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Abstract. The dynamic behavior of nonuniform Euler-Bemoulli beams made of trans
versely functionally graded matenal under multiple moving forces is studied by the finite 
element method. The beam cross-section is assumed to vary in the width direction by two 
different types. A simple finite element formulation, accounting for variation of the mate
rial properties through the beam thidaiess and the shift in the physically neutral surface, 
is derived and employed in the study. The exact variation of the cross-sectional profile is 
employed m evaluation of the element stifftiess and mass matrices. The dynamic response 
of the beam is computed with the aid of the impUcit Newmark method. The numerical 
results show that the derived finite element formulation is capable to assess accurately 
the dynamic characteristics of the beam by using just several elements The effect of the 
moving speed, material inhomogeneity and section profile on the dynamic behavior of 
the beams is investigated. The influence of the distance between the forces as well as the 
number of forces on the dynamic response is also examined and highlighted. 

Ke]fWords: Functionally graded beam, physically neutral surface, moving force, dynamic 
behavior, finite element method. 

1. INTRODUCTION 

Functionally graded materials (FGMs) have received much attention from engi
neers and researchers since they were first initiated by Japanese scientists in 1984 [1]. 
FGMs are produced by continuously varying volume fraction of constituent materials, 
usually ceramics and metals, in one or more spatial directions. As a result, the effective 
properties of FGMs exhibit continuous change, thus eliminating interface problems and 
mitigating thermal stress concentrations. Many investigations on analysis of FGM struc
tures subjected to different loadings are summarized in [2,3], only contributions that are 
most relevant to the present work are briefly discussed below. 
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Chakraborty et al. [4] proposed a first-order shear deformable beam element for 
analyzing the thermo-elastic behavior of FGM beams. In [5], the wave propagation be
havior of FGM beams under high frequency impulse loading was studied by using the 
spectral finite element method. Benatta et al. [6] derived an analj^cal solution to the 
bending problem of an FGM beam taking the warping effect into consideration. Based 
on the third-order shear deformation beam theory, Kadoli et al. [7] proposed a beam el
ement for studying the static behavior of FGM beams imder ambient temperature. Lee 
et ai. [8] presented a finite element procedure for computing the post-buckling response 
of FGM plates under compressive and thermal loads. Alshorbagy et al. [9], Shahba et 
al. [10,11] derived beam fhriite elements for studying the free vibration of beams made 
of transversely and axially FGMs. Based on the concept of isogeometric analysis pro
posed by Hughes et al. [12], Tran et al. [13], Nguyen-Xuan et al. [14] developed the iso
geometric finite element formulations for static, dynamic and buckling analysis of FGM 
plates. The formulations utilized B-splines or non-uniform rational B-splines (NURBS) 
fimcrtons which enables to achieve easily the smoothness with arbitrary continuity or
der. Nguyen [15,16], Nguyen and Gan [17] formulated nonlinear beam finite elements 
for investigating the large displacement behavior of tapered beams composed of axially 
and tiansversely FGMs. In [18] Nguyen et al. presented a finite element procedure for 
geometrically nonlinear analysis of planar FGM beam and frame structures. 

The problems of moving loads on an elastic beam are often met in fhe design of 
bridges, railways, highways... and they are subject of investigation for a long time. Both 
analytical method [16-18], and finite element method [19-22] are extensively employed 
in solving tiie moving load problems. With the rapid development and application of 
FGMs, analysis of FGM beams subjected to moving loads has been drawn attention from 
researchers recently. §im§ek and Kocatiirk [23] employed polynomials to approximate 
the displacement variables in solving the equations of motion of a transversely FGM 
Euler-Bemoulli beam subjected to a moving harmoruc force. Also using the method 
in [23], ^im^ek extended his work to problems of FGM beams subjected to a moving 
mass [24], and a norUinear FGM beam under a moving harmonic force [25]. Rajabi et 
al. [26] studied the dynamic behavior of an FGM EuIer-BemouUi beam subjected to a 
moving oscillator by using the Runge-Kutta in solvuig the equations of motion. In [27], 
Malekzadeh and Monajjemzadeh used the finite element method to investigate the dy
namic response of an FGM plate resting on a Pasternak foundation subjected to thermal 
loading and a movmg load. Also using the finite element method, Nguyen et al. [28] 
studied the vibration of a nonuniform FGM TimosherJco beam under a moving harmonic 
load. 

