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A b s t r a c t . The branch switch characteristics of coupled flutter are clarified by use of 
Step-by-Step flutter analysis In the case of typical coupled flutter instability, the branch 
switch characteristic from torsional branch to heaving branch is observed. In this pa-
pei, a revised step-by-step analysis method is proposed and a calculating program using 
MATLAB is build. Finally, the flutter behavior of the Cao Lanh Bridge, which is the 
long bridge in Vietnam, is studied from the point of view of flutter in two-degrees of 
freedom, namely torsional and heaving motion. 
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1. INTRODUCTION 

After total collapse of Tacoma Narrow Bridge in USA, 1940 due to the flutter insta-
bihty, the aerodynamic and aeroelastic phenomena have been focused on bridge structures. 
Especially, the Flutter instabilit}" (known as aeroelastic instability) is closely related to 
flexible long-span bridges, because it is a reason for structural catastrophe. The bridge 
aeroelasticity implies for the flutter instabihty. It tends to be most concern on flexible 
long-span bridges at high wind velocity in which the aeroelastic interaction between wind 
and structure generates the so-called self-excited aeroelastic forces. The aeroelastic in­
stability, however, occurs relating to negative damping mechanism due to combination 
between structural damping and aerodynamic one. Traditionally, two types of the flutter 
instability have been classified based on characteristics of bridge's modal participation at 
instability state. Torsional flutter is the case that only torsional mode participates domi-
nantly to such critical state, whereas coupled flutter occurs when two torsional and heaving 
modes simultaneousl}" involve in. 

In only last two decades of the 20'*̂  century, many large-span bridges have been 
successfully built in the world. Further bridges are hinged on super long span and more 
slender structures as the main tendency of research and development of bridge engineering 
in the few coming decades. The longer, the more slender structures, however, also face 
with many difficulties, especially in the dynamic, seismic and aerodynamic behaviors. It 
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is widely agreed that the long-span bridges are very prone to the aerodynamic effects and 
the wind-induced vibration. In recent years, a number of long cable-stayed bridges have 
been built in Vietnam (My Thuan Bridge, Binh Bridge, Bai Chay Bridge, Can The Bridge, 
Han River Bridge, Phu My Bridge, Cao Lanh Bridge, Rachmieu Bridge, . . . ) . Vietnam is 
a country with a lot of wind and storm. Therefore, it is necessary to investigate the flutter 
instability of long-span bridges. 

Flutter problems can be approximately divided by analytical and experimental 
methods and simulation techniques. The experimental approach is thanks to free vibra­
tion tests on 2D bridge sectional model in wind tunnel laboratory. Computational fluid 
dynamics (CFD) technique has gained much development so far to become useful supple­
mental tools beside analytical and experimental methods and it is also predicted broadly 
that such the CFD might replace wind tunnel tests in future; however, this technique still 
has many Hmitations to cope with complexity of bridge sections and nature of 3D bridge 
structures. 

To solve 2D0F heaving-torsional motion equations, there are two powerful analytical 
methods: so-called the complex eigenvalue method [1, 2] and the step-by-step method 
[3-8], 2D0F heaving-torsional motion system has been usually taken the cases of unit 
structural length subjected to unit self-controlled forces into consideration. The 2D0F 
heaving-torsional motion systems, moreover, can be known in sectional model tests in 
wind tunnels. 

This paper presents the application of the step-by-step method [3, 6] for calculating 
the flutter instability of a long cable-stayed bridge, which have been built in Vietnam. 

2. STEP-BY-STEP METHOD FOR 2 DOF HAVING-
TORSIONAL VIBRATION 

The flutter motion equations of 2D0F heaving-torsional system (Fig. 1) can be 
written as follows 

mh{t) + ci,h{t) + khh{t) = Lh (1) 

Ia{t) + c^a{t) + Ka{t) = M« (2) 

where: m, c^, h, are mass, damping coefficient and stiffness, respectively associated with 
heaving motion. / , c„, ka are mass inertia moment, damping coefficient and stiffness, 
respectively, associated with torsional motion. Lh, M„ are self-controlled lift and moment. 

