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Abstract. In this paper, an optimized homogenization method using uniaxial tensile tests 
to estimate material parameters in the micromechanical model of a heat treated DC04 
steel is introduced. The method is based on a representative element model for the macro­
scopically homogeneous material. A Taylor polycrystal model is applied at integration 
points and simultaneously accounting for experimental election backscatter diffraction 
(EBSD) data. Computational macro stress-strain curves are compared to experimental 
stress-stiain curves to estimate the parameters of the DC04 steel at the different angles to 
rolling direction (RD). 

Keywords: Heat treated DC04 steel, elastoviscoplastic material, finite element method, Tay­
lor type polycrystal model, EBSD texture data, MTEX toolbox. 

1. INTRODUCTION 

Most of metals used in industrial applications are polycrystalline materials. As 
observed in experimental micrograph, they are the set of grains VL'ith identified grain 
boundaries. Each grain is the aggregate of single crystals having approximately homoge­
nous orientation. In crystallography, the crystal structure or the arrangement of atoms 
is considered as a cubic shape. As studied by [1] and [2], the anisotropic plasticity of 
polycrystalline materials is mainly caused by non-uniform distributions of crystal ori­
entations. Therefore, the analysis of the crystallographic texture, i.e., preferred crystal 
orientations, plays an important role when investigating the macroscopic material behav­
ior. The experimental EBSD technique, known as Scanning Electron Microscope (SEM) 
based technique, has become a major tool in measuring crystal orientations from a poly­
crystal structure. One application is the use of crystal orientation data at every Gauss 
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integration point in finite element simulations of crystal plasticity models. For this spe­
cial techniques, e.g. [3-6] are developed to determine a reduced number of individual 
orientations based on experunental data. 

Low carbon steels is currently of important interest since they are widely used in 
automotive systems due to their formability and fiigh corrosion resistance. In this paper, 
a low carbon DC04 steel widely used in the automotive industry is investigated. The 
paper aims to estimate microscopic material parameters in a large strain crystal plastic­
ity model used for a body-centered cubic (BCC) material of the DC04 steel. The esti­
mation is performed by usmg uniaxial tensile experiments and the crystal orientations 
related to experimental EBSD data for the DC04 steel. Here the crystallographic EBSD 
data obtained from the heat treated process on the DC04 steel is delivered by Institute for 
Applied Materials-Materials and Biomechanics (lAM-WBM, Karlsruhe Institute of Tech­
nology). This texture data implying the development of a new microstructure and the 
formahon of a new crystallographic texture will be considered. The different numbers 
of single crystal orientations extracted from the raw EBSD data are used for the homoge­
nization scheme implemented at Gauss integration points. Computational results using 
the two-scale plasticity model are compared with experimental tensile tests in terms of 
stress-strain curves to estimate the underlying material parameters. The paper is orga­
nized as follows. In Section 2, the constitutive equations of the finite elastoviscoplasticity 
theory are described briefly. The constitutive equations are integrated over time by means 
of the implicit Euler scheme. The experimental data of EBSD texture and tensile curves 
are introduced in Section 3. In Section 4, computational tensile stress-strain curves of 
tensile tests are compared with experimental results for different tensile directions in the 
sheet plane to estimate the material parameters. The tensile test data are provided by In­
stitute of Formmg Technology and Lightweight Construction (lUL, Technical University 
of Dortmund). Finally, Section 5 gives conclusions. 

2. CONSTITUTIVE EQUATIONS 

2.1. Single crystal plasticity model 

2.1.1. Elastic law 

In this section, an elastoviscoplastic single crystal constitutive model m the large 
strain crystal plasticity theory [7,8] is briefly summarized. The constitutive law is imple­
mented in the commercial ABAQUS software using the subroutine UMAT, which allows 
user-defined material constitiitive laws to be incorporated in FE simulations. The model 
is based upon the assumptions of small elastic strains and finite plastic strains and rota­
tions. Plastic deformation is assumed to be the result from distinct sHp mechanisms on 
specific crystallographic planes. The crystal elasticity properties are assumed not to be af­
fected by the slip mechanism. The deformation gradient is decomposed multiplicatively 
into an elastic part Fe and a plastic part Fp 

F = FeFp. (1) 

The plastic deformation Fp is the plastic contribution from crystallographic slips. 
The elastic deformation Fe accoimts for the lattice distortion, which is inherently elastic. 
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The Kirchhoff stress tensor in the elastic law using the elastic stiffness tensor C on the 
single cubic crystal is given by 