It has been stressed recently that the shift of the physically neutral surface of trans
versely FGM beams should be taken into account for correctly predicting the behavior 
of the beams [29]. In this line of work, Kang and Li [30,31] determined the neutral axis 
position of a nonlinear FGM Euler-Bemoulli beam and then derived the solutions for tip 
displacements of the beam subjected to a tip moment or a tip transverse load. Based on 
the neuh-al surface and the third-order shear deformation beam theory, Zhang [32] in
vestigated die nonlinear bending of FGM beams. Eltaher et al. [33] considered the shift 
in the neutral axis position in die derivation of a beam finite element for studying the 
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free vibration of FGM macro/nano beaixis. It has been shown in [33] tiiat the natural 
frequencies of an FGM beam are overestimated by ignoring the shift in the neutral axis 
position. 

Because of the interaction between the moving forces, the dynamic response of a 
beam to multiple moving forces, as shown by Hendii et al. [34], is very different from 
that of a beam subjected to a single moving force. To the authors' best knowledge, the 
dynamic behavior of nonuniform FGM beams under multiple moving forces has not been 
studied in the literature, and it will be a subject of investigation of the present work. To 
this end, the finite element method previously used by the first two authors and their co
worker in Ref. [28], is again employed herein. The beam cross-section is assumed to vary 
in the width direction in two different manners. A firtite element formulation, taking the 
variation of the elastic properties through the thickness and the shift in the physically 
neutral surface into account, is derived and employed in the study. It should be noted 
that in regard of die work by §im§ek and Kocaturk [23], two different features are con
sidered in the present work. Firstly, the longitudinal variation of the beam cross-section 
is the one which is not easy to handle by the analysis method used in [23]. Secondly, 
the multiple moving forces, which has not been considered in [23] and in our previous 
work [28], requires some effort in numerical treatment. The dynamic response of the 
beam such as the time histories for mid-span deflection, dynamic deflection factor and 
axial stress distribution through the thickness are computed with the aid of tiie direct in
tegration Newmark method. The effect of the material inhomogeneity, section parameter 
and moving speed on the dynamic behavior of the beam is investigated in detail. The in
fluence of the material inhomogeneity, section profile and well as the loading parameters 
on the dynamic behavior of the beams is also examined and highlighted. 

2. PROBLEM STATEMENT 

Fig. 1 shows a simply supported beam with length L, width b, height h, subjected 
to N forces Pi, P2, — PN/ moving at a constant speed v from left to right. In the figure, a 
Cartesian co-ordinate system {xi,Zi) is introduced as that the xi-axis lies on the bottom 
surface, and Zi-axis directs upward. The distance between the force, d, is considered to 
be constant. The area A, and moment of inerrta / of the beam cross-section are assumed 
to vary longitudinally in two following types 

-Type A: A = AQ [ l - a ^ - ^ j , ^ = ^M ^ ~ " I " 2 

ii-iJ - Type ^' ^ = '^0 I-ccl J---] , I = h 

where AQ and IQ denote the area and moment of inertia of the mid-span cross-section, 
respectively; 0 < a < 2 is the nonuniform section parameter. When a = 0, the beam 
becomes uniform. The two t j^es of the section profile are depicted in the lower part of 
Fig. 1. 

The beam material is assimied to be composed of metal and ceramic phases whose 
volume fraction varies in the fransverse direction according to 
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Vc-- Vc + V„ (1) 

where Ve, V„ are the volume fractions of ceramic and metal, respectively; n is the grading 
index, governing variation of the material properties through the beam thickness. As 
seen from Eq. (1), the bottom surface contains only metal and the top surface is pure 
ceramic. The composition is metal rich when n < 1, and metal poor when n > 1. 

