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Abstract. A cell-based smoothed thiee-node Mindlin plate element (CS-MIN3) based
on the first-order sheai deformation theory (FSDT) was recently proposed to impiove
the performance of the existing three-node Mindlin plate element (MIN3) fo; static and
dynamics analyses of Mindlin plates. In this paper, the CS-MIN3 is extended to the
C"-type higher-order shea) deformation plate theory (C°-HSDT) and incorporated with
damping-spring systems for dynamic analyses of Mindlin plates on the visco-elastic foun-
dation subjected to a moving vehicle Tbe plate-foundation system is modeled as a dis-
cretization of triangular plate elements supported by disciete springs and dashpots at the
nodal points representing the viscoelastic foundation. A two-step process for transforin-
ing the weight of a four-wheel vehicle into loads at nodes of elements is presented The
accuracy and reliability of the proposed method 15 verified by companing its numerical
solutions with those of others available numerical 1esults. A parametric examination is
also conducted to determine the effects of vaiious parameteis on the dynamic response
of the plates on the viscoelastic foundation subjected to the moving vehicle.

Keywords: Smoothed finite element methods (S-FEM), Reissnei-Mindlin plate, cell-based
smoothed three-node Mindlin plate element (CS-MIN3), visco-elastic foundation, moving
mass, moving vehicle.

1. INTRODUCTION

Dynamic response of Mindlin plates on visco-elastic foundations subjected to & mov-
ing vehicle can be found in several types of engineering structures and real life applications
such as basement foundations of building, traffic highways, airport runways, etc. In gen-
eral, loads on these type of structures are moving loads or moving masses such as the
wheel loads from moving vehicles and planes.
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Moving load problems were first studied to design the railroad bridges. Using ex-
perimental investigation and an analytical method, Ayre |1) first aqal)'zed the moving
load problems for the design of one and two-span beams. Using the ﬁmte‘element method
(FEM), Yoshida and Weaver (2] investigated the dynamic response of simply Sl.xpported
beams and plates to moving force and moving mass loads. In this work, the moving mass
problem was approximated by a simplified pavement model that accounts for the dynamic
interaction between the vehicle and the pavement. Extending the moving load problems
to the dynamic analysis of the beams on elastic or viscoelatic foundsations, Kenney |3] first
analyzed the dynamic response of an infinitely long Bernoulli-Euler beam on a Winkler
foundation subjected to a moving force, including the effects of linear damping. In this
study, the subgrade was idealized as & Winkler medium which does not account for the
continuous nature of the actual subgrade. Further extending the moving load problems
to the dynamic analysis of the plates on elastic foundations, Thompson (4] carried out
a dynamic analysis of roads subjected to longitudinally moving loads by assuming the
pavement as an infinitely long thin plate. Related to the dynamic analysis of the plates
on viscoelastic foundations, Zaman |5| used the four-node elements in the FEM to analyze
dynamic response of a thick plate on viscoelastic foundation to moving loads by taking
into account the transverse shear deformation as well as bending of the slab. Sun [6] estab-
lished a closed form solution by using the Fourier transformation to derive the analytical
dynamic solution of a Kirchhoff plate on a viscoelastic foundation to harmonic circular
loads.

In comparison, it is seen that many studies in the literature have concerned with
the dynamic analysis of plates on elastic foundations subjected to moving loads, while the
literature related to those of plates on viscoelastic foundations is somewhat still limited.
This paper hence ayms to further contribute a dynamic analysis of Mindlin plates on visco-
elastic foundations subjected to a moving vehicle. The method used here is still the FEM,
however the elements used are triangular elements which are different from the four-node
quadrilateral elements used in Ref {5].