T = FeC[Ee]F^. (2) 

The stiffness tensor has three independent elastic constants [9]. Green's strain tensor is 
defined by 

E e = ( C e - I ) / 2 , (3) 

with I being the 2nd-order unit tensor and the right (elastic) Cauchy-Green tensor 

Ce - FjFe. (4) 

2.1.2. Flow rule and hardening law 

A rate-dependent flow rule specifies the time evolution of the plastic part Fp of F 

*p^P^ = L'y^^^' ya = 7osgn(T«) 1^1"' (5) 

where the exponent m quantifies the strain-rate sensitivity of the material, 70 is a refer­
ence rate, and M^ is the Schmid tensor, T'- denotes the critical resolved shear stress. The 
following rate-dependent Kocks-Mecldng hardening model [4,10] 

is used, where the critical Voce stress is specified by 

rHr.,r^) = r C „ ( 2 ^ y (7) 

with the asymptotic critical resolved shear stress T^Q and the initial hardening modulus 
Oo- The rate of the accumulated plastic slip is computed by 

7 = E|-r.K'-^'')|- (8) 

The resolved shear stress is defined by 

c^ = X- Ma, (9) 

where 
Te = CeSf ^ (10) 

denotes the Mandel stress tensor. The second Piola-Kirchhoff in the imdistorted state is 
given by S^^ = / F ~ - ^ T F ~ ^ . / = det(Fe) is the determinant of Fe- The Schmid tensors 
are defined in terms of the slip direction d„ and slip plane normal n^ in the undistorted 
configuration 

M« = da®n«. (11) 

The initial conditions for the ordinary differential equation are Fe{0) = Q(f ^ 0) € S0{3) 
and the initial critical resolved shear stress T ^ ( 0 ) = r^. The crystal orientation is given 
by a proper orthogonal tensor Q{t) = g,{f) 0 e„ where the vectors ĝ  and ê  denote the 



orthonormal lattice vectors and the fixed ortiionormal basis, respectively. The initial ori­
entation of the single crystal Q(f = 0) = g^(0)®ei is defined in terms of the orthonormal 
lattice vectors g, (0) at the time t = 0. For body-centered cubic (BCC) slip sytems of DC04 
steel, the attention is focused on a combination of {110} (111) and {112} (111) slip sys­
tem families [11]. There are two slip directions in each of the slip planes along the main 
diagonals of the cube. In total, there are 24 slip systems [11,12]. 
2.2. Taylor type polycrystal model 

The crystallographic texture of polycrystalline materials is known to be of signif­
icant importance for the sheet metal forming behavior. Taylor type polycrystal models 
known as numerically the most effective two-scale models take into account the crys­
tallographic texture at integration Gauss points. In general, Taylor models, e.g., [13-17] 
assume that the deformation gradient field is homogeneous for all grains through the 
microstructure of the polycrystal. The macroscopic deformation gradient is equal to the 
volume average of the microscopic deformation gradient 

f V i / ^ F d V , (12) 

with respect to the reference configuration. The effective Kirchhoff stress tensor is com­
puted as the volume average of crystal stress with respect to the current configuration 

' vJv'' (13) 

where M is the total number of grains in the discretized crystallographic texture, va is the 
volume fraction of the grain /3 and x^ is the corresponding Kirchhoff stress tensor. 

3. EXPERIMENTAL DATA 

3.1. EBSD crystallographic texture data 

3.1.1. EBSD technique 

In recent years, EBSD technique [18] has become an important technique for the 
quantitative characterization of different microsfruchrral properties such as the grain 
size, the grain boundary structure, and the orientation distribution. This technique al­
lows to obtain spatially resolved crystallographic information by a Scarming Electron 
Microscope (SEM). For every point analyzed on a sample, the position, the phase and 
the crystallographic orientation are stored. A specimen ot DC04 steel is investigated tn 
the cold formed and heat freated state by using the EBSD technique to obtain a corre­
sponding database and simultaneously to identify a two-dimensional approximation of 
the grain structure. The software package MTEX [19,20], a Matlab toolbox developed 
smce 1997, is used tor the quantitative analysis of experunental texhires. The obtained 
EBSD database is processed by MTEX to identify the grains and their boundaries. In or­
der to identify a grain from the EBSD measurement, it is necessary to determine its grain 
boundary and the average orientation inside the grain. These identifications can be han­
dled by the open-source texture toolbox MTEX in terms of the misorientation over the 
set of all measurement points inside a grain. The heat treated EBSD microstructure and 
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the clustered heat treated EBSD microstructure are shown in Fig. 1. After the clustering 
process in MTEX, grain boundaries are identified and the total number of the identified 
grains are found to be 2554. An output database is shown in Tab. 1, including three Euler 
angles of clustered grains and their corresponding pixels. 

