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Abstract. This paper investigates the effects of tangential edge constraints and elastic
foundations. on the buckling and postbuckling behavior of thick FGM rectangular plates
resting on elastic foundations and subjected to thermal and thermomechanical loading
conditions. Material properties are assumed to be temperature dependent, and graded
in the thickness direction according to a simple power law distribution in terms of the
volume fractions of constituents. Governing equations are based on the higher order
shear deformation. plate theory incorporating the von Karman geometrical nonlinearity,
initial geometrical imperfection, tangential edge constraints and Pasternak type elastic
foundations. Approximate solutions are assumed to satisfy simply supported bound-
ary conditions and Galerkin procedure is applied to derive expressions of buckling loads
and load-deflection relations. In thermal postbuckling analysis, an iteration algorithm
is employed to determine critical buckling temperatures and postbuckling temperature-
deflection equilibrium paths. The separate and simultaneous effects of tangential edge
restraints, elastic foundations and temperature dependence of material properties on the
buckling and postbuckling responses of higher order shear deformable FGM plates are
analyzed and discussed.

Keywords: Functionally graded materials, tangential edge constraint, temperature depen-
dent property, buckling and postbuckling, elastic foundations.

1. INTRODUCTION

PFunctionally graded materials (FGMs) are microscopically composites usuaily com-
posed from a mixture of metal and ceramic constituents and have some advanced fea-
tures in comparison with conventional laminated composites. As a result, the stability
of FGM structures is an attractive topic for many researchers. Linear buckling of simply
supported FGM rectangular plates subjected to compressive and thermal loads has been
investigated by Eslami and his co-authors [1-4] and Lanhe [5] using classical, first order
and higher order shear deformation theories and an analytical method. Thermal and
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mechanical linear buckling of FGM plates have also been investigated using numerical

methods in works by Zhao etal. [6], Nguyen and his collaborators [7-9] and by Liew and

his co-authors [10-12]. Tung and Duc [13,14] employed Galerkin method on the basis of
classical and higher order shear Flefunnatiﬂn theories fo investigate nonlinear. stability of
simply supported FGM plates subjected to inechanical and thermal loading conditions-
with and without elastic foundations and ternperature-independent properties. Nonlin-

ear stability and postbuckling of FGM plates have also been addressed: in-some studies
by Woo et al. [15] utilizing an analytical approach, by Shen [16] making use of a two-step

perturbation technique and Lee et al. [17] using the élement-free kp-Ritz method. Buck-

ling and postbuckling of FGM sandwich: plates consisting of homogeneous and’ FGM

layers have been analyzed in some works by Zenkour [18], Zenkour and Sobhy [19] em-

ploying an analytical method and by Shen and Li’[20] and Wang and Shen [21] basing ori

an semi-analytical approach. B

In foregoing studies, only two extreme cases of in-plane constraints of edges have
been considered. Specifically, the edges of plates are usually assumed to be either unre-
strained (free movable edges) or fully restrained (immovable edges). However, in prac-
tical situations, the tangential motion of the edges may be partially restrained only. This
results from the boundary supports are not completely rigid and they can deform elas-
tically. Librescu et al. [22,23] analyzed the effects of tangential edge constraints on the
postbuckling and vibration of laminated flat and curved panels subjected to mechani-
cal and thermal loads. These works indicated that, in the static case, the degree of the
tangential edge restraint can has great effects on the behavior of plates and shells. In
spite of considerable effects of tangential edge constraints and increasing use of FGMs,
studies on this subject are comparatively scarce. Recently, the author used an analytical:
approach based on the classical thin shell theory to analyze the postbuckling behavior of
thin FGM cylindrical panels and circular cylindrical shells subjected to mechanical and:
thermal loads taking the effects of tangential edge constraints into consideration [24,25]
without and with temperature dependent material properties, respectively. It was shown
in work [25] that the effects of temperature dependence of material properties on load
carrying capacity become more pronounced and deteriorative for partially movable edge
FGM cylindrical shells.

