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A b s t r a c t . This paper piesents an analytical approach to investigate the nonlinear buck­
ling of imperfect eccentrically stiffened functionally graded thin circular cyhndrical shells 
subjected to axial compression and surrounded by an elastic foundation. Based on the 
classical thin shell theory with the geometrical nonlinearity in von Karman-Donnell sense, 
initial geometrical imperfection, the smeared stiffeners technique and Pasternak's two-
parameter elastic foundation, the governing equations of eccentrically stiffened function­
ally graded cylindrical shells are derived. The functionally graded cylindrical shells are 
reinforced by homogeneous ring and stringer stiffener system on internal and (or) ex­
ternal surface. The resulting equations are solved hy the Galerkin method to obtain the 
explicit expression of static critical buckling load, post-buckling load-deflect ion curve 
and nonlinear dynamic motion equation. The nonlinear dynamic responses are found by 
using fourth order Runge-Kutta method. The dynamic critical buckling loads of shells 
are considered for step losiding of infinite duration and linear-time compression. The ob­
tained results show the effects of foundation, stiffeners and input factors on the nonlinear 
buckling behavior of these structures. 

Keywords: Static and dynamic buckling analysis, elastic foundation, stiffener, function­
ally graded material, stiffened circular cylindrical shell, critical buckling load 

1. INTRODUCTION 

In recent years, the mechanic behavior of functionally graded (FGM) cyhndrical shell 

attracts special attention of many authors. In static buckling analysis of FGM cylindrical 

shells without elastic foundation, many studies have been focused on the buckfing and post-

buckling of shells under mechanic and thermal loading. Shen [1-3] and Shen and Noda [4] 

presented the nonlinear postbuckhng of perfect and imperfect FGM cyhndrical thin shells 

under axial compression, radial pressure and combined axial and radial loads. Huang and 

Han [5-9] studied the buckling and postbuckling of un-stiffened FGM cylindrical shells 

mailto:hoainam.vu@utt.edu.vn


28 I a Hoai Nam, Nguyen Thi Phuong, Dao Huy Bich. Dao Van Dung 

under torsion load, axial compression, radial pressure, combined axial compression and 
radial pressure based on the Donnell shell theory and the nonhnear strain-displacement 
relations of large deformation. Shen [10] investigated the torsional buckling and postbuck­
ling of FGM cylindrical shells in thermal environments. The non-hnear static buckling of 
FGM conical shells which is more general than cyhndrical shells, were studied by Sofiyev 
|11, 12|. Zozulya and Zhang |13] studied the behavior of functionally graded axisymmetric 
cylindrical shells based on the high order theory. 

For dynamic buckling analysis of FGM cylindrical shells without elastic foundation, 
Darabi et al. [14] presented respectively linear and nonhnear parametric resonance anal­
yses for un-stiffened FGM cylindrical sheUs. Sofiyev and Schnack ]15] and Sofiyev [16[ 
obtained critical parameters for un-stiffened cylindrical thin shells under hnearly increas­
ing dynamic torsional loading and under a periodic axial impulsive loading by using the 
Galerkin technique together with Ritz type variation method. Sheng and Wang [17] pre­
sented the thermo-mechanical vibration analysis of FGM shell with flowing fluid. Sofiyev 
]18-21] and Deniz and Sofiyev [22] were investigated the vibration and dynamic instability 
of FGM conical shells. Hong [23] studied thermal vibration of magnetostrictive FGM cyhn­
drical shells. Huang and Han [24| presented the nonhnear dynamic buckling problems of 
un-stiffened functionally graded cylindrical shells subjected to time-dependent axial load 
by using the Budiansky-Roth dynamic buckling criterion [25]. Various effects of the inho-
mogeneous parameter, loading speed, dimension parameters; environmental temperature 
rise and initial geometrical imperfection on nonUnear dynamic buckling were discussed. 

For FGM cylindrical sheU surrounded by an elastic foundation, the postbuckhng of 
shear deformable FGM cylindrical shells surrounded by an elastic medium was studied 
by Shen [26[. Shen et al. [27] investigated postbuckling of internal pressure loaded FGM 
cylindrical shells surrounded by an elastic medium. Bagherizadeh et al. [28] investigated 
mechanical buckling of FGM cylindrical shells surrounded by Pasternak's elastic founda­
tion. Sofiyev [29] analyzed the buckling of FGM circular shells under combined loads and 
resting on the Pasternak's elastic foundation. Torsional vibration and stability of function­
ally graded orthotropic cyhndrical shells on elastic foundations is presented by Najafov 
et al. [30]. For the FGM conical shell-general case of FGM cylindrical shells, mechanic 
behavior of shell on elastic foundation was studied in [31-33]. 