In the other frontier of developing advanced finite element technologies, Liu and
Nguyen-Thoi |7] have applied a strain smoothing techmque of meshfree methods by Chen
{8] into the conventional FEM using linear interpolations to formulate a series of smoothed
finite element methods (S-FEM) including the cell-based smoothed FEM (CS-FEM) (9)
which shows some interesting properties in the solid mechanics problems. The S-FEM
models have also been further investigated and applied to various problems such as plates
and shells [10-15]. piezoelectricity [16] and some other applications (17, 18], etc. Extend-
ing the idea of the CS-FEM to plate structures, Nguyen-Thoi et al. [19] have recently
formulated a cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static,
and free vibration analyses of isotropic Mindlin plates by incorporating the CS-FEM with
the original MIN3 element [20]. In the CS-MIN3, each triangular element will be divided
into three sub-triangles, and in each sub-triangle, the stabilized MIN3 is used to compute
the strains. Then the strain smoothing technique on whole the triangular element is used
to smooth the strains on these three sub-triangles. The numerical results showed that the
CS-MIN3 is free of shear locking and achieves the bigh accuracy.
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This paper hence extends the triangular plate element CS-\MIN3 hased on C%-type
higher-order shear deformation theory (C°-HSDT) for dynamic analyses of Mindlin plates
on visco-elastic foundation subjected to a moving vehicle. The plate-foundation system
is modeled as a discretization of triangular plate elements supported by discrete springs
and dashpots at the nodal points representing the viscoelastic foundation. A two-step
process for transforming the weight of a four-wheel vehicle into loads at nodes of elements
will be presented. The accuracy and reliability of the proposed method will be verified
by comparing its numerical solutions with those of others available numerical results. A
parametric examination will be conducted to determine the effects of various parameters
on the dynamic response of the plates on the viscoelastic foundation subjected to the
moving vehicle.

2. A C°-TYPE HIGHER-ORDER SHEAR DEFORMATION
THEORY AND WEAKFORM FOR MINDLIN PLATES ON
VISCOELASTIC FOUNDATION

2.1. C%type higher-order shear deformation theory (C°-HSDT)

According to C°-HSDT model (21], the displacements of an arbitrary point in the
plate are expressed by

428 423
u(z,y,2) =uo + (z - —) B- P

5 )%~ 3
47 47 (1
wa )=t (2= ) - e (422 u2), )

w(z,y) =w.
where ¢ is thickness of plate; ug = {uo u}7, wend 8 = {J 8,}7 are the membrane
displacements, the transverse displacement of the mid-plane and the rotations in the
y — z,z — z planes respectively.
Eq. (1) is developed from Reddy’s higher-order theory [22], in which, the derivative
of deflection is replaced by warping function ¢ = {¢x ¢y}T. Thus, the generalized displace-
ment vector with 5 degrees of freedom (DOFs) for C! continuity element is transformed into

the vector with 7 DOFs for C° continuity element asu = [ v o w 3= 3, ¢ oy ]T
[ Ezx cw 7oy ]T =eg+ 28 + 2Ky (2)
and the bending strains are given by
e % {ve+ (Vﬁ)T} with ¢= —iz (3)
Ky = 5 {(V6+(V9)7) + (VA + (VA))} !
and transverse shear strains are basically defined as
[z ‘yy,]T —es+ 2k with e, =Vuw +8; ke=c(B+ ¢) (4)

where ¥ = [8/z 8/0y]T is the gradient operator.
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The transverse shear strains in Eq. {4) is represented parabolicgll)'. It is clear that
the shear correction factors can be removed in the C°-HSDT formulation |21].
2.2. Weak form for Mindlin plates on viscoelastic foundation

Consider & Mindlin plate on viscoelastic foundation as shown in Fig. la. The vis-
coelastic foundation is modeled by discrete springs with foundation stiffncss coefficient ky
and dampings with damping coefficients ¢;.

(a) (b) (c)

Fig. 1. (a) Model of a Mindlin thick plate on viscoelastic foundation; (b) Three

sub-triangles (Ay, Az and Aj) created from the triangle 1-2-3 in the CS-MIN3

by connecting the central point O with three field nodes 1, 2 and 3; (c) Position
of a moving mass crossing triangular elements

The standard Galerkin weak form of the transient analysis of Mindlin plates on
viscoelastic foundation can be written as [3]

/JaZD'e,,dn +/6-,TD;7dn+/o'uTm udn+/5w7k,wdn+/6w7c,wdo :/Jurbdﬂ
0 i3 0 Q n n (5)

where b is the distributed load applied on the plate, and strain components ¢, and v are
expressed by

={e & )} y={e x}" (6)
and material constant matrices D* and Dy have the forms of
A B E
. . AS B®
D'=|B D F ,Ds:[Bs Ds], O
E F H
where
h/2 N
(A;,.B,,.D,;.E,,.F;,, Hj) =/ (Lz,2%2%20.2%) Qudz i,j=1,2,6
—h/2
h/2 (8)

(A5 BD5) = [ (LA Qudz ij =45,
-h/2
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and m is the matrix containing the mass density of the material p and thickness ¢ as

L 0 0 L 0 ¢/3L, 0
L0 0 & 0 /3

I, 0 0 0 0
m = Iy 0 ¢/3I5 0 (9)
Iy 0 c/31s
c2/91, 0
sym c2/91,

with (I1, I, I, In, Is, I7) = fi/jzp (1,222, 25, 2", 26) dz.