This paper extends previous works [14, 24] to investigate separate and simultane-
ous influences of tangential edge constraints and temperature dependent material prop-
erties on the buckling and postbuckling behavior of higher order shear deformable FGM
rectangular plates resting on elastic foundations and subjected to thermal and thermo-
mechanical loads. The novelty of the present study in comparison with works [14;24]
results from temperature dependence of material properties and varying degree of tan-
gential edge constraint. Formulations are based on the higher order shear deformation
plate theory taking von Karman geometrical nonlinearity, initial geometrical imperfec-
tion, Pasternak type elastic foundations and tangential edge resiraints into consideration.
Approximate solutions of deflection and stress function are assumed to satisfy simply
supported boundary conditions and Galerkin method is employed to determine expres+
sions of buckling loads and load-deflection relations. In thermal postbuckling analysis,
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an iteration algorithm is adopted to obtain critical buckling temperatures and postbuck-
ling temperature-deflection equilibrium paths. The effects played by the degree of the
tangential edge constraints, temperature dependent material properties, stiffness of elas-
tic foundations and imperfection on the buckling and postbuckling behavior of thick
FGM plates are analyzed and discussed.

2. FGM RECTANGULAR PLATE ON AN ELASTIC FOUNDATION

Consider an FGM rectangular plate of plan-form dimensions a and b, and uniform
thickness  resting on an elastic foundation. The plate is made from a mixture of ceramics
and metals, and is defined in a coordinate system (x, y, z) whose origin is located at the
coner on the middle surface of the plate, x and y are in-plane coordinates towards edges
a2 and b, respectively, and z is perpendicular to the middle surface (=h/2 < z < h/2) as
shown in Fig. 1.

Fig. 1. Geometry and coordinates system of an FGM rectangular plate on an elastic foundation

Suppose that the material composition of the plate varies smoothly along the thick-
ness in such a way that the bottom surface is metal-rich and the top surface is ceramic-rich
by following a simple power law in terms of the volume fractions of the constituents as

N
Va@) = (T3 ) Veld) =1~ Vi(a), ®

where V,, and V; are the volume fractions of metal and ceramic constituents, respectively,
and N > 0 is volume fraction index.

Practically, FGMs are most commonly used in high temperature environments,
and significant changes in material properties are inherent. Usually, the elasticity modu-
lus decreases, and the thermal expansion coefficient increases at elevated temperatures.
Therefore, it is essential to account for this temperature dependence for accurate and
reliable prediction of the response of thermally loaded FGM structures.

It is assumed that the effective properties Pr,ss of FGM plates change only in the
thickness direction z and can be determined by the linear rule of mixture as

Prese(z, T) = Pro(T)Vin(2) + Pr.(T)V.(z), (2)



b6 Hoang Van Tung.

where Pr denotes a specific material property assumed to be temperature-dependent in
the present study, and subscripts m and ¢ represent the metal and. ceramic constituents,
respectively. *

From Egs. (1) and (2) the effective properties of FGM plates such as the modulus of
elasticity E and the coefficient of thermal expansion « can be written in the form

E(Z, T) = E.:.-(T) + Emr:‘(:T) (222-;; h)N;
e 3)
II(Z, T) = l‘Ic(T) + ﬂmc(T)(Zz“é}l;_h) '
where
Enc(T) = En(T) —Ee(T),  me(T) = am(T} — ac(T), (4)

and Poisson’s ratio v is assumed to be constant. In the present study, the FGM plate is
fully rested on an elastic foundation and the FGM plate-foundation interaction is repre-
sented by Pasternak model as

qr = kiw — ko Aw, (5)

where A = 3%/9x2 + 9%/ ay2 is Laplace operator, w is the deflection (transverse displace-
ment) of the plate; k; is Winkler foundation modulus and k; is the shear layer foundation
stiffness of Pasternak model.

3. THEORETICAL FORMULATIONS

In the present study, Reddy’s higher order shear deformation plate theory [26] is
used to establish governing equations for buckling and postbuckling analysis of thick
FGM plates. Based on this theory, normal strains ¢y, &y, in-plane shear strain -y, and
transverse shear deformations <yxz, yyz are represented as

)= (1))~ () -G o
Yy ‘Tif kfy kfy Tyz Tyz k;:,%z
where

EEI iy + wzx /2 +ww k% Pxx
Y] 0y + why /24w A7 Rl VIO &
‘TIF u*y + ﬂf:’: + wrx w:}" + wj;: w;y’ + wrx w::{ kIy qufy + ()bij
K Prx + Wax + Wy (7);
g =0 Pyy + Wyy + Wy / "
Xy Pry + Pyx + 2wy + 2075,
( Tz ) _{ o twatwl K\ — s ( $x + Wy + W
Yy Py +wy+wy Ky "\ gy Fwytwy )
in which ¢; = 4/(342) and von Karman nonlinear terms are incorporated. Also, u,v
are displacement components along the x, y directions, respectively, and ¢, ¢, are the
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rotations of normal to the midsurface with respect to y and x axes, respectively. Moreover,

w” is a known function representing initial geometrical imperfection of the plate.
Hooke's law for an FGM plate is defined as