In engineering structures, the reinforcement by stiffener system provides the benefit 
of added load carrying capability with a relatively small additional weight. Thus study on 
nonlinear static and dynamic behavior of theses structures are significant practical prob­
lem. However, up to date, the investigation on this field has received comparatively httle 
attention. Recently Najafizadeh et al. [34[ have studied linear static buckling of FGM 
axially loaded cylindrical sheU reinforced by ring and stringer FGM stiffeners. Bich et al. 
[35-38] have investigated the nonhnear static and dynamic analysis of FGM plates, cylin­
drical panels, shallow shells and circular cylindrical shells with eccentrically homogeneous 
stiffener system. Dung and Hoa ]39, 40| presented an analytical study of nonlinear static 
buckling and post-buckling analysis of eccentrically stiffened functionally graded circu­
lar cyhndrical shells under external pressure and torsional load with FGM stiffeners and 
approximate three-term solution of deflection taking into account the nonlinear buckling 
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shape. Dung et al. [41] studied the instability of eccentrically stiffened functionally graded 
truncated conical shells under mechanical loads. 

This paper investigates the nonlinear behavior of ES-FGM cyhndrical shells sur­
rounded by an elastic foundation by an anah'tical approach. The nonlinear governing 
equations of eccentricafly stiffened FGM circular cylindrical shells surrounded by an elas­
tic foundation are derived based on the classical shell theory with the nonlinear strain-
displacement relation of large deflection, the smeared stiffeners technique and two-parameter 
elastic fomidation Pasternak. By using the Galerkin method, the closed-form relation of 
static critical buckling load and load-deflection postbuckling curves are obtained. Nu­
merical nonlinear dynamic responses are found from Runge-Kutta method. The dj-namic 
budding loads of shells under step loading of infinite duration are found correspondingly 
to the load value of sudden jump in the average deflection and those of shells under 
linear-time compression are investigated according to Budiansky-Roth criterion. The re­
sults show that the foundation, stiffener, volume-fractions index and initial imperfection 
strongly influence to the behavior of shells. 

2. ECCENTRICALLY STIFFENED FGM (ES-FGM) CIRCULAR 
CYLINDRICAL SHELLS SURROUNDED BY 

A N ELASTIC FOUNDATION 

2.1. Functionally graded material 

By applying a simple power law distribution, the volume fractions of metal and 
ceramic are obtained as follows 

K» + K = 1, 

K^K(,.(?^y-
where h is thickness of shell; k>0 is volume-fraction index; z is thickness coordinate and 
varies from —h/2 to h/2: the subscripts m and c refer to metal and ceramic constituents 
respectively. According to the mentioned law, Young modulus and mass density can be 
obtained in expressions 

E{z) = EmVm + EcVc = -E^ + ( £ . - £ ^ ) ^ ^ 

, f2z + h\ 
p{z) = pr,ym + PcVc ^Pm^ {Pc " Pm) [-^f^) 

( 1 ) 

Poissons's ratio u is assumed to be constant. 

2.2. Governing equations 

Consider a FGM thin circular cylindrical shell with length L, mean radius R (Fig. 1). 
This shell is assmned to be reinforced by closely spaced (Najafizadeh et al. [34]: Brush and 
Almroth [42]; Reddy and Starnes [43]) homogeneous ring and stringer stiffener systems (see 
Fig. I) . The shefl is surrounded by a Pasternak's two-parameter elastic foimdation with 
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Ki (N/m^) is Winkler foundation modulus and K2 (N/m) is the shear layer foundation 
stiffness of Pasternak model. 

,--S 

J L 
W/////f////M 

Fig. 1. Geometry and coordmate system of an eccentrically stiffened cylindncal 
shell surrounded by an elastic foundation 

The origin of coordinate locates on the middle plane and at the left end of the shell, 
x,y (y = R9) and z axes are in the axial, circumferential, and inward radial directions, 
respectively. 

This paper assume that stiffener is pure-ceramic if it is located at ceramic-rich side 
and is pure-metal if is located at metal-rich side, such FGM stiffened circular cylindrical 
shells provide continuity within shell and stiffeners and can be easier manufactured. Based 
the von Karman nonhnear strain-displacement relations (Brush and Almroth [42]), the 
strain components at the middle plane of shells are obtained by 

du 11 

''di~^2^ 

' w l / 5 i y \ 
''~R'^'2\'d^) 

dx dx ' 

dwdwo 

dy dy ' 
du^ dv^ dwdw dw dwQ dw dw^ 

' dy dx^'d^'d^^ a y " a 7 " ^ ' d ^ ^ ' 

(2) 

dxdy' ^^ " Sa?'^" " S^'^^'" = 
where u = M(3:,!/), V = v{x,y) and w = m(x,!/) are displacements along x.y and z 
axes, respectively, and Xi, Xy, Xx, are the changes of curvatures and twist of sheU, re­
spectively, and Wo = wo (x, y) denotes initial imperfection of sheU, which is very smaU 
compared with the sheU dimensions, but may be compared with the sheU waU thick­
ness. The strains across the sheU thickness at a distance z from the mid-surface are 
given by 

Ei = 4 - ZXi, 

'V = 4 " ^XB. (3) 
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From Eq. (2) the strains must be relative in the deformation compatibifity equation 

(4) 
dy^ S I ' 8xdy R 8x^ ^ \axdy'*'OxBy) 

d^w S'liio^ f d^w ^ d^wo^^ oWa 
\ dx"^ dx^ ) \ dy^ dy^ ) ' 

