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Abstract. The branch switch characteristics of coupled flutter are clarified by use of
Step-by-Step flutter analysis In the case of typical coupled flutter instability, the branch
switch characteristic from torsional branch to heaving branch is observed. In this pa-
pet. a rovised step-by-step analysis method 1s proposed and a calculating program using
MATLAB is build. Finally, the flutter behavior of the Cao Lanh Bridge. which is the
long bridge in Vietnam. is studied from tbe point of view of flutter in two-degrees of
freedom. namely torsional and heaving motion.
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1. INTRODUCTION

After total coltapse of Tacoma Narrow Bridge in USA. 1940 due to the flutter insta-
bility, the aerodynamic and aeroelastic phenomena have been focused on bridge structures.
Especially, the Flutter instability (known as aeroelastic instability) is closely related to
flexible long-span bridges, because it is a reason for structural catastrophe. The bridge
aeroelasticity implies for the flutter instability. It tends to be most concern on flexible
long-span bridges at high wind velocity in which the aeroelastic interaction between wind
and structure generates the so-called self-excited aeroelastic forces. The aeroelastic in-
stability, however, occurs relating to negative damping mechanism due to combination
between structural damping and aerodynamic one. Traditionally. two types of the flutter
instability have been classified based on characteristics of bridge’s modal participation at
instability state. Torsional flutter is the case that only torsional mode participates domi-
nantly to such critical state, whereas coupled flutter occurs when two torsional and heaving
modes simultaneously involve in.

In only last two decades of the 20" century, many large-span bridges have been
successfully built in the world. Further bridges are hinged on super long span and more
slender structures as the main tendency of research and development of bridge engineering
in the few coming decades. The longer, the more slender structures. however. also face
with many difficulties, especially in the dynamic, seismic and aerodynamic behaviors. It
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is widely agreed that the long-span bridges are very prone to the aerodynamic effects and
the wind-induced vibration. In recent years, a number of long cable-stayed bridges have
been built in Vietnam (My Thuan Bridge, Binh Bridge, Bai Chay Bridge, Can Tho Bridge,
Han River Bridge, Phu My Bridge, Cao Lanh Bridge, Rachmieu Bridge, ... ). Vietnam is
a country with a lot of wind and storm. Therefore, it is necessary to investigate the flutter
instability of long-span bridges.

Flutter problems can be approximately divided by analytical and experimental
methods and simulation techniques. The experimental approach is thanks to free vibra-
tion tests on 2D bridge sectional model in wind tunnel laboratory. Computational fluid
dynamics (CFD) technique has gained much development so far to become useful supple-
mental tools beside analytical and experimental methods and it is also predicted broadly
that such the CFD might replace wind tunnel tests in future; however, this technique still
has many limitations to cope with complexity of bridge sections and nature of 3D bridge
structures.

To solve 2DOF heaving-torsional motion equations, there are two powerful analytical
methods: so-called the complex eigenvalue method [1, 2] and the step-by-step method
[3-8]. 2DOF heaving-torsional motion system has been usually taken the cases of unit
structural length subjected to unit self-controlled forces into consideration. The 2DOF
heaving-torsional motion systems, moreover, can be known in sectional model tests in
wind tunnels.

This paper presents the application of the step-by-step method |3, 6] for calculating
the flutter instability of a long cable-stayed bridge, which have been built in Vietnam.

2. STEP-BY-STEP METHOD FOR 2 DOF HAVING-
TORSIONAL VIBRATION

The flutter motion equations of 2DOF heaving-torsional system (Fig. 1) can be
written as follows

mh(t) + cah(t) + knh(t) = Ly (1)
Ta(t) + ca(t) + kaa(t) = M, (2)

where: m, ¢y, k), are mass, damping coefficient and stiffness, respectively associated with
heaving motion. I, ¢,, ko are mass inertia moment, damping coefficient and stiffness,
respectively, associated with torsional motion. Ly, M, are self-controlled lift and moment.