3. FORMULATION OF THE CS-MIN3 FOR MINDLIN PLATES ON
VISCOELASTIC FOUNDATION

3.1. FEM formulation for Mindlind plates on viscoelastic foundation [5]

N,
Now, discretize the bounded domain Q into N, finite elements such that Q = Lj Qe

e=1
and 4NQ; = 0,4 # j, then the finite clement solutionu” = [ w0 w w B: By ¢ &)
of a displacement model for the Mindlin plates is expressed as

Nn
= Zdiag[N,(x), Ni(x), Ni(x), Ni(x), Ni(x), Ni(x), Ni(x)|d; = Nd  (10)
=1
where N, is the total number of nodes of problem domain discretized; N;(x) is shape
function at node I; dy = [ ur v; w; Pz Byt bar $,1)7 is the displacement vector
of the nodal degrees of freedom of u" associated to node J, respectively.
Substituting Eq. (10) into Eq. (6), then the strains in Eq. (6) can be expressed as
Ne

e =[e, 77 = Bjd, 11
=1

where €” is the compatible strain and B} is the generalized strain-displacement matrix
expressed by

. T Y so\T (msi\T
5= 7y (82)7 (%) (@P)7 (8) ®
in which
Nz 0 000O0O 000N, 0 00
Bf=| 0 Ny 00000 BY=[000 0 Ny 00
Niyg Niz 0000 0 000 Ny Nz 00
000N, 0 Nz 0
B2 =S{000 0 Ny 0 Ny (13)
31000 Ny N2 Niy Ny

; 00 Nz Nt 0 00 w_ OO0 N 0 N O
B:":[ooN,,y o N oo B'=¢o 00
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in which Ny, and N, are the derivatives of the shape functions in z-directipn and y-
direction, respectively. The discretized system of equations of Mindlin plates on viscoelastic
foundation using the FEM for transient analysis then can be expressed as

Md+Cd+Kd=F (14)
where K is the global stiffness matrix given by
K = / BTD'BdQ + / STDSdO + / N Tk N, 2 (15)
o o o}
in which N,, =00 N, 000000N,000000N3000 0]; F is the load vector defined
by
F=/deQ+f” (16)
Q

in which f? is the remaining part of F subjected to prescribed boundary loads; M and C
are the global mass and global damping matrices defined by

M :/NTmNdQ and C :/ NTe¢/N,dQ (17)
Q Q

3.2. Formulation of CS-MIN3 for Mindlin plates on viscoelastic foundation

In the CS-MIN3 [10], the domain discretization is the same as that of the MIN3
using N, nodes and N, triangular elements. However in the formulation of the CS-MIN3,
each triangular element (2, is further divided into three sub-triangles A,, A, and A3 by
connecting the central point 0 of the element to three field nodes as shown in Fig. 1b.

In the CS-MIN3, we assume that the displacement vector d.p at the central point
0 is the simple average of three displacement vectors d., d.» and d.3 of three field nodes

1
deo = 3 (der +de2 +deg) (18)

Using the MIN3 formulation [20] for the sub-triangle A, the bending and shear
strains k' and 421 can be approximated by

e ]
£0A| = blinA| b;,A. bg’A‘ } d, | —bpmdigs (19)
Nt N Y
A L der |
[ deo
K21 = [ phadr phidr phan] gd = bbdigd,
N e
b1 L S ]
M deo (20)
L sl |
—_— | da |

b2y
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des
EsA‘ - [ b';"A' b;OAl b;oAx ] dea = psod1gds.
T de>
° )
deo
,{;Ax — [ bfon b;nAn bgnAn ] d,; | =baM g
—_—
be141 dez

where b1, bé1A: phA1 bsoAl and b2 are, respectively, computed similarly as the
matrices B™, B%, B, B and B*' of the MIN3 [20]. Substituting d§ in Eq. (18) into
Egs. (19), (20) and (21), and then rearranging we obtain