Hooke's stress-strain relation is applied for the shell 

^ f - I ^ ( - - e „ ) , < . ^ ( e „ . . . . ) , < ; ^ ^ . . . (5) 

and for stiffeners 
< = £ ,£ , , a'-y^ErEy, (6) 

where Eg, E^ are Young's modulus of stringer and ring stiffeners, respectively. 
The force and moment of an un-stiffened FGM circular cyhndrical shell can be 

determined by 

{{N^,Ny,N^y),{M,,My,M,y)'\= f {a,„(Xy,a,y}{l,z)dz. (7) 

-h/2 

According to the smeared stiffeners technique and omitting the twist of stiffeners, 
the expressions for force and moment resultants are expressed in the form 

N^ =Un + ^ ) 4 + ^ 1 2 ^ - (Bn + C J Xx - B12X., 

N, = Auel + (A,2 + ^ ) 4 - BuXx - (^22 + a ) X», 

A ' J , = Am7°g - 2BesXx„ 

M , = (Bii -^- C.) 4 -I- B124 -(DU+ ^ j Xx - DnXg, 

Mg = Biiel + (B22 + a) el - D^Xx - (022 + ^ ) Xg, 

Mxg = 5667°, - WeeXx,, 

(8) 

(9) 

where Ai., Bi., Dij {i.j ^ 1, 2,6) are extensional, couphng and bending stiffness of the un-
stiffened FGM cyhndrical shell. 

El , £ ,1 ' , £1 
-4ii =^22 = i 3 i ? > ^ i 2 = I T T ; ? " * * - j f T w ' 

Bn = -B22 = Y ^ , Bn = ^ , -866 = 2jTT^y (1°' 

n n ^^ n - '^'^ n - ^^ 
•l-„2'"l' l _ ^ 2 ' - » 2(1 + 1')' 

file:///axdy
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„, „„ , (Ec - Em) kh? 

^' = l.^" + i m - j " ' ^̂  = 2(̂  + i)(;fe+2)' 

^' = [if + '^' " -̂ "'' (fcTs " /fcT2 + 4* -f 4 

_ hs+h _ hr + h 

^̂  = — ^ , 2 r = — 2 — . 
where coupling parameters Cs and Cr are negative for outside stiffeners and positive for 
inside ones. The spacings of the stringer and ring stiffeners are denoted by Ss and ST 
respectively. The quantities As, A,, are cross-section areas of stiffeners and Is,Ir,Zs,Zr 
are second moments of cross section areas and eccentricities of stiffeners with respect to 
the middle surface of shell, respectively. The width and thickness of the stringer and ring 
stiffeners are denoted by dg, hs and dr, h^ respectively. Young modulus of stiffeners £̂ 5, Er 
take the values, Em, if the full metal stiffeners are put at the metal-rich side of the shell 
and conversely, and E^ if the full ceramic ones are put at the ceramic-rich side. 

From the constitutive relations (8), one can write inversely 

4 = Al^N, - Al^Ny + Blyx. + Bl^Xy. 

4 = ^ii^y - ^u^- + Blix. + Bl^Xy. (12) 

lly = Al^ + 2Bl^X^y, 

.^ I {^ EsAA , , An , 1 / E.A, 

^" = A i^"+-^)'^:'= i^'^-= A (-*-+ i 7 
Ĵe = f,A^(^.i + ^ ) ( ^ , , + ^ 

-^66 V S. / V »r ^ 
B'u = ^22 (Bu + C.) - AI2B1,, Bi, = AJi (B22 +C,)- A ; , B I 2 , ' ^ ^ ' 
Bi*2 = Ai^Bi, - AI2 (B22 + a ) , BJi = ^ ; ,Bi2 - A\2 (Bn + C,), 

D. Bee 
Bee = -7—, 

^66 

Substituting Eq. (12) into Eq. (9) leads to 

Mx = Bt,N, + Bi,N, - Dtax - DI2X,, 

Mg = Bl,N, + BI,N, - DiiXx - Dl^Xv, (14) 

Mxg = BiM„ - 2DLxx„. 



Nonlinear static and dynamic buckling of eccentrically stiffened functionally . 

Dt^ = D n + ^ - (Bu + Cs) Bn " BuB^,, 

D|2=D22 + — - 5 1 2 ^ ^ 2 - ( B 2 2 + a ) BI2, 

-̂ 12 = ^12 - (-̂ 11 + Cs) BI2 - B12B22, 

•^21 = -̂ 12 - -^12511 - (^22 + Cr) B21, 

^ 6 6 = -^66 — ^66^66-

The nonhnear equations of motion of a cylindrical thin shell based on the classical 
3 u 0 V 

sheU theory and the assumption u < w and v <^w, Piynr ~* ^- P^Jffi ~^ ^ t-'-'̂ ' ^^' '̂*1 

are given in Refs. [5, 15] 

dx dy 
9Nxg , ON, _ ^^ 

dx dy 
d'^M, dHl^ 3HI, 
3x2 dxdy dy-

(16) 

+ ^ S ^ + ^ ^ + ^ ' ( a x 2 + 9x2 j + ^'^-y [g^gy + g^^gy) + 

^ »̂ ( a^ + ^ j + B^. - ^1-+ ̂ < a? + s7 j = "• aF' 

''/2 

= / p(.)d.+p.t ̂  "̂ t = (̂ " ^ ^ S T ) "+"-t+^'t' (") 

p^ = p^ ; Pr = Pm for metal stiffeners, 

p^ = p^; pr = Pc for ceramic stiffeners. 