Ty = ﬁ(i’;) [ex + vey — (1+v)a(z, T)AT],
Oy = z(i’;) [Ey +vex — (1 +via(z, T)AT], (8)
E(z, T)

[ﬂ'xy.e Uxz, ﬂ'yz] = 2(1 n U) ['}"xy; Yxzs '}’yz] ’

where AT is temperature rise from thermal stress-free initial state, and is assumed to be

independent of in-plane coordinates x,y. The force and moment resultants of the FGM
plate are determined as

h/2
(Ni, M;, P;) = fﬂ?(l,z,z?’)dz, i =x,Y,xy,
—if2
h/2 hy2 (9)
QoK)= [ ou(L2)dz (QK)= [ op(12)dz
—h/2 —/2

Introduction of Egs. (6), (7) into Egs. (8) and substitution of the resulting into
Egs. (9) give the constitutive relations as

(N, My, Py) = - _11,2 [(El, Es, E4) (EE +v£g) + (Ea, E3, Es) (k}; + vk;,)

+ (Ba, B, Er) (K2 4k} ) — (147) (91, D2, @)
(Ny, My, By} = = _1 y [(Eh E, E4) (Eg + usﬂ) + (Ez, E3, Es) (k; + uk_{,)

+(Es, Es, Er) (K +vk3) = (1+v) (@1, @, ®4) (10)
(Noy, My Pry) = 5y [(Bu B Ea) 22y + (B B Bs) KL + (o B, Er) B,
(QuK) = g7y [(BuBs) e+ (B, Bs) ]

(QuKs) = 577y [(Bu o)t + (B Bs) 2]
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where
h/2
(Elr EZ: ESJ‘ E4.r ES: E?) — / E(Zf T) (1; Zy 22, 23, 24, 26) dZ;
/2 11
/2 (11)
(P, D2, Dy} = f E(z, T)a(z, T)AT (1,2,2°) dz,
—h/f2

and specific expressions of temperature dependent coefficients E; = E;(T) (i=1 & 7) are
analogous to those given in the [14] for case of temperature independent properties and

are omitted here for sake of brevity.
Governing equations of higher order deformable FGM plates on elastic founda-

tions have been derived in the [14]. Specifically, nonlinear equilibrium equation has the
form

¢ (D;D5/ Dy — D3) A%w + (c1D2/ Dy + 1) DeA?w

— D¢/ Dy [ﬁyy W,xx + W) —2f xy (w,xy*l'wfxy) +f xx (Wyy"‘w:;y) —klw‘l‘kzﬁw] =0,

(12)
where
E{Es — E% E1Es — E3Ey E{E7 — ‘EE
Dl — 2y DZ — 5y ! 3= 2y !
Ey (1 —v4) E1 (1 —v?) Ei(1—v?) (13)
1
— —_ = —_ — E - E ZE /
Di=D1—c1D3, Ds=Dr—01Ds,  Dg 20+ 7) (E; — 6¢1E3 + 9¢1Es)
and strain compatibility equation for an imperfect FGM plate is [14]
Af — Eq (wiy — W W yy + 20,y Wy — Wax Wy — w,yyw:"ﬂ) = (. (14)
In Eqs. (12) and (14), f(x,y) is a stress function defined as
N:-: = ﬁyy ’ Ny — ﬁx::: ’ N:c:y — —f:,:-:y . (15).

In this study, the FGM plates are assumed to be simply supported at all edges. The
associated boundary conditions are [14,26]

w=¢y =My =P =0,Ny = Ny at x =0,4a

In Egs. (16) Nyo, Nyo are prebuckling compressive force resultants at freely movable
edges where Ny, is zero-valued, and are fictitious compressive edge loads at tangentially
restrained edges.

For the purpose of the present study, in-plane boundary conditions are assumed
to be with varying degrees of tangential edge restraint. The degree of tangential edge
restraint considered is bounded by the cases in which the tangential motion of the un-
loaded edges of a plate are either unrestrained or completely restrained, respectively, in
the in-plane direction perpendicular to the plate edge. For two these cases, the plate

(16)
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edges are referred to as movable and immovable edges, respectively. All intermediate
cases are referred to herein as partially movable edges and include elastically restrained
edge constraints.