The self-controlled forces Lh, M^ can be determined by either of Theodorsen's cir­
culation function or Scanlan's flutter derivatives under frequency approach. The Scanlan's 
self controlled forces have been applied for the flutter motion equations for various types 
of cross sections thank to experimentally-determined flutter derivatives. 

According to this approach, the self-controlled forces per unit span length can be 
expressed as 

-^pU'B \KH;{K)-+KH;(K)^+K'Hi(K)a + K'H',(K)1^\ (3) 
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. 1. Mechanical model of the bridge deck 

Mo = \f,U^B^ \KAHK)!^+KA',(K)?^+K^A;(K)a + K^-AX(K)!^ (4) 

where the nondimensional reduced frequency K is defined ; 

K = 
U (5) 

B is the width of the bridge deck, U is the uniform approach velocity of the wind and L 
is the circular frequency of oscillation. The eight real coefficients i?* and A'{j = 1,. . . , 4 
are the flutter deri\'atives based on Scaidans approach. 

Above Eqs. (1), (2) can be rewritten in the standard form as follows 

-2C,.-'^d-i-^'^Q= -

PB' 

- - ^ - ^ - - ^ - ' ^ . . . P S " 2 . . ••r-42Q + -jj-MpA^a 

(6) 

(7) 

Step 1: In torsional system, harmonic torsional motion is assumed that 

a = aosinwf i (8) 

where ao is the amplitude of torsional motion and t is the time. 

Q = Qo^'F cos ̂ -f = Qo^'F Sin Lu'ft + '-^j (9) 

Step 2: In heaving system, the heaving motion is generated b\' external forces caused by 
the torsional motion, as forced vibration: 

Substituting Eqs. (8) and (9) into Eq. (6), we have the differential equation of forced 
heaving vibration 

•u k . . - ̂ ^H. b - g!.^d .^ |?^..«|..g4«3-
pB^ 

(10) 

uipH^ctQ sinujpt 
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Rewriting Eq. (10) in the standard form 

h -\- 2Qujlh + uj'^h = ^H^ao^F sm (ujpt + 0 + ^ " ^ " ^ 3 * " ° sinwpi (11) 

where 

<' = '^i-^'^%m (12) 

G = [ 2 a ^ , . - ^ | ^ f f r ] / ( 2 ' ^ y (13) 

Solution of Eq. (11) consists of the following components 

ft = ft + ftl + h2 (14) 

(i) ft is the total solution of free vibration equation 

ft + 2C;aJjft + tjJ^ft = 0 (15) 

which takes a form 
ft = ftoe"'*' sin (u^t - 0) (16) 

Note that for large values of t. the homogeneous solution (16) approaches zero and 
the total solution of Eq. (11) approaches the particular solution [9]. 
(li) fti is the solution of forced vibration equation 

It takes a form 

where 

h + 2Q<'lh + u,fh= ^H^aaui% sin (upt + ~ ) (17) 
Am \ 11 

ftl = ftio sin [uFt + f - ^) (18) 

\ /«^-^|)'+4a^<u,| , 

( < - WF) HI 

(19) 

(20) 

1̂2*1 \/«-4)'+4av<-^ 
For convenience, we rewrite Eq. (18) as follows 

hi = /iio sin {u)pt - Qi) with Oi =9-- (21) 

('mj /i2 is the solution of forced vibration equation 

h + 2ChUJ*hh + ul^h = ^u;2^H3*ao s in^ f t (22) 

We find solution of Eq. (22) in the following form 

/i2 = /i20 sin {upt - O2) (23) 



(24) 

(25) 
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with 

ft20 = '€\HI\^0'^l 

\ /«-c. j . )^+4a2<. , j 

sinfl2 = ''(!^<'^FHS 

cos 92 = , K - ' ^ ^ ) g 3 

Thus, the solution of heaving motion equation can be expressed as 

h = hiQ sin {u>Ft — 9i) + /i2o sin (wpt — 62) 

h = hi + h2 = hioUE cos {upt - 0i) + h2oUF cos (wjri - 62) 

h^ hiQsin{u!Ft-di) +h2o sin {ui Ft-O2) 

— /iio sm(jJF*cos^i — iiocosLJF*sin^i -I- /i2osinwF*cos^2 — '̂ 20 coswFisinfl2 

h — hioUlF cos (oJ F t - &i) + h2QU! F COS {uipt- B2) 