' JPN Pl.^Ji^l 01 :s>: 

1 y 

Fig. 1. Nonuniform FGM beam under 
multiple moving forces 

Fig. 2. Dependence of neutral surface position 
on the index n 

The effective material properties (such as Young's modulus and mass density), V, 
can be evaluated by a simple rule 

P(zi) = VcVc + VmVm = {Vc - Vm) ( ^ ) " + Vm, (2) 

where Fm and P̂  are the properties of metal and ceramic, respectively. 
Clearly, due to the variation of the Yoimg's modulus £ in the thickness direction, 

the neufral surface of the FGM beam does not coincide with the mid-plane. Denoting 
/lo as distance from the neufral surface to the bottom surface, and by infroducing a new 
co-ordinate system {x, z) with the x-axis lies on the neufral surface, and z-axis directs 
upward as depicted in Fig. 1, the position of the neufral surface can be determined by 
using equilibrium condition for the beam subjected to pure bending as [29] 

( adA=-^ I \E(z)dz--
JA P J-ho 

0, (3) 

where o is the axial sfress for the beam in pure bending, and p is the curvature radius 
of tiie neufral surface. Substituting z = (zi - HQ) into Eq. (3), the position of the neufral 
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surface can be determined with, the aid of Eq. (2) as 

^ SSE{zi)ztdzt ^ h{n + l)(2Ee + nE„) 

J„'E{z,)dz, 2(n + 2 ) ( £ , + « £ „ ) • ^> 

The dependence of the neufral surface position upon the index n according to Eq. (4) is 
shown in Fig. 2 for various ratios of Young's modulus of ceramic to that of metal, Ec/Em-
As seen from the figure, for Ec/E^ > 1 the physical neufral surface shifts upward fix)m 
the mid-plane, regardless of tiie index n. 

Based on the Euler-Bemoulli beam theory, the displacements MI, U2, UJ at a point 
{x, y, z) in the x, y, z directions, respectively are given by 

Ui{x,y,z,t) = u{x,t) -zw^x{x,t), 

U2{x,y,z,t)=Q, (5) 

U3{x,y,z,t) = w(x,t), 

where u{x,t) and w{x,t) are the axial and transverse displacements of a point on the 
neufral axis; z is a spatial co-ordinate in the tiiickness direction, and {—),x denotes the 
derivative with respect to x. Based on the Hook's law, the axial sfrain e, and axial stress 
(T resulted from Eq. (5) are as follows 

e = u-c — zw XX = ^^ + ZK, 

a = E{z)£ = E{z){u_x + ZK), 

where K = —w^xx is the beam ciu-vature. 
The pariial differential equations of motion for the beam under the moving forces 

can be derived by applying Hamilton's principle. For the sake of brevity, the damping 
effect of the beam is not considered in the present work. The sfrain energy stored in the 
beam resulted from Eq. (6) has the following simple form 

U=l [^ f ae dAdx =\ f \An{x)u% - 1AYI{X)U,XW,XX + A22{x)vP;xx] dx, (7) 
2 JQ JA{X) ^ Jo 

in which 

(An,Ai2,A22) = / E{z){l,z,z')dA, (8) 

are tiie axial, axial-bending coupling and bending rigidities, respectively. It is wortiiy to 
note that in substituting 2 = zi - fto into Eq. (8), and taking Eq. (4) into consideration, 
the coupling rigidity A12 defined by Eq. (8) vanishes. As a result, the stiffness matrix 
resulted from Eq. (7) contains no coupling term. 

The kinetic energy of the beam resulted from the displacements (5) is as follows 

'^=11' /^(^j /'(^) ("1 + "3} dAdx (9) 

= l j [hi{x){u^ + ii^)- 2Ii2{x)uiv,x + l22ix)ii^^] dx. 
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where a over dot indicates the derivative wifli respect to time t, and In, In and I22 are 
the mass moments, defined as 

(10) {hiJnrl22)= I p{z){\,z,z^)dA, 
JA[x) 

where the mass density ^(z) varies in the thickness direction according to Eq. (2) (witii 
2 = zj - /lo). It should be noted that for the longitiadinal variation of cross-section con
sidered herein tiie rigidities A,, and tiie mass moments /,/ depend upon x. In addition, 
the coupling mass moment J12, unfortunately does not vanish, and thus the mass mafrix 
contains the coupling term. 