[Mm| 

(a) Raw EBSD data set (b) Clustered EBSD data set 

Fig. 1. Microstructural EBSD images of the heat treated DC04 steel 

Tablel. Thed a set for identification of grains in the clustered heat 
treated specimen of DC04 steel 

Grain 

1 

2 

3 

4 

5 

2550 

2551 

2552 

2553 

2554 

Eulerl 

83.32 

117.36 

-92.53 

25.048 

-15.257 

0.74703 

-113.42 

-151.99 

-157.13 

-30.854 

Euler2 

47.374 

47.152 

38.297 

127.55 

46.542 

14.359 

43.691 

44.525 

42.302 

41.545 

Euler3 

23.528 

37.653 

82.924 

158.2 

37.09 

11.114 

47862 

71.867 

62.368 

34.8 

Pixels 

3 

4 

1 

1 

6 

71 

443 

7 

21 

72 

3.1.2. Low dimensional description of crystallographic texture 

In this section, an effective method is introduced for the selection of representative 
grain orientations based on discrete texture data. The reduced orientation distiibution 
has to reproduce the overall crystallographic texture of the investigated material in a sta­
tistical as well as mechanical sense. The crystal orientation distribution function (CODE) 
represents the crystallographic texture in terms of a volume fraction description of crystal 
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orientations. Mathematically, it represents the volume fraction of crystals with orienta­
tion Q e S0(3), i.e., 

^ = / ( Q ) d Q . (14) 

For a random texture / ( Q ) = 1 holds. The orientation of a single crystal in a poly­
crystalline structure can be uniquely determined by the specification of the rotation Q e 
SO (3) which maps the sample fixed basis vectors e, onto the lattice vectors g, by g, = Qe,. 
The rotation Q is commonly parameterized by a triple of Euler angles (pi,^,(p2 in the 
'zxz'-convention and is represented by a 3 x 3 orthogonal mafrix [2] given by 

r cos^i -sin.^1 0 1 r 1 0 0 I" cos(p2 
Qi, = sm(pi cosifi 0 0 cosO —sin*!) sin^2 

0 sJn<E> cos<I> [ 0 

—cos(fisin^2 ^ sin^icos*I'cos^2 sin'I>sin^i 
—sinif isinipi + cos(^icosOcoS(p2 —sinOcosf '̂i 

sin$cos^2 cosO 

—sini^2 

costp2 
0 

0 " 
0 
1 

cos^iCOs^2 - sini^ii 
sinif iCOS 2̂ + cos îCOS<l>sin^2 

sin'J>sin^2 

1 
(15) 

where the infinitesimal volume element dQ = —^sin('I>)dtfid^2d<E». In order to save 
the time-consuming of numerical FE computations, the number of grains needs to be re­
duced but simultaneously has to represent the crystallographic texture data accurately. 
Reduced crystallographic textures including only 200 grains, 400 grains and 650 grains 
with the corresponding largest volume fractions are extracted and used for the numer­
ical homogenization. Considering the case of a cubic crystal symmetry, an orthofropic 
orientation data set needs to be used. The orthotropic data can be obtained by rotating 
counterclockwise the grain orientation data set 180 degrees in t um about the orthonor­
mal axes in the lattice system. The orthogonal rotations characterized by three orthogonal 
matrices with respect to the orthonormal crystal lattice vectors {g,} (z = 1 . . . 3) are given 
by 

Rl(180°) = 

R2(I80°) = 

R3(180°) = 

1 
0 
0 

- 1 
0 
0 

- 1 
0 
0 

0 
- I 
0 

0 
1 
0 

0 
- 1 
0 

0 
0 

- 1 

0 
0 

- 1 

0 
0 
1 

(16) 

(17) 

(18) 

