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A b s t r a c t . A weighted dual mean square criterion for stochastic equivalent iineaiization 
method is considered in which the forward and backward replacements are weighted. The 
normahzed weighting coefficient is suggested as a piecewise Hnear function of the squared 
correlation coefficient and is defined by the least square method based on the data of 
Lutes-Sarkani oscillator. The application to two typical nonhnear systems subjected to 
random excitation shows accurate approximations when the nonlinearity varies from the 
weak to strong levels. 
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1. I N T R O D U C T I O N 

In the study of random vibration, the stochastic equivalent linearization method 
proposed separately in [1,2] is one of most popular methods for analyzing nonlinear system. 
The development of its kernel, the classical criterion, leads to several criteria that are 
summarized in the papers [3,4] and presented in the books [5-7]. It can be seen that the 
diverse ideas and new approaches make stochastic equivalent linearization more attractive. 
Recently, using the dual approach introduced in [8], a dual mean square error criterion 
of stochastic linearization is proposed in [9] in which dual replacements are used. Its 
application to investigation of approximate mean-square responses shows good results 
in cases of Duffing, Van der Pol oscillators but unacceptable in cases of Lutes-Sarkani 
oscillator with variety of nonlinearities [9], It is observed that the dual criterion is only 
effective in a limited range of nonlinearity based on the value of the squared correlation 
coefficient [9,10]. 

We therefore develop a more general form of the dual criterion by considering 
weighted contributions of forward and backward replacements in which the normalized 
weighting coefficient depends on the squared correlation coefficient [11,12]. The simplicity 
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and accuracy of the weighted criterion are checked on several random vibration systems 
with nonlinear restoring or nonlinear damping. 

2. WEIGHTED DUAL CRITERION 

2.1. Basic idea of t h e weighted dual cr i ter ion 

Anh et al. [9] proposed a dual criterion to the equivalent linearization method by 
the following expression 

Si = {(A-kB)^) + ({kB-\A)^)^m:n (1) 

Here < • > denotes the expectation operator, A and B are random nonlinear and 
linear functions that have zero mean values, k is equivalent linearization coefficient and A 
is return coefficient. The first mean square of (1) describes the forward replacement, and 
the second one is the backward replacement. The replacement process can be illustrated 
schematically as bellow 

A^kB ^ XA 
Applying (1) to several nonlinear systems has shown that the dual criterion can give 

good results only for a limited level of nonHnearity [9,10]. A .major reason may be that 
the contributions of the forward and backward replacements in the dual criterion (1) are 
evaluated with equal influences while in fact they would be different. Thus, we consider a 
weighted form of (1) as follows [11,12] 

Su,d = (1 - p ) ((A - kBf'f +p(^{kB - AA)^) ^ min (2) 

where using the normalized weighting coefficient 

0 < P < 1. (3) 

It is seen fi-om (2) that S^^j is the weighted mean of the forward and the backward 
replacements. In the case p = 1/2, (2) has the form of the dual criterion (1) that expresses 
the equal contributions of replacements. Given a weighting coefficient p and supposing 
that ( A ^ ) > 0, (S^) > 0, the equivalent linearization coefficient fc and return coefficient 
A are determined by the minimum condition from (2) 

. = , 1 - , . . . ) ^ .._,m 
Solving the system of Eqs. (4) yields 

- r, M R\ 
(5) 

1 - p (AB) 
1 - ^p {B2) ^ 

M ( l - P ) 
l - / i p ' 

{AB)'' 

(6) 
J. — p ^ 

where it is denoted 

(A2) (S2)' {^) 
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and supposed 

lipi^l. (8) 

For understanding the meaning of fi, we first consider the correlation coefficient of 
A and B which is defined as (see [13]) 

CAB _ {AB) 

<^A(TB [ (A2) (B2) ] i /2 - (9) 

Following the Schwarz inequahty (|AB|) < [(A^) {B^)Y^^, one get jrj < 1. Clearly, 
the coefficient fi in Eq. (7) is the squared correlation coefficient 

fj. = r\ 0<ft<l. (10) 

It is well known that the correlation coefficient r or the squared correlation coeffi
cient r^ are used as a measure of the linear dependence when the function A is approxi
mated by the linear function kB (see [13]). For this reason, /i is called the linear dependence 
level between A and B. In statistics, a correlation is an effect size, so guidelines on strength 
can be suggested (see [13]). Based on the value of p., it can be seen that: 

When /i = 1 given by A = aB, the linear approximation is an exact fit. In this 
case the linear dependence level is strongest, 

- When (1 = 0 given by (AB) = 0, the linear approximation is the worst. In this 
case A and B are said to be uncorrelated and orthogonal, the linear dependence level is 
weakest. 