Considering the first two of Eqs, (16), a stress function tp may be defined as 

" ' - dy^' '~ dx^''" dxdy- ^ ' 

Substituting Eq. (12) into the compatibility Eq. (4) and Eq. (14) into the third of 
Eq. (16), taking into account Eqs. (2) and (18) neglecting small terms of higher second 
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order with respect to WQ, yields 

d*ip , a V . . 9 V D. 9*w 
^ l l j ^ + (-466 - 2A2) g ^ 5 a ^ +^22 a ^ + B2I g ^ + 

+ W i + B 2 * 2 - 2 B e ' a ) g j 5 g ^ - l B i 2 g ^ - l j j g ; j - (19) 

~'^a^a3hi^ ax^ ay^ ay^ dx' 

-(Bii+Bj2-2Be'e)g^2g^ 
a y _R. 5 V _ l 3 V _ s V / s ^ s ^ A 
i2a!/2 1̂2 gy, ^ â 2 ai/' >̂  ax' ax^) 

„ a v /' a"" a'woA aV /a^"- , a'w„\ , ^ ^ /a „ „ a t«^ 

(20) 
Eqs. (19) and (20) are a nonlinear equation system in terms of two dependent 

unknowns ui and tp. They are used to investigate the static and dynamic characteristics of 
imperfect ES-FGM circular cyhndrical shells surrounded by an elastic foundation. 

3. N O N L I N E A R STATIC A N D D Y N A M I C B U C K L I N G ANALYSIS 

Suppose that an imperfect ES-FGM cylindrical shell surrounded by an elastic foun­
dation is simply supported and subjected to axial compressive load fo = TQ,h where 
0̂ = ^o(*) is the average axial stress on the shell's end sections, positive when the shells 

subjected to axial compression (in N/m^). Thus, the boundary conditions considered in 
the current study are 

w = 0, A4 = 0, N^ = -roh, N^y = 0, at x = 0; L. (21) 

The deflection of shell is satisfying the mentioned condition (21) is represented by 

w = f{t) sin - — - sm -f-, (22) 
L it 

where / (t) is time dependent total amplitude, m is number of half waves in axial direction 
and n is number of wave in circumferential direction. 

The initial-imperfection WQ is assumed to be the same form of the deflection w as 

Wo = /o sm —— sm - ^ , (23) 
-L H 

where /o is the known imperfect amplitude. 
Substituting Eqs. (22) and (23) into Eq. (19) and solving obtained equation for 

unknown (p lead to 
„ „„, 2TO7rx 2ny . rnvrx . ny , y^ toA\ 

(p = ipi cos -J— + (p2 cos -^~<P3 sm - — - sin - ^ - r o / i y , (24) 
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where denote 

^ ' - 3 2 ; ^ ^ ( ^ + 2 ^ ° ) ' 

^'-WAiJ^f+'f^^-
[Bj'im'lTr* 1- (BJ, + BJj - 255^) rn'riVX' + Bt2n*X'' - ^^mV] 

'^^ " Al^m'^-n* + (Ale - 2A;2)m2re2j-2A2 + A^^n^X* ^' 

f = f{t),>. = j . 

Substituting the expressions (22-24) into Eq. (20) and applying Galerkin method to 
the resulting equation yield 

piL*/ + ( f l + ^ ) / -f G / (/ + A) (/ + 2/0) 

- L'm'Tr'hra ( / -1 fo) + L'KiJ -H L' (mV + n'X') Kif = 0, 
(26) 

where 

A = A t i m V + (A'ee - 2^1*2) m^nV^A^ + A^^^'^X^ 

L 2 ! 

- - m r 

D = DIim-'TT* 1- (DI2 + Dii + iD^e) m'n'n'X' + Dj^n'X*, 

B = BJiTjiV* + (Bi'i + B2*2 - 2Bj*j) mVn'X' + Bl^n'X^ -
(27) 

\WAli I6AI2J' 

Introducing parameters 

fl=^,B = | , i = ^ f t , G = f , e = ( , & = ^ , (28) 
h-^ h h h n 

the non-dimension form of Eq. (26) is written as 

- ( ' ^ ] ' m V ( f + 5 „ ) r o - ^ ^ X l ? - ^ ^ ( m V + n^A=)if2? = 0. 

(29) 

3.1. Static buckling and post-buckling analysis 

Omitting the term of inertia, Eq. (29) leads to 

I'' (n B^A ; L'Ki + {m'n' + n-'X-')K2 { h' p , , , , , , , 

(30) 

file:///WAli
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Putting {o = 0 in Eq. (30), yields 

By taking ^ ^ 0 the buckling stress of perfect ES-FGM cyhndrical shells can be 

determined from Eq. (31) 

h? ( B^\^ L ^ K i - F ( m V + n ^ A ^ ) J ^ 2 , 3 . . 