The self-controlled forces Ly, M, can be determined by either of Theodorsen’s cic-
culation function or Scanlan’s flutter derivatives under frequency approach. The Scanlan’s
self-controlled forces have been applied for the flutter motion equations for various types
of cross sections thank to experimentally-determined flutter derivatives,

According to this approach, the self-controlled forces per unit span length can be
expressed as

1 o bt ... Ba
Ly = §,,U?B KH{(I)F + KH,([()—IJ5+I(7H3'(I()01 + [(ZH,;(K)% (3)
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Fig. 1. Mechanical model of the bridge deck

1 h :
Mo = 5pU°B? [K,«\;(K)v + I(A;(I()%+K’A5(I()o + 1(?4;(1()% (4)
where the nondimensional reduced frequency K is defined as
. Bw
K= 7‘” (5)
B is the width of the bridge deck, U is the uniforma approach velocity of the wind and w
is the circular frequency of oscillation. The eight real coefficients H; and A7 G =1...4)

are the flutter derivatives based on Scanlans approach.
Above Eqgs. (1), (2) can be rewritten in the standard form as follows

" . B? . B2 B3 53
b+ 2hwnh +wlh = /;—u,.—H,'h + "—u;H;h " %UFHQ'Q + /;Tui-Ha’a (6)

. pB? pB* pB! pB’ -
G+ 20wnd + g0 = Srwr Al + 7”4 h+ 7-r L+ S “FAje (7)

Step 1: In torsional system, harmonic torsional motion is assumed that
a=aqpsinwgt (8)
where ¢ is the amplitude of torsional motion and ¢ is the time.
& = apuF cos et = aguF Sin (.;Ft + g) 9)

Step 2: In heaving system, the heaving motion is generated by external forces caused by
the torsional motion, as forced vibration:
Substituting Eqs. (8) and (9) into Eq. (6). we have the differential equation of forced

heaving vibration
B? B3 B3
R+ |2¢uwn — idﬁ] + [uf - /;—mufrH;] h= p—y;H,o +— p -7 P Hia
(10)
»B? B3
o_

2gpe
—wrH;agsinwrt
o F T30

. T
wr Hyagwr siu (wFt + IE
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Rewriting Eq. (10) in the standard form
; oo, _PB L TN B oL
R+ 23wih + with = 2= Hiooupsm (wrt+ E) + L uh Hiaosinwrt
where
2 2

pB?
Wy = wh T o wiH}

G: = [atnon - 520 ;| /)
Solution of Eq. (11) consists of the following components
h=h+h +hy
(i) h is the total solution of free vibration equation
h+2Gwih +with =0

which takes a form .
h = hge~%tsin (wnt — @)

(€3))

(12)

(13)

(14)

(15)
(16)

Note that for large values of ¢, the homogeneous solution (16) approaches zero and

the total solution of Eq. (11) approaches the particular solution [9].
(¥) hy is the solution of forced vibration equation
P opeuih 4ty = PBY . ™
R+ 20 wih + with = EH;agw%- sin (wpl + 5)
It takes a form x
hy = hypsin (wpt + 5‘ — 9)

where
hip = 2"‘ |112|agur
V(@i - 0d)* + 42070}
sinf = Q(Kw,lurH
|H|\/ ~u) +4<.z 2,
2
cosf = ( “’F) H;

|H3] \/ (wi? ~ w}) *4(1:2“;2“’#“
For convenience, we rewrite Eq. (18) as follows
hy = hyosin (wrl — 8,) with 6, = 6 — g

(i2i) hy is the solution of forced vibration equation

. . pB
b+ 2Cwph + with = 2—pr300 sinwpt

We find solution of Eq. (22) in the following form

hy = hygsin(wrt — 0;)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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with
, Hla
hyo = rdle (24)
V(i - “-’F) +4Gw W}
sindy = 2jwiwr Hi
) - - — s
|H; \/(“’h2 — W)+ 4Gy 2“’?‘ (25)
cosby = (wi2 - wi) Hy

1w - w2)7 + 4G}
Thus, the solution of heaving motion equation can be expressed as
h = hypsin (wrt — 6y) + hoo sin (wet — 83)
h = hy + hy = hiowr cos (wrt — 6)) + hagwr cos (wrt — 8:)

Expanding h, h and noting that sinwpt = oio;coswpl -5 we obtain

agw’

h = hjosin(wpt — 6)) + hog sin (wrt — 62)
= hjosinwgtcosfy — nm coswptsind) + h;gsinuplcosﬁg — hgg coswetsin By

= hmfcosI?l - hlo sinf + hau—c0592 - ]120 sin By
g wF wF

h = hyowr cos (wrt — 01) + haowr cos (wpt —6a)
= hyjowr coswptcos 01 + hyowr sinwptsindy + /lmu[-‘ coswgtcos B + hygwr sinwrtsin by

o
= hmwp cosfy + hmwr— sinfy + hmw; cos by + hagwr—sinf,
wF WE ap

(26)
Step 3: In torsional system, the torsional motion is generated by the heaving motion, which
has a certain amplitude ratio and a certain phase difference, as free vibration

pB*
2B e+ P iasa 1)

pB?
ot a; h+ 2l o7

pB?
a+2(uw°a+w a= WmFA h+ o

Expanding the heaving-oriented forced excitation in right-hand side of Eq. (27), we get