The potential energy of the moving forces is simply given by 

y = - ^ P,w{x, t)5{x - vti{t)), (11) 

where 6{.) is tiie delta Dirac function, and (, is the time since the load P, enters tiie beam 
from its left end. 

Applying Hamilton's principle to Eqs. (7), (9) and (11), the differential equations 
of motion for the beam can be written in the forms 

h\ii - hiii'.x - {Anu,x)^x - ^' 
^ (12) 

/nM>+ (/i2W),x - {i-22ii),x)_x + {M2lO,xx)_xx = J^Pi^i^ " ^^0 -
1=1 

Except for the presence of the coupling mass moment /12, the system of equations (12) 
has the same forms as that of a noimiform homogeneous beam. 

3. FINITE ELEMENT FORMULATION 

The finite element metiiod is employed herein to solve Eq. (12). To this end, the 
beam is assumed being divided into a number of two-node beam elements with length 
of /. There are axial and transverse displacements and a rotation at each node. Thus, the 
vector of nodal displacements, d, for a generic element has the following components 

d = {u, Wi Bi u, Wj e,y. (13) 

where and hereafter a superscript'T' denotes the franspose of a vector or a matrix. The 
axial displacement u and fransverse displacement m are interpolated from the nodal dis
placements according to 

u = N„d , a; = N^d, (14) 

where Nu and N^ are the mafrices of shape functions for u and w, respectively. Substi
tuting Eq. (14) into Eqs. (7) and (9), we get 

U = I'td^l^d - l^d'{Ku+kee)d, (15) 
"̂  ' = 1 "̂  1=1 

and 
1 "el 1 "el 

"7" = 2 L ^ n»^ ^ 2 ^ d^i^uu + mu,^,; + m„e + m0g)d. (16) 
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In Eqs. (15) and (16), n^\ is the total number of elements; k and m are respectively the 
element stiffness and mass matrices, and 

k.u = ^ ^l^An^uJx, 

^e= f KA22N^_^,dx, 
Jo •" 

are respectively the stiffness matrices stemming from stretching and bending, 

rl fl 

m„„ = / NlhiNudx , m^,^ = / Uiln^wdx 
Jo Jo /•, Q\ 

m„e = / Kh2^wAx,mee = / N^ l22^^,dx 
Jo • JQ •' ' 

are the mass matrices stemming from axial displacement, transverse displacement, axial-
bending coupling and cross-section rotation, respectively. 

Having the element stiffness and mass matrices derived, tiie finite element equa
tion for vibration of tiie beam is as follows 

MD + KD = Yex, (19) 

where M, K are Ihe structural mass and stiffness matrices assembled from the element 
mass and stiffness mafrices, respectively; ^ex is the structural nodal load vector of the 
external forces with the following form 

0... P iN^U a...O P,N„,|,, 0... PwN^U^ 0 . . . 0 ^ , (20) 

loading element loading element loading element 

which contains all zero coefficients, except for the elements currently imder loading. The 
notation N^|i , in the above equation implies that the shape functions N„, are evaluated 
at the abscissa x„ the current position of load P,. 

The system of equations (19) can be solved by the direct integration Newmark 
method. The average acceleration implicit Newmark method described in [35], which 
ensures the unconditional convergency is adopted in the present work. In the free vi
bration analysis, the right hand side of Eq. (19) is set to zeros, and a harmonic response, 
D = D sina;t is assumed, so that Eq. (19) deduces to 

(K - W 2 M ) D = 0, (21) 

where a) is the circular frequency, and D is the vibration amplitude. Eq. (21) can be solved 
by a standard method of the eigenvalue problem [35]. To improve the accuracy, the exact 
variation of the cross-sectional profiles is employed in evaluation of the rigidities and 
mass moments defined in Eqs. (8) and (10), respectively. 
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4. NUMERICAL RESULTS AND DISCUSSION 

A simply supported FGM beam with L = 20 m, ft = 0.8 m,ba=2 m, where h is 
the width of the mid-span cross section, is employed in this Section to study the dynamic 
response of the beam. Steel and alumina are employed as metal and ceramic phases of 
the FGM, respectively. The Young's modulus and mass density are respectively E„ = 210 
GPa and p„ = 7800 k g / m ' for steel, and that for alumina are Ec = 390 GPa and pc = 3960 
kg/m^ [23]. Unless stated, the beam is assumed under action of three moving forces with 
the same ampUhide, Pj = P2 = P; = Po = 100 kN. 

