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Abstract. Free vibrations of partial fluid-filled orthotropic circular cylindrical shells are
investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method
(CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous in-
compressible fluid equations. Numerical examples are given for analyzing natural fre-
quencies and harmonic responses of cylindrical shells partially and completely filled with
fluid under various boundary conditions. The vibration frequencies for different filling
ratios of cylindrical shells are obtained and compared with existing experimental and the-
oretical results which indicate that the fluid fAlling can reduce sigruficantly the natural
frequencies of studied cylindrical shells. Detaled parametric analysis 1s carried out to
show the effects of some geometrical and material parameters on the natural frequencies
of orthotropic cylindrical shells. The advantages of thus current solution consist in fast con-
vergence, low computational cost and high precision validating for all frequency ranges.

Keywords: Free vibration, continuous element method, dynamic stiffness method, ortho-
tropic cylindrical shell, fluid-shell interaction

1. INTRODUCTION

The knowledge on dynamic responses of fluid-filled isotropic and orthotropic cylin-
drical shells is of primary importance for the design of pressure vessels, fluid tanks of pro-
pellant rockets, seismic effects on liquid storage tanks etc. For coupled fluid-cylindrical
shell problems, Jain [1] obtained the natural frequency equations of simply supported
orthotropic cylindrical shells, filled completely or partially with an incompressible non-
viscous fluid on the basis of a shell theory in which the effects of transverse shear defor-
mation and rotatory inertia were retained. Warburton and Soni [2] studied the resonant
response of orthotropic cylindrical shells, while Bradford and Dong [3] investigated the
lateral vibrations of orthotropic cylinders under initial stress. The free vibrations of or-
thotropic cylindrical shells based on the three-dimensional elasticity theory considering
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the effect of internal fluid have analyzed by Chen et al. [4] who obtained the frequency
equation of non-axisymmetric free vibration modes of an orthotropic fluid-filled cylin-
drical shell with arbitrary constant thickness and then compared their results with those
based on other shell theories. Li and Chen [5], basing on the Flugge’s linear shell theory
and the normal mode theory, study the dynamic response of orthotropic circular cylindri-
cal shells subjected to external hydrostatic pressure. The effect of shell parameters, exter-
nal hydrostatic pressure and material properties on the dynamic behavior of the shell has
been examined in detail in their work. Using the Sanders-Koiter non-linear shell theory,
Selmane and Lakis [6] investigated the influence of non-linearities associated with the
shell wall and with the fluid flow on the dynamics of elastic thin orthotropic cylindrical
shells using a hybrid finite element method. On the basis of the Ritz variation method,
Shang and Lei [7] investigated the free vibrations of fluid-conveying orthotropic cylin-
drical shell. Sharma et al. [8] have investigated the natural frequency response of vertical
cantilevered composite shells containing fluid. They used the Fourier series of trigono-
metric functions to approximate the axial modal dependence. This presents an example
of practical applications of cylindrical shells. Recently, Prado et al. [9] studied non-linear
vibrations and instabilities of orthotropic cylindrical shells with internal flowing fluid
using the Galerkin approach. Daneshjou et al. [10] have proposed an analytical solution
to solve the problem of sound transmission through orthotropic cylindrical shells with
subsonic external flow. A boundary integral solution has been applied to the hydroelastic
analysis of fluid storage tanks. Zhang et al. [11] have employed the wave propagation ap-
proach to investigate vibration characteristics of fluid-filled cylindrical shells. This gives
relatively more accurate predictions of natural frequencies of cylindrical shells. Further
showing the efficiency and efficacy of the wave propagation approach, Li et al. [12] have
applied this technique to study the modal analysis of thin finite cylindrical shells. By
the same method, Natsuki et al. [13] have carried out the vibrational analysis of fluid-
filled carbon nanotube. This approach seems to be widely applicable to study vibration
characteristics of shells involving fluids.