The static critical buckfing stress of perfect ES-FGM cyhndrical shells are deter­
mined by condition r̂ r̂ ^ minrs6„ vs. {m,n)^ and the static post-buckfing curves of per­
fect and imperfect shells may be traced by using Eqs. (30 and 31) with the same buckling 
mode shape of critical buckfing stress for evaluate static behavior. 
3.2. Dynamic buckling analysis 

The dynamic buckling analysis wiU be considered for two load types. 
Firstly, the axial compression linearly varying on time ro = ct in which c is a loading 

speed. By using the Runge-Kutta method, the dynamic responses of ES-FGM cylindrical 
shells can be determined from Eq, (29). The dynamic critical time t^r can be obtained by 
Budiansky-Roth criterion (Budiansky and Roth [25]): For large value of loading speed, the 
amplitude-time curve of obtained displacement response increases sharply and this curve 
obtain a maximum by passing from the slope point and at the corresponding time t = tcr 
the stability loss occurs. Here, icr is called critical time and the corresponding dynamic 
critical buckling stress rdcr = dcr and dynamic coefficient r^r = —^ • 

Secondly, the shefl is conducted for step loading of infinite duration ro = const, Vi. 
The dynamic critical load is found based on the criterion mentioned by Ganapathi [45]. 
The load corresponding to a sudden jump in the maximum average deflection in the time 
history of the shell is taken as the critical buckling step load. 

4. NUMERICAL RESULTS 

To validate the present approach, two comparisons on critical buckling load are 
considered. Firstly, Tab, 1 shows the dynamic buckling of perfect un-stiffened FGM cylin­
drical shells without foundation under linear-time compression, which was also analyzed by 
Huang and Han [24] by using classical thin shell theory and applying the energy method. 
Secondly, the present critical static buckling load (see Tab. 2) of stiffened homogeneous 
cylindrical shells without foundation under axial compression is compared with results in 
the monograph of Brush and Almroth [42] (based on equations in page 180) where the 
smeared stiffeners technique, equilibrium path and classical shell theory are used. As can 
be seen, the very good agreements are obtained in two comparisons. 

To illustrate the proposed approach of eccentrically stiffened FGM cyhndrical shells 
surrounded by an elastic foundation, the stiffened and un-stiffened FGM cylindrical shells 
are considered with i? = 0.5 m, L = 0.75 m, R/h = 250. The combination of materials 
consists of Aluminum E„,=7x 10^° N/m^ p ^ = 2702 kg/m^ and Alumina B^ = 38 x 10^° 
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N/m^, Pc = 3800 kg/m^. The compressive stress of dynamic analysis is taken to be ro = 
10^°t. The Poisson's ratio v is chosen to be 0.3. The height of stiffeners is equal to 0.005 m, 
its width 0.002 m. The material properties are Eg = E^ and E^. = E^, p^ = Pc and Pr = Pc 
with internal stringer stiffeners and internal ring stiffeners; Es = Em, Er ~ Ej^, ps ^ Pm 
and Pr = pm with external stringer stiffeners and external ring stiffeners, respectively. The 
stiffener system includes 15 ring stiffeners and 63 stringer stiffeners regularly distributed 
in the axial and circumferential directions, respectively. 

Table 1. Comparison of dynamic critical buckhng stress r^cr (MPa) and dynamic 
coefficient r^r — 7 ^ of perfect un-stiffened FGM cylindrical 

shells under linear-time compression 

Present 
rjcr(m.n) 1 T „ = 7 ^ 

Huang and Han [24] 
TdcT (m. n) 1 Tcr = 7 ^ 

R/h = 500, L/R = 2, c = 100 MPa/s 
A = 0.2 
* = 1.0 
it = 5.0 

194,94(2,11) 
169,94(2,11) 
149,98(2,11) 

1.030 
1.034 
1.041 

194,94(2,11) 
169,94(2,11) 
150,25(2,11) 

1.030 
1.034 
1.040 

R/h = 500,L/R= 2,k = 0.5 
c = 100 MPa/s 
c = 50 MPa/s 
c = 10 MPa/s 

181,68(2,11) 
179,38(2,11) 
177,02(2,11) 

1.032 
1.019 
1.006 

181,67(2,11) 
179,37(2,11) 
177,97(1,8) 

1.032 
1.019 
1.009 

L/R = 2, * = 0.2, c = 100 MPa/s 
R/h=800 
R/h=600 
R/h =400 

124,67(2,12) 
162,18(3,14) 
239,56(5,15) 

1.049 
1.026 
1.013 

124,91(2,12) 
162,25(3,14) 
239,18(5,15) 

1.051 
1.027 
1.011 

Table 2. Comparison of static critical buckling load per unit length f,^^r — r^c 
(xlO^ N / m ) of perfect stiffened homogeneous cylindrical 

shells undei' axial compression 

j Present 

50 rings, 50 stringers, L = 
dr =d. 

Brush and Almroth [42] Difference (%) 
= 1 m, B = 0.5 m, £ = 7 X 10'° K / m',v = 0.3, 
= 0.0025 m, hr=h. = 0.01 m. 