The average end-shﬂrtenmg displacement A; between edges x = 0 and x = a is
related to the corresponding fictitious compressive edge load Ny by

A151 = Ny, (17)

where s; is the average tangential stiffness in the x direction on each opposite edge. Sim-
ilarly, for the edges ¥ = 0 and y = b, relation is expressed as

Azsy = Ny, (18)

where s; is the average tangential stiffness in the y direction on each opposite edge.
The expressions for the average end-shortening displacements are defined as [22,

/ / M dydx, Ay = —— f f % dydx. (19)

Egs. (17) and (18) mdlcate that values of A; = (0 and ﬂz = ( correspond to immov-
ableedges atx = 0,2 and y = 0, b, respectively. These conditions are satisfied by selecting
$1 — o0 and s — o0, respectively. In addition, values of s; = 0 and s; = 0 correspond to
movable edges at x = 0,2 and y = 0, b, respectively. For these movable edge conditions,
fictitious compressive edge loads are zero-valued, i.e. Ny = 0 and Ny = 0.

To satisfy boundary conditions (16), the approximate solutions are assumed as [14]

(w,w*) = (W, uh) sin B,,x sin 8,,y, (20)

1 1
f = A1cos2Bpx + Az cos 26,y + Az sin Bpxsind,y + EquyZ + ENyoxz,. (21)

¢y = Bz sin By x cos dpy, {(22)

where B,y = mmn/a,é, = nn/b, W is amplitude of the deflection and p is imperfection
parameter. The coefficients A, (i = 1 + 3) are determined by substitution of Egs. (20) and
(21) into Eq. (14) as

23]

¢ = By cos Bpxsind,y,

Eq62 E185,
= W = (.
A = 28, > W (W 2uhk), A;= 3252 SW(W+2uh), Az=0 (23)
Similarly, the coefficients By, B; are obtained as procedure described in the [14] as
B, = ﬂ12;23 — d224813 W, B, = ﬂ122-‘»?13 — 411423 W, (24)
412 — 4naz a1, — 411422

where
(411,822, a12) = (CID;; + Dy —2C1D2) (ﬁz 52 ‘Uﬁmﬁﬂ)

1 —
ZU(C%DHDl 2¢1D2) (62, B2, Bmdn) + Ds (1,1,0), (25)

(#13,823) = €105 (B, + BmdZ, &5 + 6nf) — D (B, 6n) -

+
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Subsequently, Egs. (20) and (21) are substituted into equilibrium equation (1?)
and applying Galerkin method for the resulting equation as procedure developed in
the [14] yield

_ . 6
> = mnm’ (m*Bs +n°) +
{ 9D¢BS b ) 16B;

A = 2
%Dg + 04) (m?B2 + n*)

2. B2
-I_mﬂ?f D] B.r.' Em;] [E;.L:Kl 4 ﬂ.Z (szg 4+ HZ) KZ] } W

16B;, (26)
E]?’H?I?TE' drnd « AN F TAT (TAT AT
+ 2563};; (H‘I Bﬂ -1 ) gmnw (W -1—}1) (W +2P)
rﬂﬂﬂ'4 - Y52 K 25 w =0
e 3 Crn (fﬂ BHNIU +n NH“) (W + 'u) -
16B;
where m, n are odd numbers, and
E.—E/Ii (i=1+7),W =W/h,B, =b/a,B, = b/h,Dy = D1/I*, D2 = D2/,
53 — D3/h?,ﬁ4 = D.;,/hs,l_jf, — DEK’IErﬁﬁ — Dﬁfh: NIU = Nx[}fh, (27)
) kyat koa? - (3Dy —4Ds5) 7 , 5.0 | o
— = — Ky) = —, — — B + 1.
Nyo Nyﬂ”h K4 D, 2 D; Cmn SDﬁBﬁ (I‘H a TN )

In what follows, the fictitious compressive edge loads Nxo, Nyo for the FGM plates
under the tangential edge constraints will be specified. From Egs. (6), (7) and (10) one
can obtain the following relations in which Eq. (15) and imperfection have been included

E = 'E-_l (f,]i’_':" T vﬁ.‘l’l’) — —E—l(Px_,I [ E[ (CPJ-':I 5 0 EH,II) R EIUE: _ Eu,xw,:c + 'ET; (28)
dv 1 E; c1E4 . =

