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BUCKLING OF THE INITIAL IMPERFECT
RECTANGULAR THIN PLATE WITH VARIABLE

THICKNESS
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Abstract. This paper analyzes the stability of the rectangular thin plate with sinusoidal
changes in the plate thickness combined with initial curvature based on the large deflection
theory. The buckling load for simply supported plates is defined using the energy method.
The influence of the thickness variation parameter and the initial curvature parameter on
the critical loads is investigated.

1. INTRODUCTION

Plates and shells as structural elements are seldom perfectly flat and of uniform thick-
ness and the amount of initial curvature and variable thickness can affect the load-carrying
capacity of structures. Recently, the problem of the influence of the thickness variation
and the initial curvature on the buckling load has been researched by several authors, such
as Timoshenko [1], Elishakoff et al [2], Zhiming [3], Yeh et al [4], Mateus et al [5], Nguyen
and Tran [6], Ciancio [7].

In this paper, based on the theory of plates of large deflection, the stability study of
imperfect rectangular thin plates with initial curvature and variable thickness is a ma-
jor object. The energy method is used to determine the critical load factor of plates
with variable thickness combined with initial deflection. The influence of the thickness
non-uniformity parameter and the initial curvature parameter to the buckling load is in-
vestigated. General asymptotic formulae for the buckling load are derived and numerical
results are investigated for compressive plates with the simply supported boundary con-
dition (Fig. 1).

2. ENERGY APPROACH

This section aims at the study of the combined effect of thickness variation and initial
imperfection on the buckling behavior of the rectangular thin plate. The simplest approach
to the problem is a direct discussion of the energy criterion of elastic stability by means of
the second variation of the potential energy. The energy method permits us to determine
the buckling load of imperfect plates with variable thickness, as illustrated in [2]. Here,
we consider the small thickness variation, and as a first approximation, only the terms up
to the first order of thickness variation parameter are retained. The final product of this
discussion is an equation that relates the variation parameter and the initial imperfection
amplitude to the buckling load factor for the plate.

We assume that the displacement in the fundamental state is u0(0, 0, w0).
The initial deflection is defined as

w0 = −µh0 sin
(qπx

a

)
, (2.1)



104 Nguyen Thi Hien Luong and Dang Thuy Minh Tuong

Fig. 1. Uniaxially compressed Fig. 2. Expression graph of thickness
rectangular plate variation h(x)when ε = 0.1

with µ is the non-dimensional parameter describing the magnitude of the imperfection; q
is the wave number of the initial curvature function.

We assume that the plate thickness h here is varying with sine function in x direction:

h(x) = h0

(
1 − ε sin

pπx

a

)
, ε ≥ 0, (2.2)

where h0 is the plate constant thickness and ε, p are the non-dimensional parameters
indicating the magnitude and wave of the thickness variation, respectively. When x = 0
and x = a, one has h(x) = h0, for the case x = a/2: one has h(x) = h0(1−ε) (Fig. 2). The
thickness parameter ε is positive in order to achieve a detrimental effect by a “thinning”
of the wall thickness. The parameters ε, µ vary from zero to 0.2.

A deflection from the fundamental pre-buckling state is described by u(u, v, w).
Membrane strain energy of the rectangular thin plate is:

Um =
1
2

b∫

0

a∫

0

(Nxεx + Nyεy + Nxyγxy)dxdy =

=
E

2(1 − ν2)

b∫

0

a∫

0

h

(
ε2
x + ε2

y + 2νεxεy +
1
2
(1 − ν)γ2

xy

)
dxdy. (2.3)

Bending strain energy reads

Ub =
1
2

b∫

0

a∫

0

D(x, y)

{(
∂2w

∂x2
+

∂2w

∂y2

)2

− 2(1− ν)

[
∂2w

∂x2

∂2w

∂y2
−

(
∂2w

∂x∂y

)2
]}

dxdy. (2.4)

For the rectangular thin plate under compression load N , the potential energy of the
applied load takes the form

Ω = −1
2

b∫

0

a∫

0

N

(
∂w

∂x
+

∂w0

∂x

)2

dxdy, (2.5)
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where w0 is the geometric initial imperfection.
Thus, the total potential energy reads

Π = Um + Ub + Ω. (2.6)

In the case of large deflection, the strain – displacement increments relations are of the
forms [1], [2]:

εx =
∂u

∂x
+

1
2

(
∂w

∂x

)2

; εy =
∂v

∂y
+

1
2

(
∂w

∂y

)2

; γxy =
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y
, (2.7)

where u, v are the displacements in x and y directions, w is the deflection, positive outward;
εx, εy and γxy are strain components.