Linear and cubic Hermite polynomials are adopted as the shape functions for the 
axial and transverse displacements, respectively. Thus, the matrices of shape functions 
NH and Ny, in Eq. (14) have the following forms 

N„ = {N.i 0 0 N„2 0 0}, 

N„ = {0 N„i N„2 0 N„3 Nrf} , 

in which 

- I , Nu2 J, 

N „ i = 2 | - - 3 i - + l , N „ 2 = ^ - 2 y + x , (23) 

N„3 = - 2 ^ + 3 ^ , N„4 = ^ - 2 j . 

For the case of constant moving speed considered herein, total time AT necessary for a 
force to cross the beam isL/v. In the computation reported below a uniform time incre
ment width of Af = AT/SOO is employed for the Newmark method. In order to facilitate 
the discussion of numerical results, the following dimensionless parameters represent
ing the maximum mid-span dynamic deflection and the moving force speed are intro
duced as 

, {10(1/2, t)\ V nv „^, 

where WQ = pQL^/4SEmio is the static deflection of the uniform steel beam under a static 
load pQ acting at the mid-span; u°^ = co^L/n, with a?^ = jjy/Emlo/pmAo/ is the critical 
speed of the simply supported uniform steel beam [19], The definition of parameter/D by 
Eq. (24) is similar to that of the dynamic magnification factor in the moving load problem 
of homogeneous beams [19]. Fiowever, for the FGM beam considered in the present 
work, / D is nol only governed by the moving speed but by the material inhomogeneity 
and the section profile also, and it will be called the dynamic deflection factor in the 
below. 

4.1. Formulation verification 

In order to verify the accuracy of the derived finite element formulation, the fun
damental frequency and dynamic response of a uniform FGM Bernoulli beam subjected 
to a moving point force are firstly computed and compared to the result of Ref. [23]. To 
this end, a simply supported beam with width b = 0.4 m, height h = 0.9 m, previously 
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used in Ref. [23], is adopted in this subsection. The beam is also composed of steel and 
alumina with the above mentioned material properties. 

In Tab. 1, the fundamental frequency parameter of a uniform FGM beam with as
sumed properties Ec/Em = 3,pc = Pm obtained by different numbers of elements is listed 
for various values of tiie index n and different length to height ratios, L/h = 20 and 
L/h = 100. The frequency parameter ^i in Tab. 1 is defined as ji-^ = coiL^-^pmA/Emh 
where A = bh,I = hh^/Vl, and wi is the fundamental frequency of tiie beam. The Tab. 1 
shows the fast convergency of the present formulation, and all fhe frequencies converge 
by using just ten elements. In Tab. 2, the fundamental frequency parameter is given for 
various values of the index w, the ratio of length to height L/h, and the ratio of Young's 
moduli Erat = Ec/Em- Ehie to the convergency stated above, only twelve elements were 
used in evaluating tiie frequencies in Tab. 2. The corresponding parameter obtained by 
§im|ek and Kocaturk in Ref. [23] is also listed in Tab. 2. Tab. 2 shows the good agreement 
between the fundamental frequencies obtained in the present work with tiiat of Ref. [23], 
In Tab. 3, the maximum djmamic deflection factor and the corresponding moving speed 
of the uniform FGM beam are listed for various values of the index n. For comparison 
purpose, the corresponding data of Ref. [23] are also given in Tab. 3. Very good agree
ment between the numerical result of the present work with that of Ref. [23] is noted. 