1 L 1
551 — I: ngAl +b§"A‘ 5b;ﬂA| +b;"A‘ gb;ﬂA; |deo der d,q]T = B™mA145t

(22)
BmaL
KB [ %b?xA| + b %bt;,m RS %b‘;*A* }ldw ey deo|T = BUA1 g
B (23)
= [ o eng oo s T Jjdg du daf” = BSa
Bb241
ot (24)

KO = [ %bim. +b;‘A‘ %b-]nm +b§‘A‘ ébfm. ]ldeU de le Bs1& g&

B4

Similarly, by using cyclic permutation, we easily obtain the bending and shear strains
e?’, nf’, nﬁ’,es’, nSA’ and matrices B™2s, B4, BR, B, Bnid;, 3 =2,3, for
the second sub-triangle A, (triangle 0-2-3) and third sub-triangle Az (triangle 0-3-1),
respectively.

Now, applying the cell-based strain smoothing operation in the CS-FEM [7|, the
constant bending and shear strains &2 and %, 5 = 1,23 are, respectively. used to
create a smoothed bending and shear strains &, and 4, on the element Q, such as
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where B, Bb, B¥, B and BS' are the smoothed bending and shear strain gradient
matrices given by

3 3 1 3
f 1 m 5 ! ba, . Rbr o o baa
B = L3 40B7 o BR =3 AnBMS  BR= ) AaBYR
j=1

“5=1 ¢ g=1

3 3
R W
e

=1 A j=1
- (26)
Therefore the global stiffness matrix of the CS-MIN3 are assembled by

Ne
K=3%"K. (27)

e=1

where K, is the smoothed element stiffness for plate given by
K. :/ ETD‘BdQJr/ STD;SdQ+/ NTk/N, d2

- Qe Qc (28)

=B"D'BA, +S7D;S4, + / NTk/N,, dQ
Qe

in which

- o NT o NT o \T - . \NT /2 \T
B= {(B;t’) (%) (B?) ] . §= [(Bj’) (B:') } (20)
Note that for convenience in numerical computation, the foundation stiffness coef-
ficient k; in Eq. (28) can he derived from the following equation ref in |23|

k;=KD/B' (30)

where K is the non-dimensional elastic foundation coefficient; B is the shorter dimension
of the plate; and D = E£2/ (12(1 — v)) is the bending stiffness of the plate.

4. TRANSFORMATION OF THE MOVING VEHICLE INTO
THE LOAD AT NODES

In this section, a transformation of moving vehicle into the load at nodes is presented.
First, some hypothesis of the model of loads and moving rule of vehicles are assumed as
follows:

+ Model of loads: moving concentrated loads

+ Moving rule of vehicles on the plate: along the straight line with regular velocity
4.1. Transformation of the weight of a four-wheel vehicle into concentrated

loads

In the literature, the forces of a vehicle on the plate are considered as concentrated
loads. Here, we assume that the concentrated loads are located at the wheels of a four-
wheel vehicle.
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Fig. 2. Distribution wejght of vehicle to four wheels. (a) the longitudinal axis of
the vehicle inclines an angles a compared with the surface of the plate:
(b) the latera] axis of the vehicle inclines an angle J compared with
the surface of the plate

Fig. 2 illustrates a simple model of a four-wheel vehicle moving on the plate, in
which the longitudinal axis of the vehicle inclines an angles o compared with the surface
of the plate, and the lateral axis of the vehicle inclines an angle 3 compared with the
surface of the plate. Using the geometrical analysis, the concentrated loads at four wheels
are now defined by

Pi=0f1- a — hgtga + hytga = hatgl + hptgd
a+b c+d
— hgtg ht!
P, = Q (| _a=hqtgathytea (c — hytg8 + hytgB)
c+d a+b (31)
Q ¢ — hgtgf + hytgB
= — hytg -
P a+b(z2 hatgor + hytge) {1 c+d