Therefore, the important properties of the linear dependence level p may be used as 
one of the major possibilities to perform the main features of the weighted dual criterion 
(2). Moreover, it is noted that fj. may be an exphcit value in case the considered functions 
have zero mean. In the next section, we will combine the contributions of replacements 
with fj, to construct the weighting coefficient p. 

2.2. Analyt ical expression of weighting coefficient 

In the weighted dual criterion (2), the contribution of the forward and backward 
replacements is evaluated by the value of the weighting coefficient p. Consider particular 
cases as follows: 

Case (i). This case shows the highest contribution of forward replacement given by 
p = 0. The criterion (2) now reduces to the classical mean square error criterion 

5„d(p=o) = ( ( ^ - * B ) ' ) - * m m (11) 

The equivalent linearization coefficient defined from (14) is 

k - ^ - ^ (121 
* - (£2) • (12) 

Substituting (12) into (11) yields the minimum of S^d respect to fc 

min5^rf(p=o) = < ^ ^ > ( l - / ^ ) - (13) 
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We see from (13) that the obtained criterion (11) yields good linear approximation 
when the value of p is near to 1, namely in the interval [0.85,1] as shown in [9, 10], 
especially the best one when the linear dependence is the strongest, ^ — 1. 

Case {li). This case shows the equal contribution of forward and backward replace
ments given hy p = 1/2. The criterion (2) now becomes the dual criterion (1). As shown 
in [9,10], the appUcation of the dual criterion for several nonlinear oscillators illustrates 
how its effective range is related to the values of p, particularly, when p belongs to the 
interval from 1/3 to 2/3. 

Case (iii). This case shows the highest contribution of backward replacement given 
by p = 1. The criterion (2) now has only 

5„rf(p.i) = {{kB- AA)^) ^ min (14) 

Using the minimum condition in (14), one has 

i - A < ^ A - f c < ^ (15) 
* ^ - ^ { B 2 ) ' ^ - * ( A 2 ) - ^^^' 

There are two possible outcome with two equations in (15) 
- (AB)'^ / [(A^) (B^)] = 1 leads to an infinite number of fc and A, but it is contrary 

to (8) due to p = 1, ^ = 1, so it is rejected. 
- leads to trivial solutions fc = A = 0, it is corresponding to the weakest linear 

dependence level, p = 0. 
It is observed in above cases {i,ii,iii) that there is a relationship between p, p 

and the error of approximate solutions to each other. Since it is difficult to make the 
exact mathematical expression of p in term of p, so in this paper we seek for a weighting 
coefficient in the piecewise linear form of the linear dependence level. 

Based on the results of investigation in [9,11]. It is suggested that p{p) can be 
expressed in the form, p{p) = 1/2 for fj, G [1/3, 2/3]. For simplicity, the linear dependence 
level is divided into three parts and the corresponding function p(/i) is a piecewise linear 
function as below: 

- Weak linear dependence level, 0 < ^ < 1/3 

p{(i) = aip + l3i, (16) 

P(0) = 1. (17) 

- Medium linear dependence level, 1/3 < p < 2/3 

P(M) = 1/2. (18) 

- Strong linear dependence level, 2/3 < jU < 1 

p{lJ,) = a2P + 02, (19) 

p(l) - '0, (20) 

Using those boundary conditions (17), (20) for (16), (19), one has 

01 = 1, p ^ aip-\^'--\: • ior 0 < ^ < 1/3, (21) 

02 = -ai,'P = oi2IJi-cx2 for , 2/3 < p < 1. (22) 
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There are two unknowns a\ and 02 in (21), (22). We use the method of least squares 
for a nonlinear system which has exact solution to find a i and 0:2 • The interpolation steps 
include: 

- Choose systems with different nonlinearities whose exact responses are available so 
that the exact values of exact equivalent linearization coefficients fcgxact and exact second 
moments < B^ >exact, < A^ >exact, < AB >exact, Can be computed; 

- Substituting fcexact, < A^ >exact, < AB >exact, < -B^ >exact mto (7) and (5) to 
find exact values of squared correlation and weighting coefficients ^exact and pexacti 

- Based on Pexact and ^exact find a i , 02 of Hnear functions (21), (22) by using the 
method of least squares. 