Table 1. Convergency of present formulation in evaluating fundamental frequency of 
a uniform FGM beam (pc = pm, Ec/Em = 3) 

«el 

L/h 
20 

100 

n 
0.1 
0.2 

2 

3 
10 
0.1 
0.2 
2 

3 
10 

2 

4.0555 

3.9820 

3.5386 

3.4935 

3.3810 

4.0572 

3.9836 

3.5402 

3.4951 

3.3825 

4 

4.0481 

3.9747 

3.5321 

3.4871 

3.3748 

4.0497 

3.9763 

3.5337 

3.4887 

3.3762 

6 

4.0477 

3.9742 

3.5317 

3.4867 

3.3745 

4.0493 

3.9758 

3.5333 

3.4883 

3.3759 

8 

4.0476 

3.9742 

3.5317 

3.4867 

3.3744 

4.0492 

3.9758 

3.5333 

3.4882 

3.3758 

10 

4.0476 

3.9741 

3.5317 

3.4867 

3.3744 

4.0492 

3.9758 

3.5333 

3.4882 

3.3758 

12 

4.0476 

3.9741 

3.5317 

3.4867 

3.3744 

4.0492 

3.9758 

3.5333 

3.4882 

3.3758 

Ref. [23] 

4.0475 

3.9741 

3.5308 

3.4858 

3.3738 

4.0495 

3.9761 

3.5331 

3.4881 

3.3757 

Secondary, the time history for dynamic mid-span deflection of a uniform homo
geneous beam subjected to three moving forces, previously studied by Henchi et al. in 
Ref. [34] by the dynamic stiffness method, is computed. The beam geometric and ma
terial data are: L = 24.384 m, A = 0.954 m^, / = 2.9 x 10"* m*, E = 19 x 10" N/m^, 
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Table 2. Fundamental frequency parameter /̂ i of uniform FGM beam with 
assumed material properties pc — pm (Erat — Ea/Es) 

L/h 
20 

100 

Erat 

2 

4 

2 

4 

Source 
Ref. [23] 
Present 
Ref. [23] 
Present 
Ref. [23] 
Present 
Ref [23] 
Present 

n = 0.1 
3.6775 
3.6776 
4.3370 
4.3370 
3.6793 
3.6791 
4.3392 
4.3388 

n = 0.2 
3.6301 
3.6303 
4.2459 
4.2459 
3.6320 
3.6318 
4.2481 
4.2476 

n = l 
3.4421 
3.4426 
3.8234 
3.8243 
3.4440 
3.4440 
3.8259 
3.8260 

n = 2 
3.3765 
3.3770 
3.6485 
3.6496 
3.3784 
3.3784 
3.6513 
3.6514 

« = 3 
3.3500 
3.3505 
3.5858 
3.5870 
3.3519 
3.3519 
3.5886 
3.5887 

11 = 10 
3.2725 
3.2729 
3.4543 
3.4551 
3.2742 
3.2743 
3.4565 
3.4566 

Table 3. Maximum dynamic deflection factor and corresponding moving speed of 
uniform FGM beam under a single moving force 

n 

0.2 
0.5 
1 
2 

pure steel 
pure alumina 

imxifo) 
Present 
1.0347 
1.1445 
1.2504 
1.3377 
1.7326 
0.9329 

Ref. [23] 
1.0344 
1.1444 
1.2503 
1.3376 
1.7324 
0.9328 

V (m/s) 
Present 

222 
197 
179 
164 
132 
252 

Ref. [23] 
222 
198 
179 
164 
132 
252 

Fig. 3. Dynamic mid-span deflection of uniform homogeneous beam under 
three moving forces {d = L/4:,v = 22.5 m/s) 



Dynamic behaviorof nonuniform functionally graded Euler-Bemoulli beams under multiple moving prces 161 

pA = 9.576 X lO' kg/m^, where L,A,I,E,p are the total length, cross-sectional area, 
moment of inertia of cross-section. Young's modulus and mass density of the beam, re
spectively Fig. 3 shows the mid-span dynamic deflection for tiie case PQ = 5324.256 N, 
V = 22.5 m / s , d = L/4, where the numerical result obtained by Henchi et al. [34] is 
also depicted. The figure shows a good agreement between the finite element solution 
of the present work with the result obtained by the djmamic stiffness matrix metiiod of 
Ref. [34]. 

4.2. Effect of material inhomogeneity 

In Fig. 4 the time histories for mid-span deflection of the type A beam with a = 0.5 
are depicted for various values of the index n and two values of the speed parameter, 
/i, = 1/8 and/ i , = 1/4. At a given value of the moving speed, the dynamic deflection of 
the beam, as seen from the figure, is greatly influenced by the material parameter n. The 
maximum dynamic deflection of the beam steadily increases when rasing the index n, 
regardless of the moving speed. This can be explained by the fact that, as seen from Eq. 
(1), the beam with a higher index n contains more steel, and thus it is softer. The increase 
in the maximum mid-span djoiamic deflection is also clearly seen from Fig. 5, where the 
deflection factor fo is shown as a function of the speed parameter f„ for various values 
of the index n. 