(@) (ﬁ! 2
2] 2 £
pB* +iw A - m [(w,-A;|H5\cosol+wFA; |H3] cos 0,

£ wrAjh
21 21 (wp? —wF) +4¢; %Wy, w%‘

— wr [H3| Ajsin 0y — wr |Hj| Ajsin62)a + (wh A |H3|sin ) + whA] [H;[sin 60
+w |H3) A] cos by +wh [Hil A cosgg)a]
(28)
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For convenience, we use the following notations
o)t () ()
aQ (pB ) 0 2m wr 2m. wj,
1= 2 = . >
21 2 _ 22 .2 02 2 2

wy? - wi) + 4G Wy W wp o (WF
\/(l F) nWh I‘\‘(l>< 4G “
h

(29)

Wh
Thus, we have

2—B,3upA i+ —2BTuFA4h =)0y [(wrA} |H5|costh +wrAj [H3|cosbr

—wr |H3| Aysingy — wr |[Hj| Afsin82)d + (wh Ay |H3|sin6; +wkA; |Hjlsiné,
+ wh |H3| Aj cos8 + wh |Hi| Aj cos 02)a)

(30)
Substituting Eq. (30) into Eq. (27) yields
G+ Wowad + wla = Y al(wrAj [Hs| cosby + wr A |Hj|cos 8y — wr |Hz| Ajsindy
—wr |H A sm0)6 + (0E A7 [Hslsiny + wh A} |Hs|sin 02 + ok |H3| Ajcos 6y (31)
pBt
+ wk |H3| A cosbr)a| + iw;»\za + 7«-/,.—/-\30
Eq. (31) can then be rewritten in the standard form as
G+ 2rwrb+wia=0 (32)
where
wr = [wl - Qe AL - QQuE (AT |H;|sindy + AT |Hj|sinb, (33)
+ |H3| A cosy + |H| A cos82)|2 = f (wr)
ocr = 25958 _ 0 4s _ 0,Qy(A] |H3| cos by + AL |H| cosby
wr (34)
— |H3| Ajsin ) — |H3| Ajsin0s)
From Eq. (34) we have the formulation for Logarithmic decrement
b = 27(r :QCouol —m QA — 7 QD (A] |Hy|cosby + A} |H3|cosb ~
wr (35)

— |H;| Aysin, — |H3| Ajsinf;)
Step 4: Finding the critical condition of flutter instability
Flutter instability occurs if only if Logarithmic decrement (Log. Dec) 7 < 0

5p = 2m(r = 2“’“’%1 — QA — O Qy(A] | HY| cos 0, + A} | H}| cos 6y
F
- |H3| Ajsin®, — |H3| A} sinf,) <0

Fig. 2 shows the flowchart for the step-by-step analysis (for torsional branch). Ac-
cording to the algorithm presented in this block diagram, a computer program was devel-
oped for calculating flutter vibration of bridges at the Department of Applied Mechanics
of the Hanoi University of Science and Technology.
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¥
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Frg. 2. Flowchart of step-by-step analysis (for torsional branch)

Stepwise procedure for torsional-branch analysis can be briefly presented hereinafter
i) The torsional motion equation will be taken into first account in which torsional related
coupled forces are considered as external oscillation, furthermore heaving motion solu-
tions are found dependent on torsional vibration parameters; ii) Obtained heaving motion
solutions will be transformed into torsional motion equation. then its damping ratio (or
logarithmic decrement) will be determined in this torsional-branch: iii) Checking such a
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damping ratio based on increment of reduced wind velocity to obtain a critical condition
for torsional-branch flutter instability.

3. FLUTTER INSTABILITY ANALYSIS OF CAO LANH BRIDGE

Fig. 3 shows the side view of Cao Lanh cable-stayed Bridge, which was built in the
Mekong Delta of Vietnam. The Cao Lanh Bridge represents the largest single Australian
aid activity in mainland Southeast Asia and will help link people and markets in the
Mekong Delta to the rest of Southeast Asia and beyond. The bridge will directly benefit
five million people and is expected to deliver improved transport facilities to 170,000 daily
road users within five years of completion.