— /IIOWFCOSWF^CGS^I -I- / i iowpsinwFts in^ i -j- /iToWFCoswF^cos^a -|- /i2oWFsina;F(sin62 

Ct Ct G Or. 
= hiQUJF cos^l -j- /iioWF — sin 01 -I- h2o'*'F—— cos 02 + h2o<^F—^sin&2 

Q Q U ^ F Q'O aoUJF ceo 

(26) 
step 3: In torsional system, the torsional motion is generated by the heaving motion, which 
has a certain amplitude ratio and a certain phase difference, as free vibration 

a + 2C,aUJa(x + w^a = ^t^pAlh + ^upAlh + ^upA^a + ^uipA^a (27) 

Expanding the heaving-oriented forced excitation in right-hand side of Eq. (27), we get 

e^upAlh + ^u,lA;h = \2I J\2mJ r ̂ ^^^. | ^ , | ^^^^^ ^ ^ ^ ^ . | j j , | ^^^^^ 

yl'^i, - " F ) +^C), "/i î F 

- t.;^ |i/2*l A't sin9i - OJF I^^II A^sin^jld + (î Jp î; \H^\sinei + JpAl |ffj|sinfc 

+ ui% l/fj I yi; cos e, + uj|. li/J I .i\ cos ̂ 2 )a ] 
(28) 
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For convenience, we use the following notations 

/-n4S \2m) '' V2m ; 
! ! i (29) 

riCf 

Thus, we have 

^WFA'jh+^uilAlh = nin2 liuFAllHIlcose, +vFA;|if | |cos92 

-uiFlHilAlBmSi-^F\H;lAi3m«2)a + (.wlAl\H;\Bmei+:^''FAl\HS\sme2 

+ wl IKI A: COS «I + ui| IHJ1 AJ cos 82)0] 

(30) 

Substituting Eq. (30) into Eq. (27) yields 

ii + 2C<,iJt,a+ijJa = S!iS!2[(uFA; 1̂2*1 cosfli + UFAJ |H||cos«2 - WFlH^iAlsmO-, 

- UF ItfJl A;sm»2)<i + ( " M i 1̂2*1 sinSi t- i . 'M; IffJlsinfe + î F IHJI AJcosS, p j j 

+ J'Fm\Alaxe2)c] + ^ U F A ; Q + ^ a ; ? . A 5 a 

Eq. (31) can then be rewritten in the standard form as 

a + 2CFHJF'i + i j | a = 0 (32) 

(33) 

(34) 

Wf = [CJI -f!iu)J.A5 -niQ2wJ.(^ ; | / f J | s inSi +/i; |-tf3|sin92 

+ \H'2\A', cosfli + IffJl A : cos92)1''^ = / (I^F) 

2CF = 2̂ 2̂ !̂ ^ - QiTi; -nin2(A;|B2'l cosfli +.4;|ifj|cosfl2 
CJF 

- IHj'l Ai sinfli - IffJI AJ sin82) 

Prom Eq. (34) we have the formulation for Logarithmic decrement 

Sjr = 27rCF =2Cai ' ,»—-Tf2i^5-7r!Jin2(A;iH2*|cosfl , + A;|/f3'|cosfl2 
^F (35) 

-li?2*MJ sinfli -lff3'|A;sinfl2) 

step 4' Finding the critical condition of flutter instability 
Flutter instability occurs if only if Logarithmic decrement (Log. Dec) (5F < 0 

6F = 27rCF = 2CQWQ 7rQiA2 - 7rriiQ2(Ai IFjkosfli + A\ li?3|cosfl2 
WF 

- \Hi\ Al sinfli - \Hl\ Al sinfla) < 0. 

