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Abstract. In this paper by using the theory of elasto-plastic processes and adjacent-
equilibrium criterion the governing equations of the elasto-plastic stability problem of conical
shells are derived. The Bubnov-Galerkin’s method combined with the loading parameter
method are applied in solving the mentioned problem. The influence of the hardening
characteristics of material on the critical load is investigated.

1. INTRODUCTION

Analysis of the elasto-plastic stability problem of shells with homogeneous membrane
stress of the prebuckling state was considered by some authors [1+ 4], but in the case when
the prebuckling state is non- homogeneous many difficulties arise in solving the problem,
because now stability equations are a set of partial differential equations with variable
coefficients. Otherwise we can get more difficulties in determination of material functions
occured in the constitutive relations, for example the secant modulus and tangent modulus
which become functions of point coordinates. Furthermore in the shell occur elastic and
plastic zones, the boundary of which is unknown, it must be determined simultaneously
in the solution process.

In this paper the governing equations of the elasto-plastic stability problem of conical
shells are developed based on the theory of elasto-plastic processes and the adjacent-
equilibrium criterion. The Bubnov-Galerkin’s method combined with the loading param-
eter method can be applied in solving considered problem. A piece-wise linearization
procedure of the material function figured in constitutive relations is demonstrated for
material with general hardening characteristics and the influence of this characteristics on
the critical load is investigated.

2. PREBUCKLING STATE OF A CONICAL SHELL.

Points in the middle surface of a conical shell may be referred to coordinates (z, ),
where x is a coordinate taken from the shell top to the considered point in the generatrix
direction, 6- a circumferential coordinate, a- an open angle at the shell top, I- the length
of shell anh h- the shell thichness. The stress occurs in the prebuckling state depending
on loading process, here we restrict ourselves the applied load is axisymmetric and the
linear bending equations are used for the prebuckling deformation. If the shell is acted on
by external pressure with intensity p, the prebuckling stress state is of the form
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NS = —Ttga, N(S] = —pxtga, NS(, =0.
It is clear that along the shell generatrix the stress intensity increases linearly with respect
to z. Thus at points 0 < =z < x; elastic state occurs, while z5 < x <[ the shell is in plastic

state, the boundary of two zones is determined by
20sh
Ts=—,
V3 ptga

where o,- yield stress (when o0 = o), x,- elastic- plastic zones boundary. This boundary
will be determined simultaneously in the solving process. Putting

T 3pl T
t=2 ag—f—pt g
l 2h l
where
o9 ——\/gplt
M= "ohn ’
one can get
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3. STABILITY EQUATIONS
Applying stability equations [5] for conical shells subjected to external pressure yields

Ry — 00, lim Rodp =dx, r=xsina,
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with the following boundary conditions:
- at the fixed point 0 of the shell top

ou=d0v=0w=0 with z=0; (3.2)
- the end cross section of the shell is simply supported such that

sw =0, ov=0, 6My=0, ON,=0. (3.3)
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Remark:

e With a = 7/2 equations (3.1) reduce to stability equations for a circular plate.

e With z sina = a = const and «a = 0, equations (3.1) become stability equations for
a circular cylindrical shell of radius a.

According to the elasto-plastic process theory [3] the expressions for internal forces in-

crements and internal moments increments of a conical shell subjected to external pressure
are obtained as follows
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where N = 09 /s = &(s)/s plays a role of a secant modulus and & (s) - tangent modulus
of the hardening material. In this case N and & are functions of z alone, du, v, dw are
displacement increments in generatrix, circumferential and normal to the shell directions,
respectively. Since then without mistakes we can omit the word “4” in the denotation of
increment quantities.