Substituting Eq. (2.7) into Eq. (2.3) and Eqs. (2.3) – (2.5) into Eq. (2.6), we obtain the
energy expression in the general anisotropic case:

Π =
1
2

b∫

0

a∫

0

{
A11

[
∂u

∂x
+

1
2

(
∂w

∂x

)2
]2

+ 2A12

[
∂u

∂x
+

1
2

(
∂w

∂x

)2
] [

∂v

∂y
+

1
2

(
∂w

∂y

)2
]

+

+ A22

[
∂v

∂y
+

1
2

(
∂w

∂y

)2
]2

+ A66

[
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y

]2

+ D11

(
∂2w

∂x2

)2

+

+ 2D12
∂2w

∂x2

∂2w

∂y2
+ D22

(
∂2w

∂y2

)2

+ D66

(
∂2w

∂x∂y

)2

− N

(
∂w

∂x
+

∂w0

∂x

)2
}

dxdy.

(2.8)

In the isotropic case, expression (2.8) is the total potential energy with:

A11 = A22 =
Eh

1 − ν2
; A12 = νA11; A66 =

1 − ν

2
A11; A16 = A26 = 0,

D11 = D22 =
Eh3

12(1− ν2)
; D12 = νD11; D66 = 2(1− ν)D11; D16 = D26 = 0,

and ν is Poisson’s ratio, E is the modulus of elasticity.
The energy variation is performed at the fundamental pre-buckling state ([2]). Reject-

ing the fourth variation of the potential energy from expression (2.8), one obtains:

Π = P11 [u0, u] + P2 [u] + P3 [u] , (2.9)

where the bilinear term P11 [u0, u] due to the geometric initial imperfection is given by:

P11 [u0, u] = −N cr

b∫

0

a∫

0

∂w

∂x

dw0

dx
dxdy. (2.10)
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In expression (2.9), P2 [u] is the second (quadratic) variation of the energy for buckling
modes:

P2 [u] =
1
2

b∫

0

a∫

0

[
A11

(
∂u

∂x

)2

+ 2A12
∂u

∂x

∂v

∂y
+ A22

(
∂v

∂y

)2

+

+ A66

(
∂u

∂y
+

∂v

∂x

)2

+ D11

(
∂2w

∂x2

)2

+ 2D12
∂2w

∂x2

∂2w

∂y2
+ (2.11)

+ D22

(
∂2w

∂y2

)2

+ D66

(
∂2w

∂x∂y

)2

− N cr

(
∂w

∂x

)2
]

dxdy,

and P3 [u] is the third variation of the energy:

P3 [u] =
1
2

b∫

0

a∫

0

{
A11

∂u

∂x

(
∂w

∂x

)2

+ A12

[
∂u

∂x

(
∂w

∂y

)2

+
∂v

∂y

(
∂w

∂x

)2
]

+ A22
∂v

∂y

(
∂w

∂y

)2

+ 2A66

(
∂u

∂y
+

∂v

∂x

)
∂w

∂x

∂w

∂y

}
dxdy. (2.12)

If the rectangular plate is simply supported around the periphery and edges are im-
movable in the plane of plate, then the boundary conditions are:

w = w,xx = w,yy =0 at x = 0, a; y = 0, b

u =0 at x = 0,
a

2
, a; y = 0, b (2.13)

v =0 at x = 0, a; y = 0,
b

2
, b.