Internal stiffeners 

R/h = 100 
R/h = 200 
R/h = 500 

3.0725(6,7) 
1.4147(6,7) 

0.6924(5,6) 

3.0906(6,7) 
1.4328(6,7) 
0.7057(5,6) 

0.59 
1.28 
1.92 

External stiffeners 

R/h =100 
R/h = 200 

R/h= 500 

3,9529(9,3) 
2.1410(9,4) 

1.2764(6,6) 

3.9551(9,2) 
2.1469(9,4) 

1.2897(6,6) 

0.06 
0.28 
1.04 
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In Figs. 2-4, the static post-buckhng curves of un-stiffened and stiffened shells with 
elastic foundation are traced by Eqs. (30) and (31) of perfect (̂ o = 0) and imperfect 
(̂ 0 = 0,1) cases versus three different values of volume fraction index k (= 0.2,1,5). As 
can be seen, the post-buckling curves are lower with increasing values of k. Furthermore, 
the post-buckiing curves of imperfect shells are lower than those of perfect shells when 
deflection is smafl and post-buckfing curves of imperfect shells is higher than that of perfect 
shells when the deflection is large. 

Fig. 2. Effect of k on the static postbuckling 
of un-stiffened shells {K\^by. 10* N /m^ and 

K2 - 10^ N / m ) 

Fig. 3. Effect of k on the static postbuckling 
of external ring and stringer stiffened shells 
(X , = 5 X I0« N / m ^ and K2 = 10^ N/m) 

By using the fourth order Runge-Kutta method, the Eq. (29) is solved to obtain 
the dynamic responses of perfect (̂ 0 = 0) shells under step loading of infinite duration. 
Dynamic responses of external stiffened shell are presented in Fig. 5. As can be seen, there 
is a sudden jump in the value of the average deflection when the axial compression reaches 
the critical value ro = 9,356 x 10^ N/m^. 
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2 k=l ^ 
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0 0; \ o / " 0 15 \ 0 

V v 
Fig. 4. Effect of k on the static postbuckling Ftg. 5. Dynamic response of external rings and 
of internal ring and stringer stiffened shells stringers stiffened shell under step loading of 
(ifi = 5 X 10' N/m' and K^ = 10= N/m) infinite dmation (ifi = 5 X 10* N/m' and 

K2 = 10= N/m) 

Figs. 6-8 show the effect of k on the dynamic responses of perfect and imperfect 
un-stiffened and stiffened shells under linear-time compression. These figures also show 
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that there is no definite point of instability as in static analysis. Rather, there is a region 
of instability where the slope of ^ vs t curve increases rapidly for perfect shell. According 
to the Budiansky-Roth criterion, the critical time tcr can be taken as an intermediate value 
of this region. This figures also shows that a sudden jump in the value of defiection occurs 
earlier when k increases and it corresponds a smaller dynamic buckling load. 
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F%g. 6. Effect of k on the dynamic responses of 
un-stiffened shells under linear-time 

compression (ifj - 5 x 10* N /m^ 
and K2 - 10^ N / m ) 

Fig. 7. Effect of k on the dynamic responses 
of external ring and stringer stiffened shells 

under linear-time compression {K\ = 5 x 10* 
N / m * and K2 - 10^ N / m ) 

Fig. 8. Effect of fc on the dynamic responses of internal ring and stringer stiffened shells 
xmder linear-time compression (/iTi ^ 5 x 10* N/m^ and K^ ^ 10^ N / m ) 

Tab. 3 shows the critical static and dynamic buckling stresses of stiffened and un-
stiffened cylindrical shells with elastic foundation (/fi = 5 x 10^ N/ra^ and K2 = 10^ 
N/m) vs. four different values of volume fraction index fc = (0.2,1, 5.10). With the same 
input parameters, the effectiveness of stiffeners are obviously proven; the critical buckling 
stress of stiffened shell is greater than one of un-stiffened shell. Tab. 3 also shows that the 
dynamic critical stress decreases with the increase of the volume fraction index k and the 
buckling modes (m, n) seem smaller for stiffened shells. The critical parameter TCV is larger 
than I, it denotes that the dynamic critical buckling stress of linear time compression case 



40 Vu Hoai Nam, Nguyen Thi Phuong, Dao Huy Bich, Dao Van Dung 

is larger than static buckhng stress. The largest value of and T „ is equal to 1.072 for 
the un-stiffened sheU with * = 10 and the smallest T „ = 1.029 corresponds to external 
rings and stringers stiffened shell with *; = 0.2. The dynamic critical buckling compression 
of step loading of infinite duration is approximately equal to the static critical buckling 
compression (hke a remark given by Bich et al. (38| for ES-FGM cylindrical shell without 
foundation). 