Substituting (3.4) into (3.1) leads to equations
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4. SOLVING METHOD

a) In the case of elastic conical shells
N=a& =3G,

equations (3.5) reduce to ones of elastic stability equations considered in [7].
b) In the case of conical shells made of material with linear hardening characteristics
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where b = 04 — geg, the set of equations (3.5) can be written as
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By using these equations the stability problem has been investigated in [6]. Later equations
(4.1) will be used as basic equations for solving step - by -step the stability problem of
conical shell made of material with general hardening characteristics.
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c) In the case of conical shells made of general hardening material, relation o0 = &(s)
represents a material function precisely determined for a given material, it is a curve of
the stress intensity o0 versus the arc - length s of strain trajectory. In general the slope of
a tangent to the material curve varies from point to point. Otherwise in the considered
conical shell subjected to external pressure

o V3pz
uT o

tgo = 09\4 t,

i.e. at each point on the generatrix we can know the value of stress intensity ¢V , which

is respect to one point on the material curve with coordinates (9, s). Therefore within
s and t there is a relation one - to - one, it means that with each value ¢t we can get the
value 00, then according to the graph ¢ = &(s) we determine the value s respectively
and then the value & (s) (the slope of tangent to the material curve) and N = ¢ /s.

Implementing a linearization of the general hardening curve as a piecewise linear hard-
ening one, such that in each interval [s;, s;11] we obtain & (s) = & (s;) = g; = const.
Consequently at different intervals the quantity @l(s) gets different but constant values,
then:
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With respect to each interval [s;, s;11] the stability equations are in the form similar to
(4.1).
Taking the solution

No No No
u= Z A,U(t) cos nf, v = Z B,V(t) sin nf, w= Z Cp,W (t) cosné.
n=1 n=1 n=1

where A,,, B, C, - constants and substituting them into equations (4.1) we obtain
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Functions U(t), V (t), W (t) are chosen, such that the boundary conditions (3.2), (3.3) are
satisfied.
Ut)=t(1—1t)?2, V(@)=t(1—-1t), W(t)==t3(1-1)>%

Applying the Bubnov - Galerkin’s method into equations (4.2), we obtain

tiy1 27
> / dt/@(t,@)t(l—t)z cos kO df = 0,
3=0 ¢, 0
tiy1 27
> / dt/gp(t,e)t(l—t) sin k@ df = 0,
7=0 ¢ 0
tiy1 27
> / dt/Q(t, 0) > (1 — ) cos kO df = 0. (4.3)
7=0 ¢ 0

with k& = 0, No.
Using the orthogonality of trigonometric functions we can see that with respect to each
k = n obtaining 3 linearly algebraic homogeneous equations of unknown A,, B,, C, sep-
arately; totally we get Ny sets of 3 separate equations of unknown with n = 1,2,---Ny
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respectively. Since A,, B,, C,, are not simultaneously equal to zero, so the determinant of
their coefficients must be vanish, it leads to the relationship for determining the critical
load.

About the value t; = x5/l which can be defined by using the iterative method, so -
called elastic solution method. At the first iteration k = 0 suppose the shell in elastic state,
the critical load pﬁ(ﬂ) is determined as in [7], then the value 01(\2) is known. If 01(\2) t < oy
for all ¢, the iterative process can be finished and the instability of shell occurs in elastic

)

range. If 01(\2) t > o,, we calculate tgo = og/ 01(\2) for getting the number of intervals from

O to 1, on which &' takes different constant values and then substitute into (4.3) for the
next iteration.

Note that in each iteration one obtains Vg values of p, the minimum value of which is
chosen for the critical p... Iterative process can be finished when the difference of results in
two consecutive iterations is smaller than a given small value. Using just obtained critical

load pe, the elasto - plastic zones boundary can be defined as follows

&—t B 204h
L7 VBlpatga

5. NUMERICAL EXAMPLE

Consider in turn the stability problem of conical shells made of different materials
with:
- Linearly hardening characteristics
E =2,6.105kG/cm?), o,=4.103kG/ecm?), g¢=0,43.10%kG/cm?).
- General hardening characteristics
E =2,6.10%kG/cm?), oy = 4.10*(kG /cm?);
the relation o0 = &(s) is given in the Table 1.