Each multiplication of an orthogonal rotation matrix R, (i = 1 . . . 3) and each grain orien­
tation Q, given by R,Q (i = 1 . . . 3), generates an additional grain orientation. This means 
that the orthofropic orientation data set is four times larger than the initial set. Therefore, 
the orthotropic orientation data sets of 2554 grains (the raw data), 200 grains, 400 grains 
and 605 grains will consist of 10216 orientations, 800 orientations, 1600 orientations and 
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2420 orientations, respectively. Here, two important characteristics for the grapfiical rep­
resentation of the texture data are to be evaluated. The first is the pole figure which is 
used to plot a set of poles for corresponding grain orientations based on stereographic 
projections in 3D space. The second is the aforementioned CODE. The {111}, {100} and 
{110} pole figures and the CODF of the orthotropic orientation data sets (10216 orienta­
tions and 800 orientations) are shown in Figs. 2 and 3. In Fig. 3, the CODFs are deter­
mined based on the kernel distribution of von Mises Fisher in the MTEX algorithm . It 
can be seen that the pole figures and the CODF of 10216 and 800 grains, respectively, are 
approximately similar. 

1 
{ 
) 13 

. A J l 

^Af 
^^y 

Fig. 2. Comparison between pole figures of 10216 grains (above) and 800 grains (below) 

Fig. 3. Slices of CODF: 10216 grams (left) and 800 grains (right) 
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3.2. Tensile curves 

The most widely used basic test of sheet metal forming is the uniaxial tensile test. 
As illustrated in Fig. 4 (a), a specimen cut from a heat treated sheet metal of a DC04 
steel at different angles to the rolling direction (RD) is used to carry out uniaxial ten­
sile tests. The uniaxial tensile experiment performed by Institute of Forming Technology 
and Lightweight Construction (lUL, Technical University of Dortmund) is used to in­
vestigate the macroscopic stress-strain relation. Several data sets are identified for spec­
imens oriented at 0", 15°, 30°, 45°, 60°, 75° and 90° to tiie RD. The initial thickness of 
the specimen varies in the range fo = 1-16 — 1.2 mm with a gauge length LQ = 80 mm 
and the range WQ = 19.81 — 19.92 mm. The tests were conducted at the constant veloc­
ity of 0.0025 s~^. These experiments contain information of the displacements and the 
forces over time. The nominal stress is calculated by UQ = F/AQ, where F is the force 
and AQ = IQWQ is the initial area of the cross section. The engineering strain is given 
by e = L{t)/L{0) — 1 = AL(f)/L(0). Figs. 4 (b-h) shows the nominal stress versus the 
engineering strain for differently oriented specimens. It can be seen that there are three 
tensile experiments performed at each fixed angle 6 to RD. To make it simple, a mean 
stress-strain curve is computed based on these three experimental curves in the range of 
strain 0 - 0.2. 

4. ESTIMATION OF MATERIAL MICRO-PARAMETERS 
BASED ON TENSILE SIMULATIONS 

This section aims to identify the material parameters used in the micromechanical 
model of DC04 steel based on uniaxial tensile tests. A FE model for modeling the tensUe 
tests is constructed by ABAQUS/CAE and the Taylor type polycrystal model is applied 
at the integration points of finite elements. The mechanical constitutive law discussed in 
Section 2 is implemented numerically by a user material behavior (UMAT subroutine). 
The orthotropic orientation data sets (800 grains, 1600 grains and 2420 grains) of the heat 
treated DC04 steel will be the input data used in the Taylor type polycrystal model as ini­
tial grain orientation distribution. In Fig. 5, the FE model representing a representative 
element (8-node linear brick element type - C3D8) for the macroscopically homogeneous 
material is shown. Stresses and strains are computed at 8 integration Gauss points within 
the FE model. The length, the width and the area are 1 mm, 1 mm and 1 mm^, respec­
tively. The initial time increment is 10~^ s and the maximum time increment is 1 s. The 
total time in the simulations is 200 s corresponding to the final displacement of Ux = 0.2. 
As a result, the applied strain rate is 10*^ s"^ Note that each rotation of the initial orienta­
tion data set about the normal direction 63 (ND) with angle 6 corresponds to the oriented 
specimen. The rotation matrix © representing the rotation about 63, can be expressed as 
follows 

" cos(0) -s in(0) 0 " 
§ ( e ) = sin(0) cos{B) 0 . (19) 

[ 0 0 1 J 
Each tensile simulation for a fixed angle 9 is performed for the orthotropic orienta­

tion set. The nominal stress is computed by CQ = F/AQ, where F is the sum of computed 



f i^. 5. FE-model of the uniaxial tensile test with one finite element. 