Frg. 4. Free vibration analysis: Four fundamental natural mode shapes
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Table 1. Flutter derivatives, angle of incidence 0°, complete stage

U/fB | H; Hj H; H; A7 A3 A5 A;

0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0976 | -0.019 | -0.137 | -0.061 | -0.141 | -0.108 | -0.034 | 0.010 | 0.014
1464 | -0.318 | -0.198 | -0.163 | -0.426 | -0.219 | -0.038 | 0.016 | 0.075
1.952 | -0.642 | -0.338 | -0.381 | -0.198 | -0.178 | -0.028 | 0.024 | 0.032
2.440 | -0.402 | -0.565 | -0.432 | -0.240 | -0.367 | -0.010 | 0.084 | 0.024
3416 | -1.118 | -0.430 | -0.533 | -1.440 | -0.468 | -0.044 | 0.274 | 0.199
4.392 | 2426 | -0.194 | -1.968 | -1.919 | -0.513 | -0.120 | 0.430 | 0.258
5368 | -3.730 | 0.288 | -2.763 | -2.115 | -0.593 | -0.182 | 0.584 | 0.312
6.344 | -5.052 | 0482 | -4.562 | -2.064 | -0.680 | -0.240 | 0.781 | 0.384
7.319 | -6.344 | 0.566 | -6.745 | -1.856 | -0.745 | -0.314 | 1.015 | 0.444
8295 | -7.455 | 0.465 | -9.142 | -1.541 | -0.804 | -0.402 | 1.269 | 0.492
9271 | -8.406 | 0.186 | -11.723 | -1.053 | -0.862 | -0.519 | 1.531 | 0.541
10247 | -9.178 | -0.194 | -14.772 | -0.706 | -0.917 | -0.638 | 1.810 | 0.537
11223 | -9.999 | -0.652 | -17.940 | -0.403 | -0.900 | -0.781 | 2.103 | 0.591
12.199 | -10.810 | -1.119 | -21.034 | -0.312 | -0.941 | -0.909 | 2.388 | 0.635
13175 | -11.502 | -1.770 | -24.596 | -0.201 | -0.959 | -1.055 | 2.703 | 0.661
14.639 | -12.765 | 2.609 | -30.351 | -0.311 | -L.013 | -1.291 | 3.209 | 0.675
16.103 | -13.851 | -3.423 | -36.515 | -0.288 | -1.069 | -1.514 | 3.752 | 0.663
17.567 | -15.087 | -5.136 | -43.175 | -0.324 | -1.117 | -1.768 | 4.301 | 0.635
19.031 | -16.534 | -6.324 | -50.321 | -0.054 | -1.209 | -2.026 | 4.904 | 0.586
20494 | -17.428 | -7.789 | -58.192 | -0.033 | -1.431 | -2.243 | 5.612 | 0.443

Numerical calculating of the Cao Lanh cable-stayed bridge for the flutter analysis
is presented in this section. The following geometry and material data of the bridge deck
have been used for the numerical calculation:

m = 52039kg/m,I = 3968530 kgm® /m, f, = 0.296 Hz, f, = 0.620 Hz, {, = 0.008,
Ca = 0.008, B =27.5m, p=1.25kg/m>.

Tab. 1 shows the experimental results of Flutter derivatives [10]. Some calculating
results are displayed in Figs. 4-7.

Fig. 4 shows some natural mode shapes of the Cao Lanh cable-stayed bridge [10].
From the data given in Table 1 we can calculate diagrams of flutter derivatives Aj, H;
(i=1, 2,3, 4) as shown in Fig. 5. In Figs. 6 and 7 are diagrams U — f and U - ép.

The calculated flutter speed of Cao Lanh Bridge is upper 100 m/s. Ref. |10] gives
the flutter speed of the bridge using a section model upper 98.3 m/s, which is in agreerment
with the calculated result.
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4. CONCLUSION

The step-by-step method is based on the serial solving technique of two heaving-
torsional motion equations, solutions of the former equation are used to determine coupled
aerodynamic forces subjected to the later equation. From transformation process, there is
torsional-branch or heaving-branch step-by-step method. Because torsional-branch insta-
bility dominates in almost cases, the torsional-branch step-by-step analysis will be favor-
able to be much more applicable in comparison with heaving-branch one. The step-by-step
method is also favorable to deal with the complex eigenvalue method’s limitation. In this
paper, a revised step-by-step analysis method is proposed and a calculating program us-
ing MATLAB is developed. The step-by-step method is applied for calculating the flutter
instability of the Cao Lanh cable-stayed Bridge, which was built in Mekong Delta of Viet-
nam. The calculation results obtained are consistent with experimental results.
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