In order to carry out those interpolation steps we first look for systems with known 
exact solutions. Although several oscillators that have the exact responses can be found in 
hterature, see for example [1-7], the Lutes-Sarkani oscillator can be chosen due to following 
reasons: 

- It represents a class of nonlinear system and has exact solution. 
- It has a continuous linear dependence level. 
The equation of Lutes-Sarkani oscillator is governed by 

X-h 7 |x|°sgn(x) = / ( ( ) , (23) 

where a is a real positive number, f{t) is a zero mean, stationary Gaussian white noise 
with spectral density 5*0 = const. Indeed, the Eq. (23) may represent a class of Power-law 
oscillator which has the variable nonlinearity when a varies. Its exact stationary response 
is given by [6] 

^^"^*(-i)*rf̂ )[r(̂ )l-' (24) 
7 / \a-\-1/ I \a+ Ij 

The equivalent linearization equation to (23) is 

x + kx^f{t), (25) 

where fc is the linearization coefficient- Because (3;) = 0, the variance of approximate 
solution reduces to the mean square value. Thus, one gets the relationship 

*e.„. = 4 ^ . (26) 

Using the weighted dual criterion with A = 7 [xj" sgn (x), B — \x\ sgn (x) = x, first 
make the following calculations 

{B-) = al{A') = ^^j-2('-i)v(a+^,)al', 

('4B) = ;fc72tar(|)<«. '•"' 

where the Gamma function T {v) is given by F {v) = J u"~^ exp {-u) du. Then using (7),-
0 

(27) yields the linear dependence level 

-^Ki)]1<-^)1"' 

file:///a-/
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Substituting (26), (27), (28) into (5) to solve p„.ct yields 

^ 7 2 t a r ( I ) ( a . ) : « . - T T S O J ^ [r (1)]^ [r (a + 1 ) ] -
(29) 

Table 1. The exact values of (//exact)j and (pexact)i calculated for the oscillator (25) versus 
various values of acorresponding to weak linear dependence level (0 < ^ < 1/3) 

i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

a 

4.3415 

4.5374 

4.9036 

5.3395 

5.8858 

6.6329 

7.8662 

10.6002 

14.6808 

(^exact)j 

0.33 

0.30 

0.26 

0.20 

0.15 

0.10 

0.06 

0.01 

0.001 

(Pexactjt 

0.6392 

0.6621 

0.7038 

0.7505 

0.8032 

0.8632 

0.9313 

0.9891 

0.9996 

Table 2. The exact values of {pexa.ct)t and (pexact)i calculated for the oscillator (25) versus 
various values of a corresponding to strong linear dependence level (2/3 < /i < 1) 

3 
1 

2 

3 

4 

5 

6 

7 

8 

9 

a 

0.0390 

0.0763 

0.2216 

0.4244 

1.0000 

1.7751 

2.1999 

2.5957 

2.7150 

(,/̂ exactJ j 

0.67 

0.70 

0.80 

0.90 

1.00 

0.90 

0.80 

0.70 

0.67 

(.Pexact Ij 

0.2616 

0.2623 

0.2656 

0.2722 

0.0000 

0.3579 

0.3967 

0.4368 

0.4496 

1 on (24) and (28), (29) the values /itexact and pexact are calculated and shown in 
Tabs. 1, 2 for different powers a corresponding to weak and strong linear dependence levels, 
respectively. Using those values, the coefficients a i , 02 from (21), (22) are determined by 
method of least squares with following conditions 

X ^ ["1 (^iexact), + 1 - (Pexact)i]^ (30) 
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Fig. 1. Interpolation by linear functions 

Yl b2(/iexact)j - 02 - (Pexact)j]^ (31) 

and the results are 
a i = - 6 / 5 , (32) 

02 = - 3 / 2 . (33) 