P, = ——— 55— (a— hytga + hytga) (¢ — hotgB + hytgf
! (a+b)(c+d)( g8 hptga) ( atg8 10}
where Q is the weight of the vehicle; P, Pr-. Py and Py, tespectively. are the concentrated
loads located at the rear-left wheel, the rear-right wheel, the front-left wheel and the front-
right wheel; a and b, respectively, are the distances from the centre of the vehicle to the axis
connecting two rear wheels and the axis connecting two front wheels; ¢ and d, respectively,
are the distances from the centre of the vehicle to the axis connecting two left wheels and
the axis connecting two right wheels: hy and hj, respectively, are the distances from the
plate surface to the centre of the vehicle and the centre of the wheels.
4.2. Transformation of the concentrated loads at the wheels into the load at
nodes of elements
Using the CS-MIN3 for the analysis of Mindlin plates on viscoelastic foundation, the
plate will be discretized into three-node triangular elements, and hence the concentrated
loads at four wheels of the moving vehicle will be located on these triangular elements.
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We lience need to transform the concentrated loads into the load at nodes of the elements
at any time ¢.

Fig. lc shows a model of a moving concentrated load P crossing triangular elements.
In this model, the concentrated load P moves along the line inclined an angle @ compared
with 7 axis. Suppose that at the time point £, the position of the moving concentrated
load P is (a.b) in the Cartesian coordinate system Ozy. Then. the new position (Z,7) of
the moving concentrated load at the time f =t + At are defined as

7 =vAtcosd +a; §j=vAtsind+b (32)

where v is velocity of the moving vehicle and At is step time. The moving concentrated
load P at the position (Z,§) is then transformed into the force vector F at nodes of
elements by
F = PN, (33)

in which N,, = (60N, 000000N,000000N,000 0| is the vector of values of
shape functions at the position (Z,7) on the element containing the moving concentrated
load; and P is one of four concentrated loads P;,, Py, P, Py introduced in the previous
section.

An algorithm for determining the position of moving concentrated load P at the
time { =t + At is briefly presented as follows:

Step 1: calculate coordinates of the vehicle according to Eq. (32).

Step 2: determine the elements which are containing the moving concentrated loads

Step 3: calculate the concentrated forces caused by the mass of vehicle

Step 4. transform these forces into the loads at nodes of elements according to Eq.
(33).

5. NUMERICAL RESULTS

5.1. Static and free vibration analyses of Mindlin plate on the elastic founda-

tion

Consider the static analysis of a rectangular plate rested on the elastic foundation
with the non-dimensional elastic foundation coefficient given by K = 1000. This example
was studied by Ref |23]. The plate is subjected to a concentrated load P = 1000 N at
the center and the size of plate is given by length L = 50 m, width B = 10 m and
thickness ¢ = 0.02 m as shown in Fig. 3a. The plate is is free along two longer edges
and is simply supported along the two remaining edges. The material parameters of plate
are given by Young’s modulus E = 31 x 10° N/m? and Poisson’s ratio v = 0.2. Four
uniform discretizations of plate corresponding to 72, 200, 252 and 800 elements are used.
The convergence of deflection is first studied. Fig. 3b compares the convergence of central
deflection @ = wD/(PB?) of plate using the CS-MIN3 and others numerical methods such
as MIN3, discrete shear gap method (DSG3) |24], mixed interpolated tensorial components
(MITCA) (25]. The reference solution by Huang [23] is used. It is seen that the solution of
the CS-MIN3 is the closest to the reference solution, even with coarse meshes.

Now, the free vibration analysis of the plate on the elastic foundation is considered.
The plate model in Fig. 3a is still chosen to analysis, however in order to compare the
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Fug. 4. {a) Five lowest frequencies of the plate on elastic foundation:
(b) Deflection of the first mode of the plate on the elastic foundation
at middle line along the longitudinal direction z

results with those from Huang (2001), the dimensions of the plate are reset into the length
L =30 m, the width B = 10 m, the thickness ¢ = 0.5 m and the boundary conditions of
plate are changed into being simply supported along four edges of plate. The density of
plate is given by p = 2500 kg/m?® and the foundation coefficient js reset into K = 100.
Fig. 4a plots five lowest frequencies of plate by different numerical methods for the meshes
15%5. It is observed that the results of CS-MIN3 agree well with the reference solution of
Huang [23) and are much more accurate than those of the others elements. In particular,
the CS-MIN3 can provide accurately the values of high frequencies of plates by using only
coarse meshes. We next study the deflection of free vibration modes of the plate on the
elastic foundation corresponding to three sets of various foundation coefficients: K, = 0
(without foundation), K> = 10K and K3 = 20K. Fig. 4b plots the deflection of the first
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free vibration modes of the plate on the elastic foundation at the middle line (y = 5 m)
along the longitudinal direction z. It can be seen that when the stiffness of foundation
becomes stiffer, the deflections of modeshape of the plate on the elastic foundation change
significantly comparing with those of the plate without foundation.