;-j\ 
' / -̂  \̂"*' 

X ''y^ N~-̂  
' Y \ \ 

.'/y \ 

f 

(a)f =1/8 

n=0.2 
n=0.5 
n=2 

_ n=5 

- ^ S' 
\i> 

\\ 

/ 
f J 

'• 1 

(b) 1^=1/4 

--

^ -\ 
7 \ \^ 

^ V ^ 

- n=0.2 
n=0 5 
n=2 
n=5 

V;, 
\>x 

Fig. 4. Time histories for mid-span deflection of type A beam under three moving forces 
(a = 0.5, d - L / 4 ) 

In Fig. 6, the distribution through the beam thickness of the axial stress at the mid-
span section is depicted for different values of the index n and two values of the speed 
parameter, fv = 1/8 and fj, = 1/4. The axial stress shown in the figure was normalized 
by the maximum static axial sfress of a uniform steel beam, PQ = PoLh/Slo, and it was 
computed at the time when tiie second force arrives at the midpoint of the beam. As seen 
from the figure, the axial sfress distribution of the FGM beam is very different from that 
of the homogeneous beam. The sfress of the FGM beam is not symmefrical with regard 
lo the coordinate original, and it does not become zero on the mid-plane, regardless of 
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Fig. 5. Speed parameter versus deflection factor of type A beam subjected to 
three moving forces (a = 0.5, d = L/4) 
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Fig. 6. Normalized axial stress distribution through the thickness of type A beam subjected to 
three moving forces (« = 0.5, d = L/8) 

the moving speed. The moving speed slightly alters the ampUtude of the sfress, but it 
hardly changes the disfribution of the stress. 

4.3. Effect of moving speed 

The influence of the moving speed on the dynamic deflection factor of the FGM 
beam is clearly seen from Fig. 5. For lower values of the speed parameter fv, the deflec
tion factor in Fig. 5 both increases and decreases with increasing fv, and this phenomenon 
is associated with the oscillations of the beam when it subjected to a low speed moving 
load [36]. For higher values of fv, as in case of homogeneous beams, the deflection factor 
increases when raising the speed parameter /p, it then reaches a maximum value before 
decreases. The effect of the moving speed can also be seen from the time histories for the 
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fig. 7. Time tiistories for mid-span deflection of type A beam under different speeds moving 
point forces (n =3,d — L/4) 
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Fig. 8. Material index n versus deflection factor / • of type A beam subjected to 
three moving forces (d = L/4) 

mid-span deflection and the relation between the deflection factor / D and the index n as 
depicted in Fig. 7 and Fig. 8 for the type A beam, respectively. 

4.4. Effect of distance between the forces 

In Fig. 9, tiie relation between the deflection factor / D and the moving speed pa
rameter fv of the type A beam with n = 0.5 is shown for various values of the distance 
between the forces d and the section parameter a. The effect of the distance between the 
forces is clearly seen from the figure, where the deflection factor fo is remarkably lower 
for a smaller distance d, regardless of the speed and section parameters. The similar sit
uation is occurred for the axial stress as depicted in Fig. 10, where the distribution of the 
stress through the beam thickness is shown for the type A beam with an index n = 0.5. 
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Fig. 9. Effect of distance between moving forces on relation between deflection factor 
and speed parameter of type A beam {n ^ 0.5) 
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fig. 10, Effect of distance between moving forces on thickness distribution 
of axial stress of type A beam (n = 0.5) 

The axial sfress increases considerably when the distance between the forces is smaUer, 
regardless of the moving speed. 