Fig. 2 shows the flowchart for the step-by-step analysis (for torsional branch). Ac­
cording to the algorithm presented in this block diagram, a computer program was devel­
oped for calculating flutter vibration of bridges at the Department of Apphed Mechanics 
of the Hanoi University of Science and Technology. 
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Log, Dec. Checking 5j, (;) according to eq, (35) 

Fig. 2. Flowchart of step-hy-step analysis (for torsional branch) 

Stepwise procedure for torsional-branch analysis can be briefly presented hereinafter 
i) The torsional motion equation will be taken into first account in which torsional related 
coupled forces are considered as external oscillation, furthermore heaving motion solu­
tions are found dependent on torsional vibration parameters; ii) Obtained heaving motion 
solutions will be transformed into torsional motion equation, then its damping ratio (or 
logarithmic decrement) will be determined in this torsional-branch; iii) Checking such a 
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damping ratio based on increment of reduced wind velocity to obtain a critical condition 
for torsional-branch flutter instability. 

3. FLUTTER INSTABILITY ANALYSIS OF CAO LANH BRIDGE 

Fig. 3 shows the side view of Cao Lanh cable-stayed Bridge, which was built in the 
Mekong Delta of Vietnam. The Cao Lanh Bridge represents the largest single Australian 
aid activity in mainland Southeast Asia and will help hnk people and markets in the 
Mekong Delta to the rest of Southeast Asia and beyond. The bridge will directly benefit 
five million people and is expected to deliver improved transport facilities to 170,000 daily 
road users within five years of completion. 

• ^ 

^fimm 

Fig. 3. Side view of Cao Lanh cable-stayed bridge 

• | 

Ftg. 4. Free vibration analysis; Four fundamental natural mode 
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Table 1. F lu t ter derivatives, ajigle of incidence O", nplete stage 

UlfB 
0.000 

0.976 

1.464 

1.952 

2.440 

3.416 

4.392 

5.368 

6.344 

7.319 

8.295 

9.271 

10.247 

11.223 

12.199 

13.175 

14.639 

16.103 

17.567 

19.031 

20.494 

^ i -

0.000 

-0.019 

-0.318 

-0.642 

-0.402 

-1.118 

-2.426 

-3.730 

-5.052 

-6.344 

-7.455 

-8.406 

-9.178 

-9.999 

-10.810 

-11.502 

-12.765 

-13.851 

-15.087 

-16.534 

-17.428 

Hi 
0.000 

-0.137 

-0.198 

-0.338 

-0.565 

-0.430 

-0.194 

0.288 

0.482 

0.566 

0.465 

0.186 

-0.194 

-0.652 

-1.119 

-1.770 

-2.609 

-3.423 

-5.136 

-6.324 

-7.789 

m 
0.000 

-0.061 

-0.163 

-0.381 

-0.432 

-0.533 

-1.968 

-2.763 

-4.562 

-6.745 

-9.142 

-11.723 

-14.772 

-17.940 

-21.034 

-24.596 

-30.351 

-36.515 

-43.175 

-50.321 

-58.192 

HI 
0.000 

-0.141 

-0.426 

-0.198 

-0.240 

-1.440 

-1.919 

-2.115 

-2.064 

-1.856 

-1.541 

-1.053 

-0.706 

-0.403 

-0.312 

-0.201 

-0.311 

-0.288 

-0.324 

-0.054 

-0.033 

A ; 

0.000 

-0.108 

-0.219 

-0.178 

-0.367 

-0.468 

-0.513 

-0.593 

-0.680 

-0.745 

-0.804 

-0.862 

-0.917 

-0.900 

-0.941 

-0.959 

-1.013 

-1.069 

-1.117 

-1.209 

-1.431 

A ; 

0.000 

-0.034 

-0.038 

-0.028 

-0.010 

-0.044 

-0.120 

-0.182 

-0.240 

-0.314 

-0.402 

-0.519 

-0.638 

-0.781 

-0.909 

-1.055 

-1.291 

-1.514 

-1.768 

-2.026 

-2.243 

A\ 
0.000 

0.010 

0.016 

0.024 

0.084 

0.274 

0.430 

0.584 

0.781 

1.015 

1.269 

1.531 

1.810 

2.103 

2.388 

2.703 

3.209 

3.752 

4.301 

4.904 

5.612 

Al 
0.000 

0.014 

0.075 

0.032 

0.024 

0.199 

0.258 

0.312 

0.384 

0.444 

0.492 

0.541 

0.537 

0.591 

0.635 

0.661 

0.675 

0.663 

0.635 

0.586 

0.443 

Numerical calculating of the Cao Lanh cable-stayed bridge for the flutter analysis 
is presented in this section. The following geometry and material data of the bridge deck 
have been used for the numerical calculation: 

m = 52039 kg/m, J = 3968530 kgrn^m./h = 0.296 Hz, /„ = 0.620 Hz, C/i = 0.008, 
Ca = 0.008, B = 21.b m,p= 1.25 kg/m^ 

Tab. 1 shows the experimental results of Flutter derivatives [10]. Some calculating 
residts are displayed in Figs. 4-7. 