5.2. Dynamic analysis of Mindlin plate on viscoelastic foundations under to a
moving vehicle

We now consider a four-wheel vehicle moving with velocity v = 50 m/s on the
middle line along the longitudinal direction z of a rectangular plate as shown in Fig.
5a. The rectangular plate is simply supported along two shorter sides, and free along two
longer sides. The mass of the vehicle is M = 1000 kg. The material parameters of the plate
are given by Young’s modulus E = 3.1 x 10'® N/m?, Poisson’s ratio v = 0.2, the length
L = 20 m, the width B = 10 m, the thickness ¢ = 0.3 m and the density mass p = 1000.
The parameters of the foundation are given by the foundation coefficient X = 1000 and
the damping coefficient ¢; = 5 x 10% Ns/m?.

We first study the difference of the deflection of the plate for two cases: a) the
vehicle weight is transformed into four concentrated loads at four wheels (L4); and b) the
vehicle weight is transformed into only one concentrated load located at the central point
of four wheels (LI}.

_—
HEE 001
Moving vehicle (Af) 5 o
8 S i N
| §om
B H

* % L
v 8 002
FYd
0.04

02 04 06 08 1
Relatve dimension (L)

(2) (b)

Fig. 5. (a) Models of rectangular plate resting on viscoelastic foundation
under a moving vehicle; (b) Deflection of middie line by CS-MIN3
(car at the middle of plate)

Fig. 5b shows the variation of the deflection of the plate along the middle line by
CS-MIN3 when the vehicle moves to the middle of the plate. The results show that the
deflections of the plate by 14 are considerably smaller than those of by L1. This hence
implies that it is necessary to transform the vehicle weight into the concentrated loads at
the wheels to ensure the accuracy the analyzed results.

Next, we conduct the parametric study to determine the effects of various param-
eters on the dynamic response of the plates on the viscoelastic foundation subjected to
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the moving vehicle. The variation of the deflection of the plate along the middle line by
CS-MIN3, together the scheme of load transformation L4, is examined. First, three various
damping coefficients are considered, ¢y = 0, ¢jo = 5 x 10% Ns/m? and ¢z =10 x 10°
Ns/m?, and the results are shown in Fig. 6a. It is observed that when the damping coef-
ficient increases, the deflection becomes smaller, as expected, and the shape of defiection
also changes significantly. Finally, four various velocities of the moving vehicle are con-
sidered, v; = 20 m/s, v, = 50 m/s, v3 = 80 m/s and v3 = 100 m/s, and the results are
shown in Fig. 6b. It is shown that when the velocity of moving vehicle becomes faster,
the deflection of the plate becomes smaller, as expected, and the shape of deflection also
changes significantly.

6. CONCLUSIONS

The paper presents an incorporation of the CS-MIN3 based on CO-type higher-order
shear deformation theory (HSDT) with damping-spring systems for dynamic analyses of
Mindlin plates on the visco-elastic foundation subjected to a moving vehicle. The Mindlin
plate-foundation system is modeled as a discretization of triangular plate elements sup-
ported by discrete springs and dashpots at the nodal points representing the viscoelastic
foundation. A two-step process for transforming the weight of a four-wheel vehicle into
loads at nodes of elements is presented. Through the present formulation and numerical
results, we can withdraw some advantages of CS-MIN3 as follows:

i) The proposed CS-MIN3 only uses three-node triangular elements that are much
easily generated automatically for complicated geometry domains.

ii) By using seven degrees of freedom at each vertex node, the CS-MIN3 using
CO-HSDT can be considered as an C'-HSDT continuity element.

iii) Due to vsing the gradient smoothing technique which can help soften the over-
stiff behavior in the MIN3, the proposed CS-MIN3 improves significantly the accuracy of

the numerical results.
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iv) The high accuracy and fast convergence of the proposed CS-MIN3 are verified
by comparing its numerice] solutions with those of others available numerical results (such
as MIN3, DSG3. MITC4).

v) Analyses of the effects of various parameters on the dynamic response of the
plates on the viscoelastic foundation subjected to the moving vehicle by the CS-MIN3
give the expected results.
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