t
Φ

′
+

+ N
(
3U

′′
t + 3U

′ − n2

sin2 α

U

t
+ 3

∂N

∂t

U
′

t

)]
+

+ Bn

[ Φ
′
n

sinα

(
3V

′ − 5
V

t

)
+ N

( n

sin α
V

′ − n2

sin α

V

t

)]
+

+ Cn2Φ
′
cotgα

(
W

′
+ 2

V

t

)}
cos nθ = 0,



116 Dao Huy Bich and Vu Khac Bay

Ψ(t, θ) ≡
N0∑

n=1

{
An

[
Φ

′ n

sinα

(
− 3U

′ − 5
U

t

)
+ N

n

sin α

(
− U

′ − U

t

)
+

n

sin α

U

t

∂N

∂t

]
+

+ Bn

[
Φ

′(
tV

′′
+ V

′ − V

t

)
− 4n2Φ

′

sin2 α

V

t
+ N

(
tV

′′
+ V

′ − V

t

)
+

∂N

∂t

(
tV

′ − V
)
]−

− CnΦ
′ 4n

sinα

W

t
cotgα

}
sin nθ = 0,

Ω(t, θ) ≡
N0∑

n=1

{
An

[
24Φ

′
cotgα

( l

h

)2(
U

′
+ 2

U

t

)]
+ Bn

[
48Φ

′
cotgα

n

sinα

( l

h

)2 V

t

]

+ CnΦ
′
[
4W (4)t + 8W (3) − 4

W
′′

t
− 8

n2

sin2 α

W
′′

t
+ 4

W
′

t
+

+
(
4

n2

sin2 α
− 16

) n2

sin2 α

W

t3
+ 48

( l

h

)2cotg2α
W

t

]
+

+ CnN
[
3W (4)t + 6W (3) − 4

n2

sin2 α

W
′′

t
+ 4

n2

sin2 α

W
′

t
− 4

n2

sin2 α

W

t3

]
+

+ Cn p 18tgα
( l

h

)3
[
− t2W

′′ − 2tW
′
+ 2

n2

sin2 α
W

]
+

+ Cn

[
6
∂N

∂t
W (3)t + 3

∂2N

∂t2
tW

′′
]
+

+ Cn

[
6
∂N

∂t
W

′′ − 4
n2

sin2 α

∂N

∂t

W
′

t
+ 4

n2

sin2 α

W

t2
∂N

∂t

]}
cos nθ = 0. (4.2)

Functions U(t), V (t), W (t) are chosen, such that the boundary conditions (3.2), (3.3) are
satisfied.

U(t) = t(1− t)2, V (t) = t(1 − t), W (t) = t2(1 − t)3.

Applying the Bubnov - Galerkin’s method into equations (4.2), we obtain

∑

j=0

tj+1∫

tj

dt

2π∫

0

Φ(t, θ) t (1− t)2 cos kθ dθ = 0,

∑

j=0

tj+1∫

tj

dt

2π∫

0

Ψ(t, θ) t (1− t) sin kθ dθ = 0,

∑

j=0

tj+1∫

tj

dt

2π∫

0

Ω(t, θ) t2 (1− t)3 cos kθ dθ = 0. (4.3)

with k = 0, N0.
Using the orthogonality of trigonometric functions we can see that with respect to each
k ≡ n obtaining 3 linearly algebraic homogeneous equations of unknown An, Bn, Cn sep-
arately; totally we get N0 sets of 3 separate equations of unknown with n = 1, 2, · · ·N0
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respectively. Since An, Bn, Cn are not simultaneously equal to zero, so the determinant of
their coefficients must be vanish, it leads to the relationship for determining the critical
load.

About the value ts = xs/l which can be defined by using the iterative method, so -
called elastic solution method. At the first iteration k = 0 suppose the shell in elastic state,
the critical load p

(0)
cr is determined as in [7], then the value σ

(0)
M is known. If σ

(0)
M t < σs

for all t, the iterative process can be finished and the instability of shell occurs in elastic
range. If σ

(0)
M t > σs, we calculate t

(0)
s = σs/σ

(0)
M for getting the number of intervals from

t
(0)
s to 1, on which Φ

′
takes different constant values and then substitute into (4.3) for the

next iteration.
Note that in each iteration one obtains N0 values of p, the minimum value of which is

chosen for the critical pcr. Iterative process can be finished when the difference of results in
two consecutive iterations is smaller than a given small value. Using just obtained critical
load pcr the elasto - plastic zones boundary can be defined as follows

xs

l
= ts =

2σsh√
3 l pcr tgα

.