2 *
@ = E_l (f,xr - ‘*’f,yy) - E{‘Py,y % Elll (ny,y T w*-‘”’) - iw’y ~ WPy ﬁ

Introduction of Egs. (20), (21) and (22) into Egs. (28) and then substitution of the
resulting equations into Egs. (19) yield the following expressions

1 4E;B1Bm | 4c1EsPm : Py
Ay = — (vNyo — Nyo) — — W (W +2ph) — —
1 Er (1" y0 :-.El) o——y 3 + mn2Es (B1 + BuW) + 3 (W + 2uh By’
1 4E;Bys, . 4ciEsd, _ o P,
Ao = — (¥Nyo — Nup) — LW (W +2uh) — —
‘T E (vN2o = Nyo) mn2E; ¥ mn2E; (B2 +6aW) 8 ( HH) Ei
(29)

Introduction of Egs. (29) into Egs. (17) and (18) and solving obtained equations,
the fictitious compressive edge loads can be determined as

Nx[] — EHW —+ EIZW (W -+ 2#) = E'13":131 /h, (30')

Ny{) = E’z*lw_ 4= EEEW (W F zlu) — e3P /h, (31)

i
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where
4By . .. _ . -
£11 = — mﬁﬂzﬂh [51 (El + 52) mBﬂBl + US]SZHBE]
16&'1::4 _ 4 F - 5 2p2 = = 3, 2
W— 51 (Eq + 82) (mB,ByBy + im BZ) +v515; (nByB, + mn?)], (32)
h
mPeEy . n o\ a2 2z - = & 1z (P L&
€2 = —0 5 (E1 + 82) m?B5 +vn 5152], e13 =e[v515 + 51 (E1 + 5)],
P
AeE _ _ _
€y = _THH}"EEZ [§2 (E1+ §1) nByBs -+ U§1§2mBﬂBhBl]
i
16EE4 s _ = 2 ~ = S 22
T—— 52 (E1 + 51) (nBpBa + in?) + v515, (mB,ByB; + m”B;}],  (33)
h
?1'2851-_22---2 6.8 L 8 (B L &
0 = s (v8152m°B; + 82 (Ev + 1) ], €3 = e[v518 + 52 (E1 + §1)],
2
in which

1
51=8/h Zr=s/h e=-F——""— ,
! ! 2 2 (E1 +51) (El + Sz) — 1255,
and By, B, are analogous to those given in the [14].
In this study, the FGM plate is entirely exposed to thermal environments uniformly
raised from thermal stress free initial state Tp to value T and temperature change AT =
T — Tp is considered to be independent of thickness variable z. The thermal expression

P4 is obtained from Egs. (11) as

(34)

Ec(T)me(T) + Eme(T)e(T) + Eue(T)ttpe{T)

®1/h = H(T)AT, H(T)=E(T)a:(T)+ N+ 1 2N +1

. (35)

4. STABILITY ANALYSIS

4.1. FGM plate under uniform temperature rise

Introduction of Eqs. (35) into Egs. (30), (31) and then substitution of the results into
Eq. (26) give the following relation

- —y

16B2 W W bt TV (7
AT = _ i b1 — + by W+ by W (W 42 , (36
mnn‘lé'mﬂ (mEBEEJS +H2323) H(T) - llw—l—}i 21 WV 4 831 ( nu)- ( )
where
(DyD5 — D3Dy) 8 (m2R2 1 233 mnm® (4 > 2p2 | 22
— - _ —D
by ODGE" mn® (m“B; + n°)” + 1687 \3 2+ Dy | (m”"B; + n®)
mn*Dy B2
lﬁBﬁl ﬂémﬂ [B:%Kl + ?Tz (szE + Hz) K :| d
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mn7t -
h i (37)
E] mn® 4 i 1\ = mn T ZBZ 2
b3] — 2568}1; (”'I BH "|‘ 1 ) gﬁ”] =} 163% CH”: (”f HEIZ + n EZZ) 4

It is evident from Eq. (36) that bifurcation type buckling behavior can occur for geo-
metrically perfect FGM plates (i.e. p = 0) and buckling temperature change qf thick FESM
rectangular plates accounting for effects of elastic foundations and tangential restraints

of edges can be predicted as

16B2by;

= _ : 38
mn &, (m2B2ey3 + nexs) H (T) .