In applying the energy method, we must assume suitable expressions for the displace-
ments u, v, w. The proposed displacement functions chosen for this case are given by the
following series:

w = b0h0 sin
(qπx

a

)
+ Cmh0 sin

(mπx

a

)
sin

(nπy

b

)
,

u = QmCmh0 sin
(

2mπx

a

)
sin

(nπy

b

)
,

v = KmCmh0 sin
(mπx

a

)
sin

(
2nπy

b

)
, (2.14)

where b0, Km, Cm and Qm are constants; m, n are the wave numbers of the buckling mode
in the x and y directions of thin plate, m, n, q = 1, 3, 5, . . .

From the condition of minimum of total energy, one obtains:

∂Π
∂b0

= 0, (2.15)

∂Π
∂Cm

= 0, (2.16)
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∂Π
∂Qm

= 0, (2.17)

∂Π
∂Km

= 0. (2.18)

Consider the following normalization:

λ =
N cr

N cr
0

, (2.19)

where λ is the non-dimensional buckling load factor, N cr
0 is the buckling load of the

rectangular plate with µ = 0, ε = 0; N cr is the buckling load of the rectangular thin plate
with the variable thickness and the initial curvature ε 6= 0 , µ 6= 0.

Substituting the solution Cm = 0 of equation (2.16) into equation (2.15), we determine
b0. If Cm 6= 0, from equation (2.17) and (2.18), we can determine Qm and Km.

Substitution b0 , Km , Qm into equation (2.16) leads to the equation expressed the
relation between the initial curvature amplitude µ, the variable thickness parameter ε and
the buckling load factor λ:

F (µ, ε, λ) = 0. (2.30)

Solving the equation (2.30), one can determine the buckling load factor λmin.

3. DETERMINATION OF THE BUCKLING LOAD FACTOR

When the rectangular plate is simply supported, the number of sine-half–waves in series

functions can be chosen as: m = n = p = 1, q = 3 and we obtain: w0 = −µh0 sin
(

3πx

a

)
and

h(x) = h0

(
1 − ε sin

πx

a

)

w =b0h0 sin
(

3πx

a

)
+ Cmh0 sin

(πx

a

)
sin

(πy

b

)
,

u =QmCmh0 sin
(

2πx

a

)
sin

(πy

b

)
, (3.1)

v =KmCmh0 sin
(πx

a

)
sin

(
2πy

b

)
.

In the case of square plate: r =
a

b
= 1 and ν = 0.3, substituting Eqs. (2.10)- (2.12)

into the second and third variations, we obtain, after retaining only the first-order terms
in ε,

P11 [u0, u] =
9
2
π2b0h

2
0µN cr,
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P2 [u] =
(

435
728

π2Eh3
0K

2
m +

25
546b2

π4Eh5
0 −

835
546

πEh3
0K

2
mε − 44

39
πEh3

0Q
2
mε −

− 95
273

πEh3
0KmQmε +

435
728

π2Eh3
0Q

2
m − 55

182b2
π3Eh5

0ε +
80
63

Eh3
0KmQm−

−1
8
π2h2

0N
cr

)
C2

m +
(

675
364b2

π4Eh5
0 −

9
4
π2h2

0N
cr − 7290

637b2
π3Eh5

0ε

)
b2
0 , (3.2)

P3 [u] =
πEh4

0C
2
mb0

183456
(
124740π2Qm + 5040πKmε − 100224πQmε − 16128Km

)
.

From Eqs. (2.15), (2.16), (2.17) and (2.18), one obtains:

b0 = − 637µb2N cr

525π2Eh3
0 − 637b2N cr − 3240πEh3

0ε
,

Km = − 108π2h0b0(187425π2ε − 673680π + 620544ε− 175360πε2)
35b(14553648π2ε2 + 1896960πε− 3461120− 13633596π3ε + 3065445π4)

, (3.3)

Qm = − 9πh0b0(372736 + 5611056π2ε2 − 218624πε− 9123732π3ε + 2713095π4)
14b(14553648π2ε2 + 1896960πε− 3461120− 13633596π3ε + 3065445π4)

.