4.5. Effect of section profile 

In Tab. 4 the maximum values of the dynamic deflection factor of the FGM beam 
subjected to three moving forces are listed for the two types of the section profile, and 
for various values of the section parameter a and the index n. The maximum deflection 
factor listed in the table increases by raising the section parameter a., regardless of the 
section type and the index n. The maximum deflection factor of the type A beam, as seen 
from the table, is much more sensitive to the change in the section parameter a compares 
to that of the type B beam. For example, with n = 3 the maximum deflection factor 
of the type A beam increases 18.07% when raising the section parameter from 0 to 1.2, 
while this value is just 3.54% for tiie t3^e B beam. The effect of the section profile on 
the dynamic response of the FGM beam can also be seen from the relation between the 
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deflection factor fo and the index n as shown in Fig. 11 for two values of the distance 
between the forces, d = L/8 and d = L/4. The sensitivity of tiie type A beam with the 
change in the section parameter is again clearly observed from the figure. 

Table 4. Maximum dynamic deflection factor, max(/D), for FGM beam with different section 
profQes subjected to three moving forces (d — L/8) 

Section 

Type A 

TypeB 

n 

0.2 

0.5 

3 

5 

0.2 

0.5 

3 

5 

0 

2.8729 

3.1776 

3.8203 

3.9509 

2.8729 

3.1956 

3.8203 

3.9509 

0.2 

2.9535 

3.2668 

3.9276 

4.0618 

2.8891 

3.2140 

3.8419 
3.9732 

0.4 

3.0417 

3.3643 

4.0448 

4.1830 

2.9058 

3.2331 

3.8642 

3.9962 

0.6 

3.1388 

3.4717 

4.1740 

4.3166 

2.9231 

3.2528 
3.8871 

4.0199 

0.8 

3.2467 

3.5911 

4.3175 

4.4650 

2.9409 
3.2732 

3.9108 

4.0444 

1 

3.3680 

3.7253 

4.4788 

4.6318 
2.9594 

3.2944 

3.9353 

4.0698 

1.2 

3.5064 

3.8784 

4.6629 

4.8222 

2.9785 

3.3163 

3.9607 

4.0961 

(a) d=L/8 

—o— type B. a-O 5 
—»— typBA. cx=1.5 

Fjg. 11. Relation between deflection factor and material index of FGM beam with different 
section profiles under fliree moving forces (/p = 0.5) 

4.6. Effect of different force numbers 

The time histories for the mid-span deflection of type A beam subjected to different 
numbers of moving forces are shown in Fig. 12 for n = 3 ,* = 0.5, d = L/4, and for two 
values of the speed parameter, fv = 1/8 and fv = 1/4. As expected, the maximum 
mid-span dynamic deflection, as seen from Fig. 12, increases when the beam subjected 
to more numbers of the moving forces. The number of the forces also changes the time 
at which the maximum mid-span deflection occurs. The relation between the dynamic 
deflection factor and the moving speed parameter depicted in Fig. 13 for the type A beam 
with w = 3 and a = 0.5 under different numbers of tiie moving forces also clearly shows 
the increase in the deflection factor when the beam subjected to more numbers of the 
moving forces. 
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Fig. 12. Tune histories for mid-span deflection of type A beam subjected to different numbers of 
moving forces (n = 3, a = 0.5, d = L/4) 

fig. 13 Relation between deflection factor and speed parameter of type A beam subjected to 
different numbers of moving forces (n — 3,a — 0.5) 

5. CONCLUSIONS 

The dynamic behavior of nonuniform FGM Euler-Bemoulli beams subjected to 
multiple moving forces has been studied by using the finite element method. The ma
terial properties of the beams are assumed to vary in the thickness direction by a power 
law function. A finite element formulation, taking the effect of the cross-section varia
tion and the material inhomogeneity into account, has been derived and employed in 
the study. The exact variation of the section profile was used in evaluation of the ele
ment formulation. The dynanuc response of the beam was computed with the aid of the 
implicit Newmark method. The numerical results have shown that the derived element 
formulation is accurate in evaluating the dynamic response of the beams. The dynamic 
characteristics, including the time history, dynamic deflection factor, axial stress distribu
tion are governed by the moving speed, section profile, number of forces as weU as the 
distance between the forces. A paramefric study has been carried out to highlight the 
influence of the material inhomogeneity, section profile and loading parameters on the 
dynamic behavior of the nonuniform FGM beams under the movings forces. 
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