5. NUMERICAL EXAMPLE

Consider in turn the stability problem of conical shells made of different materials
with:
- Linearly hardening characteristics

E = 2, 6.106(kG/cm2), σs = 4.103(kG/cm2), g = 0, 43.106(kG/cm2).

- General hardening characteristics

E = 2, 6.106(kG/cm2), σs = 4.103(kG/cm2);

the relation σ0
u = Φ(s) is given in the Table 1.

Table 1. Relation between stress intensity and hardening modulus

σi 4000 4260 4440 4540 4640 4720 4780 4900
gi.106 0.853 0.48 0.42 0.32 0.26 0.23 0.22 0.20
σi 5000 5080 5160 5400 5500 5620 5700 5800

gi.106 0.16 0.15 0.14 0.12 0.12 0.12 0.11 0.10

- Elasto - plastic material (almost perfectly plastic material)

E = 2.6.106(kG/cm2), σs = 4.103(kG/cm2), g = 0.08.106(kG/cm2).

Firstly, the calculation is carried out with a conical shell of α = π/4, the series expansion
from n = 1 to n = 15 and 10 iterations. The results of critical loads depending on
slenderness l/h of the shell with different materials are given in the Table 2 and illustrated
on the Fig. 1.
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Table 2. Relation between critical loads and slenderness with various materials

pcr l/h

(kG/cm2) 500 600 700 800 900 1000 1100 1200 1300
elastic 25.50 17.61 12.93 9.90 7.78 6.32 5.21 4.38 3.72

linear
hardening

17.07 13.70 11.05 8.50 7.37 6.32 5.21 4.38 3.72

general
hardening

13.00 10.87 8.96 7.90 7.03 6.32 5.21 4.38 3.72

perfectly
plastic

10.00 8.59 7.39 6.48 5.77 5.30 5.21 4.38 3.72

Fig.1. Effect of hardening characteristics on critical loads

Secondly, analysis is fulfilled with a conical shell made of general hardening material,
the open angle at the shell top varies from π/4 to π/2, while the slenderness l/h = 400.
Obtained results are presented in the Table 3.

Table 3. Relation between critical loads, elastic- plastic boundary and open angle

α 0.78 0.80 0.82 0.84 0.88 0.90
pcr(kG/cm2) 16.45 14.5 13.0 6.4 2.7 0.9
ts = xs/l 0.7 0.75 0.79 1.0 1.0 1.0

5. DISCUSSION

From the results we can see that
- For conical shells when the ratio l/h increases, then the critical load decreases while

the value xs/l increases, i.e. the plastic zone is reduced. The ratio l/h is reaching some
value the loss of stability of the shell will occur in elastic range (in considered example
with the shell of α = π/4 and l/h > 1000).
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- With materials of the same E, σs and the shell of the same ratio l/h and open
angle α the critical loads decrease in turn elastic, linear hardening, general hardening and
perfectly plastic material. The greater hardening modulus Φ

′
(s) of material results in

greater critical load.
- With the same material and the same ratio l/h the critical loads decrease when the

open angle α at shell top increases, i.e for a flatter conical shell the critical load is smaller.
In conclusion, an analysis procedure has been developed for solving the elastoplastic

stability problem of conical shells.
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A’NH HU.O.’ NG CU’ A DĂ. C TRU.NG TÁI BÈ̂N CU’ A VÂ. T LIÊ. U

DẾN TA’ I TRO. NG TÓ.I HA. N TRONG BÀI TOÁN Ô’N DI.NH
DÀN-DE’O CU’ A VO’ NÓN

Trong bài báo này dã thiết lâ.p các phu.o.ng tr̀ınh co. ba’n cu’a bài toán ô’n di.nh ngoài
gió.i ha.n dàn hò̂i cu’a vo’ nón du..a trên lý thuyết quá tr̀ınh dàn de’o và tiêu chuâ’n tò̂n ta.i
các da.ng cân bà̆ng lân câ.n, khi tra.ng thái màng tru.́o.c khi mất ô’n di.nh là không thuà̂n
nhất. Lò.i gia’i cu’a bài toán nhâ.n du.o..c nhò. áp du.ng phu.o.ng pháp Bubnov-Galerkin và
phu.o.ng pháp tham số ta’i, qua dó kha’o sát a’nh hu.o.’ ng cu’a dă.c tru.ng tái bè̂n cu’a vâ.t liê.u
dến ta’i tro.ng tó.i ha.n cu’a vo’ nón chi.u tác du.ng cu’a áp suất ngoài.