Table 3. Effect of k on critical static and dynamic buckling stress ro (xlO* N/ra^) 

k 1 0.2 1 5 10 

Unstiffened 

Static 

Dynamic ro = const 

Dynamic ro = ct 

Tcr 

8.968(15,1) 

8.968(15,1) 

9.242(15,1) 

1.031 

6.153(16,1) 

6.154(15,1) 

6.494(15,1) 

1.055 

4.175(15,1) 

4.175(15,1) 

4.447(15,1) 

1.065 

3.776(15,1) 

3.776(15,1) 

4.049(15,1) 

1.072 

External Rings and Stringers 

Static 

Dynamic ro = const 

Dynamic ro = ct 

Tcr 

11.916(12,6) 

11.917(12,6) 

12.256(12,6) 

1.029 

Internal Rings and Stringers 

Static 

Dynamic rg = const 

Dynamic ro = ct 

Tcr 

16.696(7,11) 

16.696(7,11) 

17.259(7,11) 

1.034 

9.356(11,9) 

9.357(11,9) 

9.709(11,9) 

1.038 

13.331(7,11) 

13.332(7,11) 

13 830(7,11) 

1.037 

7.138(11,3) 

7.138(11,3) 

7.490(11,3) 

1.049 

10 414(7,10) 

10.415(7,10) 

10.904(7,10) 

1.047 

6.528(11,1) 

6.528(11,1) 

6.908(11,1) 

1.058 

9.831(7,10) 

9.831(7,10) 

10.323(7,10) 

1.050 

Tab. 4 shows effect of clastic foundation parameters on critical static and dynamic 
buckling stress for stiffened and un-stiffened shells with and without foundation. Clearly, 
the critical buckling load of stiffened sheUs is larger than one of un-stiffened sheUs and 
critical buckling load of internal stiffened shells is the largest. In addition, the critical 
static and dynamic loads of shells increase when the values of foundation parameters Ki 
and K2 increase. It seems that effect of foundation of stiffened sheUs is larger than one of 
un-stiffened shells and it attains the largest value with internal stiffened shells. 

Effects of the type and position of stiffeners on the nonlinear critical buckhng stress 
of ES-FGM without and with elastic foundation {Ki = 5 x 10^ N'/m' and K2 = 10= N/m) 
are given in Tab. 5. The obtained results show that the ring or stringer stiffeners lightly 
influence to the critical buckling stress of shells. Conversely, the combination of rin" and 
stringer stiffeners has a considerable effect on the stability of shell. Especially, the critical 
buckling stress of internal rings and stringers stiffened shell is greatest and' the critical 
buckling stress of internal rings stiffened sheU is smallest. For ES-FGM cylindrical shell 
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with elastic foundation, it seems that effect of stringer stiffeners is more considerable than 
one of ring stiffeners. 

Table 4. Effect of elastic foundation parameters on critical static and dynamic 
buckling stress TQ (xlO* N/m^) 

(N/m^) 

0 

K2 

(N/m) 

0 

Un-stiffened 

Static 

4.998(7,15) 

Dynamic 

5.310(7,15) 

External stiffeners 

Static 

7.089(6,13) 

Dynamic 

7.636(6,13) 

Internal stiffened 

Static 

8.996(5.11) 

Dynamic 

9.6.32(5,11) 

5.10' 

0 

5.10* 

10 ' 

5.10= 

5 071(14,4) 

5.325(14,3) 

5.576(14,1) 

7.578(14,1) 

5.368(14,4) 

5.624(14,3) 

5.860(14,1) 

7.860(14,1) 

7.385(8,13) 

7.780(8,12) 

8.138(9,11) 

10.471(11,5) 

7.850(8,13) 

8.235(8,12) 

8.553(9,11) 

10 835(11,5) 

9.512(6,11) 

9.954(6,11) 

10.395(6,11) 

13.751(6,10) 

10.096(6,11) 

10.510(6,11) 

10.953(6,11) 

14 308(6,10) 

5 10 ' 

0 

5.10" 

10= 

5.10» 

5.653(15,1) 

5.703(15,1) 

6.153(15,1) 

8.155(15.1) 

5.928(15,1) 

6 175(15,1) 

6.494(15,1) 

8.431(15,1) 

8.779(11,9) 

9.067(11,9) 

9.356(11,9) 

11.389(12,1) 

9.152(11.9) 

9.424(11,9) 

9 709(11,9) 

11.756(12.1) 

12 549(7,11) 

12 940(7,11) 

13.331(7,11) 

16.276(8,11) 

13.112(7,11) 

13.383(7,11) 

13.830(7,11) 

16.726(8,11) 

5.10' 

0 

5.10* 

10= 

5.10= 

9.718(20,1) 

9.968(20,1) 

10.218(20,1) 

12.219(20,1) 

9.941(20,1) 

10.201(20,1) 

10.4367(20,1) 

12.437(20,1) 

15.373(16,1) 

15.624(16,1) 

15.874(16,1) 

17.876(16,1) 

15.639(16,1) 

15.893(16,1) 

16.159(16,1) 

18.158(16,1) 

26.153(12,12) 

26 454(12,11) 

26.752(12,11) 

29.135(12,11) 

26.498(12,12) 

26.798(12,11) 

27.129(12,11) 

29.467(12,11) 

Table 5. Effects of nmnber, type and position of stiffeners on critical static and 
dynamic buckling stress ro (xIO^ N/m^) 

Unst i f fened 

E R 

I R 

E S 

IS 

I R a n d IS 

E R a n d E S 

I R a n d E S 

E R a n d IS 

W i t h o u t e last ic founda t ion 

S t a t i c 

4 .998(7,15) 

5.085(14,1) 

5 .053(13,10) 

5.205(1,8) 