Fig. 4 shows some natural mode shapes of the Cao Lanh cable-stayed bridge [10]. 
From the data given in Table 1 we can calculate diagrams of flutter derivatives A^, H* 
{i = 1, 2, 3, 4) as shown in Fig. 5. In Figs. 6 and 7 are diagrams U - f and U - Sp. 

The calculated flutter speed of Cao Lanh Bridge is upper 100 m/s. Ref. [10] gives 
the flutter speed of the bridge using a section model upper 98.3 m/s, which is in agreement 
with the calculated result. 
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Fig- 5. Diagrams of flutter derivatives A', H* (i = 1, 2, 3, 4) 

Fig. 6.U - f diagram . 7.U — 5F diagram 
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4. C O N C L U S I O N 

The step-by-step method is based on the serial solving technique of two heaving-
torsional motion equations, solutions of the former equation are used to determine coupled 
aerodynamic forces subjected to the later equation. From transformation process, there is 
torsional-branch or heaving-branch step-by-step method. Because torsional-branch insta­
bility dominates in almost cases, the torsional-branch step-by-step analysis will be favor­
able to be much more applicable in comparison with heaving-branch one. The step-by-step 
method is also favorable to deal with the complex eigenvalue method's limitation. In this 
paper, a revised stejj-by-step analysis method is proposed and a calculating program us­
ing MATLAB is developed. The step-by-step method is applied for calculating the flutter 
instability of the Cao Lanh cable-stayed Bridge, which was built in Mekong Delta of Viet­
nam. The calculation results obtained are consistent with experimental results. 

A C K N O W L E D G M E N T 

This paper was completed with the financial support by the Vietnam National 
Foundation for Science and Technology Development (NAFOSTED) and by the German 
Research Foundation (DFG). 

R E F E R E N C E S 

[1] R. H. Scanlan and E. Simiu. Wind effects on structures. Wiley, (1996). 
[2] U. Starossek. Brueckendynamtk: Winderregte Schwingungen von Seilbruecken. 

Vieweg, Braunschweig/Wiesbaden, (1992). 
[3] J. Banerjee. A simplified method for the free vibration and flutter analysis of bridge 

decks. Journal of sound and vibration, 260(5), (2003), pp. 829-845. 
[4] L. T. Hoa. Flutter stability analysis: Theory and Example, www.uet.vnu.edu.vn/thle, 

(2004). 
[5] M. Iwamoto and Y. Fujino. Identification of flutter derivatives of bridge deck from 

free vibration data. Journal of Wind Engineering and Industrial Aerodynamics, 54, 
(1995), pp. 55-63. 

[6] M. Matsumoto, K. Kobayashi, Y. Niihara, H. Shirato, and H. Hamasaki. Flutter 
mecharusm and its stabllizationof bluff bodies. In Proceedings of the Ninth Conference 
on Wind Engineering, Vol. 2, pp. 827-838, (1995). 

[7] M. Matsumoto, K. Mizuno, K. Okubo, Y. Ito, and H. Matsumiya. Flutter instability 
and recent development in stabilization of structures. Journal of Wind Engineering 
and Industrial Aerodynamics, 95(9), (2007), pp. 888-907. 

[8] M. Matsumoto, H, Matsumiya, S. Fujiwara, and Y. Ito. New consideration on flutter 
properties based on step-by-step analysis. Journal of Wind Engineering and Industrial 
Aerodynamics, 98(8), (2010), pp. 429-437. 

[9] D. J. Inman and R. C. Singh. Engineering vibration. Prentice Hall New Jersey, (2001). 
[10] B. Barwick. Cao Lanh bridge design report, Vol. I, II. (2012). 

http://www.uet.vnu.edu.vn/thle