In those studies, low natural frequencies are generally investigated. For medium
and high frequency range, the CEM can be applied with many advantages: high preci-
sion, rapid calculating speed, reduction of the model size and of the computing time. Nu-
merous CEM researches have been performed for isotropic and composite beams: [14,15],
plates: [16,17] and shells: [18-20). However, no work based on CEM appears to have been
done on the problem of cylindrical shells taking into account the interaction of fluid-
structure.

The purpose of this article is to present a new continuous element for isotropic and
orthotropic cylindrical shells based on the Reissner-Mindlin shell theory which retains
the effects of transverse shear deformation and rotatory inertia as well as those of non-
viscous incompressible fluid. Numerical results indicate that the fluid filling can reduce
significantly the natural frequencies of cylindrical shells. Parametric studies including
circumferential wave number, fluid depth, thickness to mean radius ratio, length to mean
radius and boundary condition are carried out.
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2. THEORETICAL FORMULATION OF ORTHOTROPIC
FLUID-FILLED CYLINDRICAL SHELLS
2.1. Kinematics of ortrotropic cylindrical shell filled with fluid

Consider an ortrotropic cylindrical shell containing fluid as shown in Fig. 1. R, L
and /1 are the radius, length and thickness of the cylinder. H is the height of the contained
fluid volume.

Fig. 1. Kinematics of orthotropic cylindrical shell filled with fluid

The material constants Q,, are defined in terms of the orthotropic material proper-
ties by
Qu =E/ (1 -vpvn), Qu=vnE/(1-vnva),
Qn=E/(1-vi2v21), Qes =G, Qu=06n, Qs5=0Cu,
where E;, Gj, v1z, var: elastic constants of the material and the stiffness coefficients
(Aj;, Dyy) are
Ay=Quh, Dy=Qur*/12 (i,j=126),

As4 =hQas, Ass=hQss, A=Ay = A5 =0, Dyg=Dyp =0
Following Reissner-Mindlin assumption, the displacement components are assumed to be
u(x,0,z,t) = uo(x,0,t) + zgx(x,6,1),
v{x,0,2,1) = vo(x,0,t) + z¢p(x,6,1), 3)

w(x,0,2,t) = wo(x,6,1),

(1)

()

where 1, v and w are the displacement components in the x,6 and z directions respec-
tively; ug,vp and wo are the displacements of the shell at the neutral surface in axial,
circumferential and radial directions, and @y and ¢y are the rotations of the normal to the
middle surface of the shell. The strain-displacement relations of cylindrical shell can be

written as
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2.2, Equations of motion for orthotropic cylindrical shells in contact with fluid

The equations of motion of the first-order shear deformation theory for an or-
thotropic circular shell filled with fluid in (x,6,z) coordinate are written by

Ny 10N . . .
oy + 38 = lotig + I §x,
N  18Ng . )
——f = 1
ax TRap _ o+l
il 10 1 .
oM 1 oM, . "
o R e~ Q= hilot e
oM 10M, ) )
a;g + ET: = Qo = I,¥0 + Lo,
where
/2
I, = / ps2'dz, (i=0,1,2), (6)
—i/2

in which p; is the mass density of shell, Py is the hydrodynamic pressure of fluid which
can be determined from fluid equations.
2.3. Internal force resultants-displacement relationships

Here, the internal force and moments resultants can be expressed in terms of dis-
placements as [10]

y
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where k is the shear correction factor (k = 5/6).
2.4. Fluid equations

The cylindrical shell is partially or completely filled with an incompressible, invis-
cid liquid. For the steady-state case, the potential function (r,6, x, t) satisfies the Laplace
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equation in cylindrical coordinates (r, , x)
B 130 1% *®

LSl S =0, 8
arz T rar 12002 ox? 0 ®
Then, the Bernoulli equation is written
o P
T + = =0. (9)
t " py
By linearizing this expression, the pressures on the internal regions are
o
P = ‘pg‘z (10)

The condition of impermeability of the surface of shell in contact with fluid may be ex-
pressed as