It can be seen in Fig. 1 that for 0 < // < 1/3 the exact data denoted by dots and 
the interpolation linear function are quite close together whereas for 2/3 < ^ < 1 they 
are quite far apart. Substituting (32), (33) to (21), (22), the weighting coefficient pi^i) is 
completely defined. The analytical expression of p(/i) is 

p = -6 / i /5 + 1 for 0 < ^ < 1/3, 

p = 1/2 for 1/3 < /i < 2/3, 

p = -3(i /2 + 3/2 for 2/3 < /i < 1, 

(34) 

(35) 

(36) 

where the linear dependence level ^ is determined by (7). The graph of p(/i) shown in Fig. 
2 where the classical criterion corresponding with p (/x) = 0 is just the lowest line, whereas 
the dual criterion corresponding with p{p) = 1/2 is just the middle line. The suggested 
piecewise linear function p(p) makes the weighted dual criterion expresses more diverse 
behavior according to different linear dependence levels. 

It is seen from Fig. 2 that the graph of p{fj,) has a discontinuity point at ^ = 1/3. 
IVom the left, using pbft = -6 / i /5 + 1 and (5) one has 

6 1 ^ 3 , _ 1 (AB) 
Pieft = - ^ - 3 + l - ^ , ^ i « f t - 2 - ( B ^ -

From the right, using Pright = 1/2 and (5) one has 

3{AB)_ 
" 5 (B2) • "Tight -

(37) 

(38) 
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3^/2 + 3/21 

Fig. 2. Graph of the weighting coefficient p(/.() 

In order to get a harmonic consideration it is supposed that at /i = 1/3 the equivalent 
linearization coefficient is to be arithmetic mean as follows 

fci/3 = 2 ( 

Substituting (39) into (5) yields 

1 fl 3\ {AB) _ 11 {AB) 
' 2\2''' 5) {B2) - 20 (52) • 

(39) 

p ( l / 3 ) : 
27 

' 49 ' 
(40) 

Summarizing the research above, we can procedure the following steps to calculate 
the equivalent linearization coefficient fc provided by the weighted dual criterion 

SI. Calculate the expectations {B"^) , (A^) , {AB) using the corresponding equiva
lent linear equation and/or the approximate solution considered; 

32. Calculate the linear dependence level p from (7) with the supposition that it is 
explicit; 

S3. Use of Tab. 3 to find the corresponding weighting coefficient p and the equivalent 
linearization coefficient fc. 

Table 3. Weighting coefficient and linearization coefficient 

N 

1 

2 

3 

4 

Level 

Weak 

Weak 

Medium 

Strong 

Linear dependence level // 

/J e [0, 1/3) 

;" = l / 3 

(J e (1/3, 2/3] 

c e [2/3, 1] 

Weighting coefficient p 

p=- i /^+i 
p = i 
p = i 

p = -i / ' + i 

Linearization coefficient fc 
t _ 6u {AB} 

t , _ 11 (AB) 

l . _ 1 (Am 

1, -^ ^ii-l <AB\ 
3u ' -3u+2 (flJl 
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In the next section the application and accuracy of the weighted dual mean square 
error criterion (2) will be illustrated and examined for several nonlinear systems. 

3. APPLICATION OF WEIGHTED DUAL CRITERION 

3.1. Power-law nonlinear restoring oscillator 

Consider the following nonlinear system 

X -I- 2/ix + UJQX -b 7x'' = ai ( t) , (41) 

where h,uJo,^.,u.,a are positive real constants, 7x'^ is odd function, i{t) is Gaussian white 
noise excitation. The exact mean square solution of this oscillator is [5] 

7 x2exp ( - 1 1 (la,2rr2 + ^ 7 ^ ^ ° + ' ) ) dx 

(-'>. 
7 exp ( - 1 ^ (i<.;2x2 + J ^ i x ' + l ) ) dx 

(42) 

The equivalent linearization equation to (41) is of the form 

X -F 2/ix -t- [wl ^-k)x = ai {t), (43) 

where fc is the linearization coefficient, and the mean square response of displacement is 

{-')- Ah (UJI + k)' 
(44) 

Using the weighted dual criterion with A = 7x'', kB = fcx, first make the following 
calculations in step Si 

( B 2 ) = ^l, (.42) = ^ 7 ' 2 ( " + « r (a + i ) <r2". 