Table 1. Relation between stress intensity and hardening modulus

o; 4000 4260 4440 4540 4640 4720 4780 4900
g:.10% | 0.853 0.48 0.42 0.32 0.26 0.23 0.22 0.20
o; 5000 5080 5160 5400 5500 5620 5700 5800
g:.105 [0.16 0.15 0.14 0.12 0.12 0.12 0.11 0.10

- Elasto - plastic material (almost perfectly plastic material)
E =2.6.10%kG/cm?), o, =4.10*(kG/cm?), g =0.08.10%kG/cm?).

Firstly, the calculation is carried out with a conical shell of & = 7 /4, the series expansion
from n = 1 to n = 15 and 10 iterations. The results of critical loads depending on
slenderness [/h of the shell with different materials are given in the Table 2 and illustrated
on the Fig. 1.
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Table 2. Relation between critical loads and slenderness with various materials

DPer l/h
(k‘G/cmz) 500 600 700 800 900 1000 | 1100 | 1200 | 1300
elastic 25.50 | 17.61 | 12.93 | 9.90 7.78 | 6.32 5.21 4.38 | 3.72
linear 17.07 | 13.70 | 11.05 | 8.50 7.37 | 6.32 5.21 4.38 | 3.72
hardening
general 13.00 | 10.87 | 8.96 7.90 7.03 | 6.32 5.21 4.38 | 3.72
hardening
perfectly 10.00 | 8.59 7.39 | 6.48 | 5.77 |5.30 |5.21 4.38 | 3.72
plastic
A B, (kGfem ?)
25 —o— Elastic
—%— linear hardening
205 —0— general hardening
E —+— Perfectly plastic
15:
105
: !q-____h ~=p
5 T
G: 1T T T T T T 1 1 1 T T T L LI T T 1 1 1 T -
400 00 800 1000 1200 400 1h

Fig.1. Effect of hardening characteristics on critical loads

Secondly, analysis is fulfilled with a conical shell made of general hardening material,
the open angle at the shell top varies from 7 /4 to 7/2, while the slenderness [/h = 400.
Obtained results are presented in the Table 3.

Table 3. Relation between critical loads, elastic- plastic boundary and open angle

a 0.78 0.80 0.82 0.84 0.88 0.90
per (kG /cm?) 16.45 | 14.5 13.0 6.4 2.7 0.9
ty = x4/l 0.7 0.75 0.79 1.0 1.0 1.0

5. DISCUSSION

From the results we can see that
- For conical shells when the ratio [/h increases, then the critical load decreases while
the value x4/l increases, i.e. the plastic zone is reduced. The ratio [/h is reaching some
value the loss of stability of the shell will occur in elastic range (in considered example
with the shell of & = 7/4 and [/h > 1000).
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- With materials of the same FE,os and the shell of the same ratio [/h and open
angle « the critical loads decrease in turn elastic, linear hardening, general hardening and
perfectly plastic material. The greater hardening modulus @l(s) of material results in
greater critical load.

- With the same material and the same ratio [/h the critical loads decrease when the
open angle « at shell top increases, i.e for a flatter conical shell the critical load is smaller.

In conclusion, an analysis procedure has been developed for solving the elastoplastic
stability problem of conical shells.
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ANH HUONG CUA DAC TRUNG TAI BEN CUA VAT LIEU
DEN TAI TRONG TOT HAN TRONG BAI TOAN ON DINH
DAN-DEO CUA VO NON

Trong bai bdo nay da thiét lap cdc phrong trinh co ban ctia bai toan 6n dinh ngoai
gi¢i han dan hoi ciia vé nén dwa trén 1y thuyét qua trinh dan déo va tiéu chuan ton tai
cac dang can bing lan can, khi trang thai mang truéc khi mét 6n dinh 1a khong thuin
nhat. Loi gidi cia bai toan nhan dwoc nho 4p dung phwong phédp Bubnov-Galerkin va
phwong phép tham sé tai, qua dé khdo sat anh hwdng cla dic trung tai bén cia vat liéu
dén tai trong t&i han ctia v nén chiu téc dung ctia 4p suit ngoai.