5 .099(2,10) 

8 .996(5,11) 

7.089(6,13) 

7.072(9,11) 

7 .077(3,11) 

D y n a m i c (ro = ct) 

5.310(7,15) 

5.379(14,1) 

5 .378(13,10) 

7.028(1,8) 

6.301(2,10) 

9 .632(5,11) 

7.636(6,13) 

7.523(9,11) 

7.966(3,11) 

W i t h elast ic founda t ion 

S t a t i c 

6.153(15,1) 

6.225(15,1) 

6.370(15,8) 

9.078(10,12) 

11.941(7,15) 

13.331(7,11) 

9 .356(11,9) 

9 .156(11,10) 

12.797(7,13) 

D y n a m i c (ro = ct) 

6.494(15,1) 

6.545(15,1) 

6.657(15,8) 

9.466(10,12) 

12.426(7,15) 

13.830(7,11) 

9.709(11,9) 

9.528(11,10) 

13.297(7,13) 

where: ER-Extemal rings, IR-Intemal rings, ES-Extemal stringers, IS-Intemal stringers 
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Figs. 9-11 show the effects of foundation parameters on the static postbuckling of 
un-stiffened and stiffened shells. The results show that the postbuckling curves of shefl 
with foundation is upper than one of without foundation shells. 

Figs, 12 and 13 show effects of foundation parameters Ki and K2 on the static 
postbuckling of external stiffened shells. These examples show that for various values of 
K2, increasing tendency of postbuckhng curve is quite similar (Fig, 12). Conversely, the 
unsimflar tendency is obtained for various values of Ki. There is a small difference between 
curves as ^ is-small. In contrast, this difference becomes considerable when ^ ratio to be 
larger. 

PofKt 
- - t a p a f e d ^^ 

/"^^"""'^ 
t 2 Ki=3 

-lO^Nm^ 
• lO^N'm^ 

1 3Ki=0,K,=0 

\^^ ^ 
^̂ - ^̂-""̂^ 
-^r^^"^^^ 

En=10*N-'ni 
1̂ 2=0 

Fig. 9. Effect of foimdation on the static 
postbuckling of un-stiffened FGM 

cylindrical shell 

Fig. 10. Effect of foundation on the static 
postbuckling of internal stiffened FGM 

cylindrical shell 

Fig. 11. Effect of foundation on the static 
postbuckling of external stiffened FGM 

cylindrical shell 

Fig. 12. Effect of foundation parameter K2 on 
the static postbuckling of perfect external 

stiffened FGM cylindrical sheU 

Figs. 14-16 show effect of foundation on the dynamic response of external stiffened 
shells. Clearly, the maximal amplitude of dynamic response of instabihty region of with­
out foundation sheU is larger than one of with foundation shell and it decreases when 
foundation parameters increase. 

Finally, Figs. 17 and 18 show effect of foundation parameter Ki and K2 on the dy­
namic response of external stiffened shells. The obtained results show the small difference 
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Fig. 13. Effect of foimdation parameter Ki on 
the static postbuckhng of perfect external 

stiffened FGM cylindrical shell 

Fig. 14. Effect of foundation on the dynamic 
response of un-stiffened FGM cylindrical shell 
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Fig. 15. Effect of foundation on the dynamic 
response of internal stiffened FGM 

cylindrical shell 

Fig. 16. Effect of fomidation on the dynamic 
response of external stiffened FGM 

cylindrical shell 
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\g. 17. Effect of foundation parameter K2 on 
the dynamic response of perfect external 

stiffened FGM cylindrical shell 

Fig. 18. Effect of foundation parameter ifj on 
the dynamic response of perfect external 

stiffened F G M cylindrical shell 
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of maximal amplitude of dynamic response of instability region with various value of K2 
(Pig. 17) and the considerable difference is obtained with various value of Ki (Fig. 18). 

^. CONCLUSIONS 

This paper presentes an analytical approach on the global buckling and postbuck­
ling behavior of eccentrically stiffened functionally graded circular cylindrical thin shells 
reinforced by closely spaced stiffener system and surrounded by an elastic foundation 
based upon the classical shell theory, smeared stiffeners technique with von Karman-
Donnell nonhnear terms and two-parameter elastic foundation Pasternak. By using the 
Galerkin method the expficit expressions of static buckling compression, postbuckhng load-
deflection curve and nonlinear dynamic equation of ES-FGM circular cylindrical shells are 
obtained. The later is solved by using the Runge-Kutta method and the criteria for deter­
mining critical dynamic compressions are used. 

Some conclusions can be obtained: 
i). Foundation and stiffeners strongly enhance the static and dynamic stability and 

load-carrying capacity of FGM cylindrical shells. 
ii). Ring stiffeners lightly influence on the stability of shell. But effect of stringer 

stiffeners is considerable, especially for shell with elastic foundation. 
iii). For static postbuckling, the increasing tendency of postbuckling curve is quite 

similar when K2 varies. Conversely, the unsimilar tendency is obtained for various values of 
Ki. For dynamic response, the small difference of maximal amplitude of dynamic response 
of instability region with various value of K2 and the considerable difference is obtained 
with various values of Ki. 
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