AT,

Egs. (36) and (38) are explicit expressions of temperature-deflection relation and
buckling temperature change for FGM plates in case of material properties are temper-
ature independent. In contrast, as temperature dependence of material properties is in-
cluded, Egs. (36) and (38) are implicit expressions and an iteration algorithm must be uti-
lized to obtain critical buckling temperatures and postbuckling temperature-deflection
curves. Detailed procedure of iteration process is similar as that suggested in the work
[25] and is omitted here for sake of brevity. The error tolerance of iteration in the present
study is 0.001.

4.2. FGM plate under uniform uniaxial compression in a thermal environment

Consider a thick EGM plate resting on an elastic foundation and exposed to ther-
mal environment. Simultaneously, the plate is subjected to uniaxial compressive load F
uniformly distributed on two edges x = 0, a assumed to be freely movable, whereas two
qnlnaded edges y = 0, b is tangentially restrained. In this case, N,o = —F [14,24] and
N, is determined by following the same procedure described in the previous section as

Nyo = €31Nxo + W + e3W (W + 2p) — ess H(T)AT, (39)
where
3 n*m?E; 16Es [ - ﬂﬂ') 4E,B,
e g , € — F — s B = == .
34 AR 31 — V€34,€33 38% €34,€32 — €34 [3rﬁﬂ'3h ( 2+ B, nthJ
_ _ _ (40)
Substitution of Ny, ,. into Eq. (26) leads to the following expression
16B2 W ;. o
o " h - b W + b3aW (W + 2u) — by AT |
H"[”T["lcm” (”IEB% + HZE31] 12 W + I” + 022 32 ( Iu) 42 (41)

i

i
i
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where
—_ — _ Sl B I "*D

b2 ODeE? mnr® (m°B2 + n?) 657 3 2+ Dy | (m*B2% + n?)

mn7>DyB; » 2 2p2 | .2 mart
t = Cmn [BiKy + 7 (Bl + 1?) Ko, by = s EppiPens,  (42)
16B% 16B2
. Eimnn® o4 g s  mnmt . Comnmt, ,
b32 ) 25655 (m Bﬂ +n ) gmu ! 163;2; gmﬂ” €33, b42 163;": gmn” ES*!:H(T):

| It is observed from Eq. (41) that geometrically perfect FGM plates exhibit a bi-
furcation type buckling behavior with corresponding buckling compressive load is pre-

-dicted as

16B2
MRTTA yy (12 B2 4 n2es;)
Io measure the degree of edge constraint in a more convenient way, alternate tan-
gential stiffness parameters Ay and A, are introduced such that A1 = 0and A1 = 1 corre-
spond to movable and immovable edges at x = 0 and g, respectively. Similarly, A» = 0
and A2 = 1 correspond to movable and immovable edges at y = 0 and b, respectively.
Partially restrained edges at x = 0,2 and v = 0, b are defined by 0 < Ay < 1 and

0 <Az <1, respectively. In the present study, these alternate tangential stiffness param-
eters are defined by

F, =

(12 — bpAT). (43)

_ 51 An — 52
E(To)+5° 7 E(To)+&
in which E;(To) is value of E; calculated at room temperature Ty

A1 - (44)

5. RESULTS AND DISCUSSION

Towards the major purpose of the present study, this section presents numerical re-
sults for square plates (2 = b) made of functionally graded materials and for deformation
modes with half wave numbers m = n = 1.

As an example for verification of the present method, a simply supported perfect
FGM rectangular plate without foundation interaction and exposed to uniform tempera-
turerise is considered. The plate is immovable at all edges (i.e. A; = A3 = 1) and made of
Aluminum (Al) and Alumina (Al;O3) with temperature independent material properties
are E,, = 70 GPa, &, = 23 x 105 (°C~1) for Aland E. = 380 GPa, &, = 7.4 X 1078(°C-1)
for Al,O3, whereas v = 0.3 for both constituents. Critical buckling temperature change
AT for Al/Al;O3 FGM plates under uniform temperature rise is calculated by Eq. (38)
and presented in Tab. 1 in comparison with results of Javaheri and Eslami [3] using adja-
cent equilibrium criterion in linear buckling analysis and results obtained by Loc et al. [9]
making use of an isogeometric finite element formulation for thermal buckling analysis.
In this table N* is volume fraction index for case of V,(z) = (z/h+1/2)"". As can be
seen, an excellent agreement is achieved in this comparison.