Then in step S2, using (7), (45) yields 

• 2V? I {^\' 

(46) 

(46) 

Table 4- The errors of the approximate mean square responses of Power-law nonlinear restoring 
oscillator with a = 1/3, h — 0.5, UQ — 1, a — v2 and various values of 7 

7 

0.1 

0.5 

1.0 

5.0 

10 

\ / exact 

0.9215 

0.6821 

0.4926 

0.1064 

0.0420 

(-'>. 
0.9213 

0.6791 

0.4862 

0.1007 

0.0393 

error (%) 

0.02 

0.45 

1,29 

5.31 

6.43 

{-\ 
0.9305 

0.7099 

0.5253 

0.1188 

0.0472 

error (%) 

0.97 

4.08 

6.65 

11.73 

12.44 

(-\., 
0.9240 

0.6878 

0.4972 

0.1055 

0.0414 

error (%) 

0.27 

0.84 

0.93 

0.81 

1.50 

^ 
0.860 

0.860 

0.860 

0.860 

0.860 

P 

0.209 

0.209 

0.209 

0.209 

0.209 
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Table 5. The errors of the approximate mean square responses of Power-law nonlinear restoring 
oscillator with a ^ 5, h ^ 0.5, wo = 1, <7 = ^2 and various values of 7 

7 

0.1 

0.5 

1.0 

5.0 

10 

50 

100 

0.7026 

0.5140 

0.4372 

0.2866 

0.2352 

0.1453 

0.1172 

(-^>. 
0.6282 

0.4249 

0.3511 

0.2184 

0.1764 

0.1060 

0.0848 

error (%) 

10.59 

17.35 

19.70 

23.76 

25.00 

27.02 

27.61 

{-'h 
0.7035 

0.4923 

0.4106 

0.2591 

0.2101 

0.1270 

0.1018 

error (%) 

0.14 

4.23 

6.08 

9.55 

10.67 

12.55 

13.11 

{-%, 
0.7670 

0.5561 

0.4686 

0.3004 

0.2446 

0.1488 

0.1195 

error (%) 

9.17 

8.18 

7.19 

4.83 

3.97 

2.44 

1.96 

A 

0.238 

0.238 

0.238 

0.238 

0.238 

0.238 

0.238 

P 

0.714 

0.714 

0.714 

0.714 

0.714 

0.714 

0.714 

Table 6. The errors of the approximate mean square responses of Power-law nonlinear restoring 
oscillator with a — 7, /i — 0.5, WQ — 1, o" — v^ and various values of 7 

7 

0.1 

0.5 

1.0 

5.0 

10 

50 

100 

\^ /exact 

0.6170 

0.4726 

0.4156 

0.3008 

0.2595 

0.1816 

0.1549 

(-'). 
0.4733 

0.3354 

0.2871 

0.1977 

0.1678 

0.1140 

0.0963 

error (%) 

23.30 

29.03 

30.92 

34.27 

35.35 

37.23 

37.82 

(-'). 
0.5388 

0.3869 

0.3323 

0.2303 

0.1958 

0.1334 

0.1128 

error (%) 

12.68 

18.14 

20.03 

23.44 

24.56 

26.53 

27.16 

{-'),,, 
0.7131 

0.5374 

0.4679 

0.3313 

0.2835 

0.1952 

0.1656 

error (%) 

15.57 

13.70 

12.61 

10.15 

9.23 

7.49 

6.90 

M 

0.082 

0.082 

0.082 

0.082 

0.082 

0.082 

0.082 

P 

0.902 

0.902 

0.902 

0.902 

0.902 

0.902 

0.902 

Next in step S3, the corresponding equivalent linearization coefficient is calculated 
by using Tab. 3, then substituting it into (44) to find the mean square response. 

Consider the Power-law nonlinear restoring oscillator for various values of a and 
7. For evaluating the effectiveness of present criterion, the exact solution and the ones 
provided by classical and dual criteria available in [5,9] are used. The result by percentage 
error are shown in Tabs. 4, 5 and 6. It is seen among considered criteria that, the present 
criterion gives the best approximation while the dual criterion gives better result than the 
classical linearization does when a > 1 but becomes worse when a < 1. 