0P dwy ‘
v, =22 = % (11)
A P T
where w is the normal displacement of the shell, v; is the velocity of fluid.
The potential function ¢ may be defined by the following expression
&(r,0,x,t) = ¥(r)f(x) cos(mf)e™", (12)
where ¥(r) is a function to be defined. Substitution (12) into Laplace’s equation (8), gives
*¥Y | 13¥ m2 o,
37+;a—r—(7+k,,>‘f’—0. (13)

Eq. (13) may be resolved using modified Bessel functions of first and second kind of
order m, yielding

¥(r) = Avln (kur) + A2Kon (kur) . (14)
Finally, the potential & is expressed as
_¥ w
O (r,0,x,t) = () 3 |,s (15)
And then the pressure P is written by
_ ¥ (r) 9w
Pf(r,9,x,t) = p/-‘*”(’) T . (16)

In addition, the pressure Py must remain finite, which means that the function R(r) is
defined by: Y(r) = A1lw(kar) inside the shells.

The hydrodynamic pressure acting on the cylindrical shell is then defined by [21]
_ 1 3wg
= TP ¥ KuRbysr (kaR) /T (kaR) 32

This value will be introduced in (5) in order to construct the Dynamic Stiffness Matrix for
the studied structure.

By 17)
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3. CONTINUOUS ELEMENT FORMULATION FOR ORTHOTROPIC
CYLINDRICAL SHELLS COMPLETELY FILLED WITH FLUID

The state-solution vector is y = {uo, vo, wa, @x, 99, Nx, Nyp, Qx, My, an}T. This
vector can be expressed in the Fourier expansion form, for the symmetric circumferentiat
mode m as

{ uo(x,6,1) wo(x,0,t) @x(x,0,8) Nie(x,0,t) Qu(x.6,8) My(x,6,t) } =
E { tn(x) wn(x) @on(x) New(x) Quu(x) Mon(x) )7 cosmpe!,
m=1
{ v0(x.6,1) Na(x6,t) @s(x,0,1) Mu(x6,1) } = a8
E { Uui(x) Nagw(X)  @om(x) Mugw(x) }TSj-nmee’w"
m=]

Similar transformations for anti-symmetric modes will easily be obtained by swap-
ping cos(mB) and sin(m@) in (18). Further detailed formulations in this research concern
only symmetric modes for the sake of simplification.

Applying the CEM procedure presented in [16,20], the following differential equa-
tions have been calculated

dw, 1 d 1 c
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with
¢t = =B} + AnDu,c2 = (A;B1y — AnBi2)/c1,c3 = (BuBiz — AnDu)/cy,
¢4 = (B12B1y — AuDn1) /¢y, ¢s = (By1D1a — B1aDyy) /¢y, c6 = Aracy + Braca + Az,
¢7 = Anz¢s + Bracs + Bap, ¢g = Bracy + D1aca + Bz, ¢9 = Buacs + D2p + Diacs,
¢10 = Bf; — AesDes, 11 = (Anacs + Daa/R?)/R, c12 = (Dracy + Daa/R?)/R.
Eq. (19) can be expressed in the matrix form for each circumferential mode m

d
Ta = Anym, 20

where A, is a 10 x 10 matrix (see Appendix).
The dynamic transfer matrix T,, is evaluated by [16,17]

Al | Tu Tr
Tn=em = [ Ty Tz ] @)
And the dynamic stiffness matrix K(w),, is [17,18,20]
T,T -T5
K(w), = 2 12 } 22
@ = gy it o | @

4. ASSEMBLY PROCEDURE FOR CONTINUOUS ELEMENTS OF
PARTIALLY FLUID-FILLED CYLINDRICAL SHELLS

It is important to note that the proposed Dynamic Stiffness Matrix can be used for
both orthotropic cylinders without fluid (by setting p; = 0) and for cylindrical shells
completely filled with fluid (o, # 0).