The remainder of this section presents numerical results for FEGM rectangular plates
composed of silicon nitride (SizINy) and stainless steel (SUS304). The material properties
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Table 1. Critical buckling temperature difference AT, of perfect Al/ AL O3
FGM square plates under uniform temperature rise

Power index N*
b/h | Source 5 05 7 1 5 T

10 | Ref.[3] | 1617.484 - 757.891 - 678.926 | 692.519
Ref. [9] | 1618.7468 | 923.1991 | 758.4268 670.4594 | 679.3379 | 692.7225
Present | 1618.6819 | 923.1617 | 758.3956 | 670.4320 | 679.3104 692.6948

20 | Ref.[3] | 421.516 - 196.257 - 178.528 | 183.141
Present | 421535 | 239.2399 | 196.265 | 175.574 | 178.535 | 183.144
40 | Ref.[3] | 106.492 - 49.500 - 45.213 46.455

Present | 106.494 60.363 49.502 44422 45.214 46.455

Table 2. Temperature-dependent thermo-elastic coefficients for silicon nitride
and stainless steel (Reddy and Chin [27])

Materials Properties Py P 4 P, P> P;
Silicon nitride E (Pa) 348.43e+9 | 0 | -3.070e-4 | 2.160e-7 | -8.946e-11

a (1/K) 5.8723e-6 | 0 | 9.095e-4 0 0

Stainless steel E (Pa) 201.04e+9 | 0 | 3.079e-4 | -6.534e-7 0

x (1/K) 12.330e-6 | 0 | 8.086e-4 0 0

Pr, such as elasticity modulus E and thermal expansion coefficient x can be expressed as
a nonlinear function of temperature [28]

Pr = Py (P_1 T-1 41+ BT+ BT + P3T3) , (45)

in which T = Ty + AT and Tp = 300 K (room temperature), Py, P_1, P, P, and P; are the
coefficients of temperature T (K) and are unique to the constituent materials. Specific
values of these coefficients for E and « of silicon nitride and stainless steel are given by
Reddy and Chin [27] and are listed in Tab. 2. Poisson’s ratio is assumed to be a constant
v = 0.3. In addition, temperature-dependent and temperature-independent material
properties will be written as T-D and T-ID, respectively, for sake of brevity. The T-ID are
material properties calculated at room temperature Tp = 300 K. Tab. 3 indicates that both
critical buckling temperature and difference between buckling temperatures in two cases
T-D and T-ID are increased as FGM plates become thicker and/or ceramic rich.

Tab. 4 shows the effects of the stiffness parameters of elastic foundation and the
degree of edge constraint on the critical buckling temperatures of perfect FGM plates
under uniform temperature rise. As can be seen, the critical buckling temperatures are
enhanced as the stiffness parameters K;, Kz of foundation are increased and the degree
of tangential edge constraint A1, A, are reduced. Moreover, the effects of temperature de-
pendent material properties on critical buckling temperatures become more pronounced

i
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—a—i
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Table 3. Effects of power index N and b/ ratio on the critical buckling temperatures
Ter = To + AT, (K) for immovable FGM plates (a/b =1, Ky = K> =0, Ay = Ay = 1, Ty = 300K)

75

N b/h
10 15 20 25 30 40
C | 8667 (1082%) | 598 (658) | 481(504) | 421(431) | 386 (391) | 350 (351)
0.5 964 (1263) 655 (741) | 518 (551) | 446 (461) | 405 (412) | 361 (363)
1 1005 (1362) 683 (786) | 537 (576) | 459 (478) | 414 (424) | 367 (370)
2 1049 (1475) 713 (837) | 557 (605) | 474 (496) | 425(437) | 373 (377)
5 1111 (1627) 754 (907) | 585 (645) | 494 (522) | 440 (454) | 382 (387)
10 | 1157 (1727) 780 (952) | 603 (671) | 507 (538) | 419 (466) | 388 (394)
100 | 1234 (1879) | 822(1023) | 630(711) | 526 (564) | 464 (484) | 397 (404)
“T-D, b T-

and deteriorative for FGM plates of which boundary edges are partially restrained in
tangential direction and/or are supported by stiffer elastic foundations, i.e. with higher
values of parameters Kj, K, especially Pasternak type foundations. As degree of tangen-
tial constraint is increased, i.e. higher values of parameters A, A,, difference between

critical buckling temperatures for T-D and T-ID cases is smaller. These are graphically
illustrated in Fig. 2.