3.2. Oscillator with nonlinear damping by displacement and velocity 

Consider the nonlinear stochastic oscillator governed by 

*+cUi ' + ^^ ' i+^l^ = nt), (47) 
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where ^ is the damping constant, wo is the natural frequency, a is positive constant, / (t) is 
a Gaussian white noise process with spectral density SQ = const. The exact mean response 
of the above oscillator is (see [5]) 

(̂ L̂. = 4(f)'""".«..-'r(^)[r(^)]^' (.. 
The equivalent linearization equation is given by 

X -I- 6x -I- w^x = ai {t), (49) 

where b is the linearization coefficient. The mean square response of (49) is 

(̂ >̂ = ^ . ( - ) 
Applying the weighted dual criterion with A — C {x^/2 -h rc^/2) x, B = x, first make 

the following calculations in step SI 
(ij2) = ( i 2 ) , 

(.42) = ( [C (1x2 + f X2)° i ] ' ) = C2r {2a + 2) ( i2)2«« (j.^, 

{AB) = (C (1*2 + fx^Yx') = Cr (a + 2) (i2)°+i 

with notice of (x^) = WQ {X'^)- Then in step S2 using (7), (51) yields the squared correlation 
coefficient 

fl = [T {a+ 2)f[r {2a+ 2)]-^ (52) 

Next in step S3, the corresponding equivalent linearization coefficient is calculated 
by using Tab. 3, then substituting it into (50) to find the approximate response. 

Consider the oscillator with nonlinear damping by displacement and velocity when a 
varies. For evaluating the effectiveness of present criterion, the exact solution and the ones 
provided by classical and dual criteria are used. The result by percentage error is shown 
in Tab- 7. For a = 0.0399 corresponding with strong linear dependence level, p closes to 
1 and p{p) closes to 0. For a — 7.1107 corresponding with weak linear dependence level, 
p closes to 0 and p{p) closes to 1. The classical linearization only gives good results in 
case p belongs to the range from 0.85 to 1 while the dual one shows its effectiveness with 
the value of fi in the range from 0.4 to 1. The present criterion provides the best linear 
approximation with maximum error is less than 7.5% in comparison with 57.84% and 
54.8% provided by the classical and dual ones. 

4. CONCLUSIONS 

The development of the dual mean square criterion of the equivalent linearization 
method leads to a weighted dual mean square criterion in which the normalized weighting 
coefficient is used for evaluating different contributions of the replacements. The linear 
dependence level derived from the squared correlation coefficient allows to outline main 
features of the proposed criterion. Treating weighting coefficient as a function depending 
on the squared correlation coefficient, its main restrictions is introduced. Using the least 
squares method for a typical Power-law oscillator, a approximation of weighting coefficient 
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Table 7. Errors of approximate mean square responses of considered oscillator 
with various values of a 

a 

0.0399 

0.1298 

0.2106 

0.3074 

0.3864 

0,4568 

0.5836 

0.7008 

0.8138 

0.9253 

1.0000 

1.0376 

1.1523 

1.2710 

1.3955 

1.5277 

1.6701 

1.8260 

1.8820 

2.0000 

2.1992 

2.4353 

2.7298 

3.1302 

5.2277 

7.1107 

(^'>e™. 
0.9838 

0.9521 

0.9280 

0.9033 

0.8859 

0.8720 

0.8502 

0.8329 

0.8184 

0.8056 

0.7979 

0.7942 

0.7836 

0.7738 

0.7644 

0.7554 

0.7466 

0.7378 

0.7349 

0.7290 

0.7199 

0.7104 

0.6999 

0.6876 

0.6453 

0.6230 

<^^>. 
0.9834 

0.9482 

0.9186 

0.8857 

0.8607 

0.8396 

0.8042 

0.7741 

0.7473 

0.7227 

0.7071 

0.6995 

0.6774 

0.6561 

0.6351 

0.6143 

0.5934 

0.5722 

0.5650 
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is found in t h e form of piecewise l inear funct ion. I t shou ld b e s t ressed t h a t t h e p e r f o r m a n c e 
of t h e s q u a r e d cor re la t ion coefficient is i m p l e m e n t e d for zero m e a n s t a t i o n a r y process . 
Two typica l r a n d o m v ib ra t ions wi th non l inea r d a m p i n g a n d res tor ing , respect ively, a r e 
examined . T h e resu l t s show good a c c u r a t e a p p r o x i m a t i o n s w h e n t h e non l inea r i t y varies 
from t h e weak t o s t r o n g levels. F u r t h e r inves t iga t ion , however , is n e e d e d t o b e e x t e n d e d 
t o o t h e r nonl inear sys tems . 
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