Naturally, a partially fluid-filled cylinder is composed by two regions with differ-
ent characteristics of material and geometry: an empty zone and a fluid-contained one
(see Fig. 2). The problem becomes complex which requires a much more complicated
coupled fluid-shell system of equations to solve. In such case, the application of analyt-
ical approaches in order to resolve those system is obviously very tedious and difficult.
Moreover, FEM simulation meets also difficulties either in modeling fluid-shell structures
with various properties or in choosing an appropriate meshing for obtaining accurate so-
lutions.

L-H Lo

s, A Kpd

Fluid zone H

Fig. 2. Assembly of Dynamic Stiffness Matrix for a partially fluid-filled cylinder

The assembly technique of continuous elements demonstrates it's performance in
this situation. That procedure is a powerful capacity of CEM and has successfully been
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applied in our previous research [17] to study the hard problem of composite plates rest-
ing on non-homogenous elastic foundation. The logical development of continuous ele-
ment model consists to adapt this assembly algorithm to the problem of partially fluid-
filled cylindrical shells.

Fig. 2 illustrates the construction of the Dynamic Stiffness Matrix for a partial fluid-
filled cylindrical shell using the assembly procedure. Despite the complexity of the prob-
lem, the proposed algorithm makes possible a simple and efficient solution. In this case,
the different mentioned zones of the shell are modeled by two Dynamic Stiffness Matri-
ces i.e.. Kempty(w) for the empty region (with p; = 0) and Kqua(w) for the completely
fluid-filled zone (p; # 0). Finally, the Dynamic Stiffness Matrix of the partially fluid-
filled cylinder will be obtained by an assembly of the two above matrices similarly to the
method used in our previous researches [16-18,20]. This strong capacity of CEM con-
sists an interesting and powerful approach to deal with complicated structures such as
shell partially in contact with inside or outside fluid, combined conical-cylindrical shells,
shells with stiffeners ...

5. NUMERICAL RESULTS AND DISCUSSION

A Matlab program has been written using the presented formulation in order to
study the vibrational behavior of orthotropic cylindrical shells in contact with fluid and
subjected to various boundary conditions. Obtained values will be validated by compar-
ing with available results in the literature and with FEM.

5.1. Free vibration of orthotropic cylindrical shell filled with fluid

Now our model will be validated for orthotropic cylindrical shell filled with fluid.
The cylinder is subjected to simply supported-simply supported boundary condition.
The following dimensionless natural frequency is used for comparison:
Q = wR\/(1—vivn)p/E;.

A parametric analysis for orthotropic cylindrical shells without fluid has been con-
ducted using five different cases of orthotropic material with varying E/E; relations
and Poisson ratios. All studied orthotropic cases are resumed in Tab. 1. Only the first
longitudinal mode is considered in Tab. 2 and Tab. 3.

Table 1. Shell material properties

Case V2 vy E) (GPa) | E;(GPa) | Gy (GPa)
1 0.131926 | 0.012114 | 227.350 20.876 7.958
2 0.131926 0.04 68.599 20.799 7.958
u 0.131926 | 0.131926 20.545 20.545 7.958

Obtained results by CEM comparing to those of Warburton and Soni [2] and Li and
Chen [5] basing on theirs analytical solution are illustrated in Tab. 2. For circumferential
modes varying from 2 to 7, the high precision of our model is confirmed. The present
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Table 2. Comparison of natural frequency parameter () for the orthotropic cylindrical shell
with published results. L/R = 2.0,h/R = 0.01 and m =1

Case "
2 3 4 5 6 7

Warburton | 1 | 0.119875 | 0.085272 | 0.065184 | 0.054311 | 0.050975 | 0.054227
and Soni 2 | 0.207798 | 0.139463 | 0.100747 | 0.081915 | 0.079310 | 0.089331
[2] 3 | 0.330057 | 0.198610 | 0.134684 | 0.113414 | 0.122501 | 0.150636
Liand 1 |0.119888 | 0.085277 | 0.065190 | 0.054336 | 0.051014 | 0.054286
Chen [5] 2 | 0.207822 | 0.139494 | 0.100772 | 0.081952 | 0.079355 | 0.089433
3 | 0.330100 | 0.198607 | 0.134742 | 0.113515 | 0.122652 | 0.150753