When ε = 0 and µ = 0, N cr
0 is determined as follows:

N cr
0 =

100
273

π2Eh3
0

b2
. (3.4)

We receive the same formula for a simply supported square plate with constant thick-
ness and ν = 0.3 in [1] and [6]:

N cr
0 =

π2D

b2

(
a

b
+

b

a

)2

=
π2D

b2
(1 + 1)2 =

4π2Eh3
0

12b2(1 − ν2)
=

100
273

π2Eh3
0

b2
.

When ε 6= 0 and µ 6= 0, we have the relation between λ , ε and µ:

− 124.74ε5 − 115.82λε4 + 548.33ε4 + 452.12λε3 + 1.4413λ2ε3µ2 − 889.88ε3

− 33.254λ2ε3 + 113.2λ2ε2 − 603.79λε2 + 667.55ε2 − 3.0394λ3ε2 − 12.978λ2ε2µ2 (3.5)

+ 8.8189λ3ε + 35.569λ2εµ2 + 322.8λε− 235.28ε− 116.83λ2ε + 31.617

− 59.72λ + 34.349λ2 − 26.773λ2µ2 − 6.246λ3 = 0.

4. ANALYSIS AND DISCUSSION

In order to investigate the variation of the buckling load for the plate due to the small
thickness variation and the initial curvature, the influence of the thickness parameter ε
and the initial curvature parameter µ is studied. The following figures are presented for
square plates (r = 1) with ν = 0.3.
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From Eq. (3.5), the relationship between λ and µ is shown in Fig. 3 for different values
of ε, the relationship between λ and ε is shown in Fig. 4 for different values of µ. The
combined effect of the thickness variation and the initial imperfection on the buckling load
is illustrated in Fig. 5.

The results obtained show that, when the initial imperfection is present, the com-
bination of the initial imperfection and the thickness variation reduces the buckling load
factor even more drastically. When the amplitude of the thickness variation and the initial
imperfection amplitude are ε = 0.1, µ = 0.2, the buckling load factor of plate is reduced
by 28.2%. If the effect of thickness variation is not considered, the buckling load factor
of plate is reduced by 8.2% for µ = 0.2 from its counterpart of the case with constant
thickness. In this case, when ε = 0.2 , µ = 0.2, the buckling load factor λ decreases up to
48.5%.

Fig. 3. Relation between λ and µ for
ε = 0 , 0.1 , 0.2

Fig. 4. Relation between λ and ε for µ =
0 , 0.1 , 0.2

Fig.5. Relation between λ, ε and µ

5. CONCLUSION

In this paper, the energy expressions for imperfect plates have been given in the case of
large deflection. Based on these expressions, a detailed study of the imperfect rectangular
thin plate with thickness varying along the x-axes with sine functions has been presented.
The formulae for the buckling load have been derived using the energy method.
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From the obtained results, one can conclude that the variable thickness and the initial
curvature may cause a reduction of the load carrying capacity of plate structures, and so
this effect should be taken into account in the design of plate structures.

This work was done under the support of Natural Science Council of Vietnam.
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Ô’N DI.NH CU’ A TÁ̂M CHŨ. NHÂ. T KHÔNG HOÀN HA’O CÓ CHIÈ̂U

DÀY THAY DÔ’I THEO LÝ THUYẾT TÁ̂M CÓ DÔ. VÕNG LÓ.N

Phân t́ıch ô’n di.nh phi tuyến tấm chũ. nhâ. t có chiè̂u dày thay dô’i theo phu.o.ng x vó.i
qui luâ. t h̀ınh sin và có dô. cong ban dà̂u du..a trên lý thuyết tấm mo’ng có dô. võng ló.n. Lu..c
tó.i ha.n du.o..c xác di.nh cho tấm tu..a tu.. do bà̆ng cách su.’ du.ng phu.o.ng pháp năng lu.o..ng.
A’nh hu.o.’ ng cu’a su.. thay dô’i chiè̂u dày và thông số dô. cong ban dà̂u dến hê. số ta’i tro.ng tó.i
ha.n du.o..c kha’o sát.