Table 4. Effects of elastic foundations and degree of edge constraints on critical buckling
temperatures of FGM plates T, = Tp + AT, (K) (a/b=1,b/h = 20,N = 2, Ty = 300K)

A1, A2
Ky, K3
04,0.4 0.5,0.5 0.6, 0.6 0.8, 0.8 1,1

0,0 900“ (1260 %) | 805 (1042) 733 (896) 629 (714) | 557 (605)

50, 0 951 (1385) 852 (1138) 775 (574) 663 (768) | 586 (645)
50, 10 1118 (1877) | 1009 (1519) | 921 (1280) | 788(981) | 691 (802)
50, 20 1244 (2370) | 1136 (1900) | 1043 (1586) | 897 (1194) | 786 (959)
100,10 | 1153 (2002) | 1044 (1615) | 954(1357) | 817 (1035) | 716 (841)
AT-D, b T-ID

The effects of tangential edge constraints and elastic foundations on the thermal
postbuckling behavior of geometrically perfect FGM plates are analyzed in Figs. 3 and
4. Fig. 3 shows the effects of tangential constraint of edges on the thermal postbuckling
of FGM plates without foundation interaction, i.e. K3 = K; = 0, in T-D case. As can

be observed, increase in the de;

gree of edge constraint has pronounced and deteriorative
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influences on both critical buckling temperature and postbuckling loading capacity of

thermally loaded FGM plates.
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Fig. 2. Effects of tangential edge constraints
and elastic foundations on the buckling tem-
peratures of perfect FGM plates
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Fig. 3. Effects of edge constraints on the ther-
mal postbuckling of FGM plates without elas-
tic foundations and T-D properties

The simultaneous influences of tangential edge restraint, ela_st%c foundations and
temperature dependent material properties on the thermal postbuckling of perfect FGM

plates are depicted in Fig. 4.
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Fig. 4. Combined effects of edge constraints,
elastic foundations and T-D properties on the
thermal postbuckling of FGM plates
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Fig. 5. Effects of edge constraint af edges y =
0,b on the postbuckling of FGM plates under
uniform uniaxial compression

As shown, the difference between load-deflection curves in 1-D and T-ID cages
is smatler for immovable edge FGM plates without the foundation interaction. In con-
trast, there is the existence of a sharp difference between postbuckling equilibrium paths
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of partially restrained edge FGM plates resting on elastic foundations for two T-D and
T-ID cases. Fig. 5 illustrates the effects of degree of tangential constraint at unloaded
edges y = 0, b on the mechanical postbuckling behavior of FGM plates resting on an elas-
tic foundation and subjected to uniform uniaxial compression at room temperatuire, i.e.
AT = 0.

'N=2.aﬂ:|="[.hﬂ1=2D,11=D

] K, =50, K, =10, T, = 300 K, AT = 300 K|
1:1220'
2: 3,=05
" e = 4
0 3.12 1.0 |
_1'T I r I I r j’
Q 0.2 0.4 n.6 D8 1 1.2
W

Fig. 6. Effects of constraint of edges ¥ = 0, b on the thermomechanical postbuckling

Finally, Fig. 6 plotted as a counterpart of Fig. 5 for case of AT = 300 K consid-
ers the effects of A; parameter on the thermomechanical postbuckling of mechanically
compressed FGM plates resting on an elastic foundation and exposed to a thermal envi-
ronment. Obviously, critical buckling compressive loads and postbuckling strength are
remarkably decreased as unloaded edges ¥ = 0, b are more rigorously restrained, espe-
cially at elevated temperature.

6. CONCLUDING REMARKS

The thermal and thermomechanical postbuckling behavior of thick FGM plates
resting on elastic foundations with tangentially restrained edges have been analyzed. The
analysis reveals that the tangential constraints of boundary edges has extremely sensitive
influences on the buckling and postbuckling of FGM plates. Specifically, critical buckling
loads and postbuckling load capacity of FGM plates are decreased due to the rigorous
constraint in tangential motion of edges. The results also shows that deteriorative effects
of temperature dependent material properties on the thermal buckling and postbuckling
behavior of thick FGM plates are more pronounced as FGM plates are ceramic-rich, rested
on stiffer foundations and/or with lower degree of tangential edge constraint. Accord-
ingly, temperature dependence of material properties must be considered for accurate
predition of postbuckling behavior of thick FGM plates at highly elevated temperatures.
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