Present 1 0.1199 0.0852 0.0652 0.0543 0.0510 0.0542

2 0.2078 0.1395 0.1007 | 0.0819 0.0793 0.0893

3 0.3301 0.1986 0.1346 0.1134 0.1225 0.1506

Table 3. Natural frequency parameter Q for the fluid-filled orthotropic cylindrical shell and
varying m; L/R = 1.0,h/R =00l and m = 1

n

Case 5 6 7 8

Prado | Present | Prado | Present | Prado | Present | Prado | Present
[9] 9] [9] [9]

0.0628 | 0.0629 | 0.0585 | 0.0586 | 0.0575 | 0.0575 | 0.0597 | 0.0597

2 | 0.1049 | 0.1049 | 0.0954 | 0.0953 | 0.0929 | 0.0926 | 0.0975 | 0.0971

3 101616 | 0.1601 | 0.1437 | 0.1422 | 0.1426 | 0.1408 | 0.1568 | 0.1546

formulation offers good values which are perfectly closed to those of Li and Chen. And
this similitude is observed for three investigated cases of orthotropic materials.

The last analysis consists of a simply supported orthotropic cylindrical shell filled
with water. In Tab. 3, natural frequencies of a cylinder (L/R = 1.0,/1/R = 0.01) with five
above orthotropic materials are computed and compared to work of Prado et al. [9] using
their analytical solutions.

It is obvious to remark very small differences between results calculated by CEM
and by Prado et al. [9]. Moreover, the high precision of our model are validated through
out all five cases of orthotropic materials. Therefore, by using the exact closed form so-
lution of the differential equations of the structure, CEM using only two elements is an
attractive approach with high precision and small volume of data storage, especially for
analyzing vibrations of isotropic and orthotropic cylindrical shells partially or fully filled
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with water. Otherwise, these advantages combining with the possibility of using the as-
sembly procedure of FEM are precious features of CEM which allows our formulation
working well in all low, medium and high frequency ranges.

5.2, Effect of filled fluid level and shells paramelters on frequency of orthotropic cylin-
drical shells

First, in this section, the effect of filled fluid level on frequency of clamped-free
orthotropic cylindrical shells is investigated. The dimensions of cylindrical shell and ma-
terial properties are: Ey = 227.35 GPa; E; = 20.87 GPa; vyz = 0.131926; Gy, = Gy3 =
Gz = 7.958 GPa; h = 0.0254 m; R = 10k; L = 2R; p; = 1600 kg/ms; Py = 1000 kg/ma.
Tab. 4 shows the influence of the liquid level on the natural frequencies with correspond-
ing modes.

Table 4. Effect of fluid level on natural frequencies (Hz) of a clamped-free
orthotropic cylindrical shell

m n H/
0 0.25 0.5 0.75 1
830.97 829.23 784.92 649.29 429.40
588.73 587.44 554.96 457.04 241.82
1 663.56 662.34 630.01 530.09 357.04
1021.44 1019.59 968.78 827.74 653.63

1549.77 1546.60 1453.77 1258.47 1067.59
2090.28 2045.59 1669.42 1501.30 952.53
1722.11 1682.59 1388.27 1279.81 728.20
1621.99 1584.02 1319.88 1237.40 706.47
1782.03 1739.55 1477.01 1410.59 921.49
2161.95 2108.57 1838.39 1780.29 1307.25
3303.99 3153.33 2767.53 2162.56 1183.10
3233.23 3012.01 2673.74 2198.16 1196.37
3190.24 2971.26 2671.77 2267.92 1244.81
3289.25 3067.29 2798.34 2435.18 1432.81
3539.30 3307.88 3061.84 2718.17 1782.48