forces at nodes along the tensile direction during deformation. In the following inves­
tigation, a set of material parameters are estimated by comparing simulation results to 
experimental data. This estimation will be done based on stress-strain curves and the 
least square fitting method. The elastic constants of DC04 steel used in tensile test simu­
lations are explained in Section 2.1. The other material parameters, i.e., the reference slip 
rate 70, the stiain-rate sensitivity parameter m, the initial critical resolved shear stress rf, 
the asymptotic critical resolved shear stress T^Q, and the initial hardening modulus ©Q 
are estimated based on the numerical stress-strain curves. Firstly, the values of the initial 
and asymptotic critical resolved shear stresses are estimated via the Taylor factor M = 3 
between the microscopic shear stress and the macroscopic nominal stress 

fT-mncro | ^ ^mncro | 

(20) 
16=0'' M 

where the macroscopic nominal stresses c^"'"'' and a-̂ "'™ can be estimated from the ex­
perimental tensile curves. Secondly, these two microscopic shear stresses and the hard­
ening modulus 00 are adjusted to fit to the experimental curves for all different angles 
6. The least square method is applied in order to determine the optimal parameters. The 
error is defined by 

£-\/Ij4 = ̂ iE|p,--pri. (21) 
where n is the number of data points and di is the distance between the experimental 
data point P"'' and sunulated data point P,""" with respect to the same strain. By using 
this optimal set, the comparison between the experimental and numerical results using 
the different orthofropic data sets for the oriented specimen at different angles to RD is 
depicted in Figs, 6, 7 and 8. It can be seen that these numerical and experimental tensile 
curves showed a good match when applying different numbers of grain orientations at 
the integration points. The 200-orientation data set extracted from the raw data set is 
sufficient to represent the crystallographic texUire data accurately. Tab. 2 shows the set 
of optimal material parameters identified based on the minimizafron of £2 for all tensile 
directions simultaneously. 
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Fig. 6. (a) Undeformed (shade color) and deformed (black color) configuration of the represen­
tative element at the end state of FE simulation and numerically determined stress-strain curves 
using 800 grains in comparison to experimental data for different angles to RD - (b) 0°, (c) 15°, (d) 
30°, (e) 45°, (0 60°, (g) 75°, (h) 90° 
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Fig. 7. (a) Undeformed (shade color) and deformed (black color) configuration of the represen­
tative element at the end state of FE simulation and numerically determined stiess-strain curves 
using 1600 grains in comparison to experimental data for different angles to RD - (b) 0°, (c) 15°, 
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(b) 
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Fig. 8. (a) Undeformed (shade color) and deformed (black color) configuration of the represen­
tative element at the end state of FE simulation and numerically determined stiess-strain curves 
using 2420 grains in comparison to experimental data for different angles to RD - (b) 0° (c) 15° 
(d) 30°, (e) 45°, (f) 60°, (g) 75°, (h) 90° '\ > ' 
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Table 2. Set of identified material parameters based on the experimental tensile tests 

Cuu [GPa] 

231.5 

C„22[GPa] 

135.0 

Ci2i2[GPa] 

116.0 

Elastic constants of DC04 steel [22] 

m[-] 
20 

7o[s-'] 

0.001 

n[-] 

5 

Tf[MPa] 
67 

Tjo(MPa| 

130 

eti[MPa] 

755 

Material parameters in flow rule and hardening law 

J. CONCLUSION 

In this paper, a finite strain crystal plasticity model for BCC materials of DC04 steel 
has been implemented m ABAQUS. A comparison of the crystal plasticity FE simulation 
with the experimental tensUe test for the stiess-strain curves has been presented at dif­
ferent angles to RD. The macroscopic material behaviour in tensile tests has been used 
to determine an optimal set of material parameters in the micromechanical model using 
the reduced texture data of the heat treated DC04 steel The different numbers of single 
crystal orientations have been extracted from experimental EBSD data. The mechanical 
constitutive equations of a large strain crystal plasticity model for the steel and BCC slip 
mechanisms in the couphng of {110} + {112} (111) slip systems have been apphed for 
these simulations. The elastic constants for the DC04 steel were taken from literature. 
The study illustrated how the crystallographic information could be incorporated into a 
continuum mechanical modeling of a basic sheet metal forming test. 
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