N
Galw|n|=luale|wlo|=|o] sl —=

The results in Tab. 4 show that, for all the modes of vibration considered, the filled
fluid can reduce significantly the natural frequency of an orthotropic cylindrical shell.
For example, for the first mode (m = 1,n = 1), the natural frequency is approximately
0.25%, 5.5%, 21.8% and 48.3% corresponding to fluid filling levels, H/L = 0.25,0.5,0.75
and 1.0 respectively lower in fluid than in air (H/L = 0), whereas for the mode m =
3,n = 3, the reduction of the natural frequency is approximately 6.8%, 16.3%, 28.9%
and 61% corresponding to fluid filling levels, H/L = 0.25,0.5,0.75 and 1.0 respectively.
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Consequently, the high modes are more sensitive to the effect of the containing fluid than
the low modes. From the Tab. 4, it can be seen clearly that the reduction of the natural
frequency of the cylindrical shell decreases first slowly then quickly as the fluid height
increases.

Next, the effects of length-to radius ratio and thickness-to radius ratio on the fre-
quencies of fluid-filled simply-supported orthotropic cylindrical shell are presented in
Figs. 3-4, respectively.

Frequency (m=1) Frequency (m=2)
R = _n-x‘ BT e — 3
3200 $om=ti=t et —t el
e
e 1500
“ ]
<
200 »
e S :
RN | e S .
Frequency (HT) (m=3)
=

Fig. 3. Variation of natural frequencies (Hz) with various values of L/R for orthotropic
fluid-filled simply supported cylindrical shell (m = 1,2,3)

Fig. 4. Variation of natural frequencies (Hz) with various values of #/R for orthotropic
fluid-filled simply supported-supported cylindrical shell (m = 1,2,3)



54 Tran Toh Thinh, Nguyes Mah Cuong, Vu Quoc Hren

Fig. 3 shows variations of natural frequencies of the orthotropic cylindrical with
simply supported edges and completely filled with fluid, versus L/R The value_s of nat-
ural frequencies of the cylindrical shells for all modes are decrease as the ratio, L/R,
increase. For example, as the ratio, L/R, increases from 2 to 10, for the first mode
(m = 1,n = 1) the natural frequencies are decreased from 921.05 Hz to 144.6 Hz;
for the mode m = 3,n = 3, the natural frequencies are decreased from 2725.76 Hz to
409.48 Hz, etc.

The effect of the variation of the ratio, h /R, on the natural frequencies of orthotropic
shells with simply supported edges and completely filled with fluid is illustrated in Fig. 4
The values of natural frequencies of orthotropic cylindrical shells are increased, as the ra-
tio, h/R, increase. For example, as the ratio, h/R, increases from 0.02 to 0.1, for the first
mode (m = 1,n = 1) the natural frequencies are increased from 93.36 Hz to 921.05 Hz;
for the third mode (m = 3,n = 3), the natural frequencies are increased from 130.05 Hz
to 2725.76 Hz, etc.

6. CONCLUSIONS

A new continuous element for orthotropic cylindrical shell with or without con-
tact with fluid has been successfully constructed in this research. Furthermore, a simple
and robust assembly method has been introduced for analyzing the vibration charac-
teristics of partially fluid-filled orthotropic cylindrical shells. Different test cases have
been examined which confirm the validity of the proposed formulation. Excellent agree-
ments are found between results by Continuous Element Method and by other published
ones demonstrating the high precision of this model. Continuous Element solutions for
the mentioned structure reveals strong influences of fluid on vibratoire behaviors of the
shell. Fluid effects are expressed by reducing significantly the natural frequencies and
by changing the mode shapes of the structure. Such phenomenon must be taken into
account in designs of isotropic and orthotropic cylinders in contact with fluid. Advan-
tages of the presented model are low computational cost and the possibility of application
in medium and high frequency range. Those precious characteristics of Continuous Ele-
ment Method are high-lighted in the case of fluid-structure interaction problem while the
precision and computational time of Finite Element models are affected by the demand
of a huge number of meshing elements.
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