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A b s t r a c t . We further study isogeometric approach for response analysis of laminated 
composite plates using the higher-order shear deformation theory. The present theory is 
derived from the classical plate theory (CPT) and the shear stress free surface conditions 
are naturally satisfied. Therefore, shear correction factors are not required. Galerkin 
weak form of response analysis model for laminated composite plates is used to obtain 
the discrete system of equations It can be solved by isogeometric approach based on 
the non-uniform rational B-splines (NURBS) basic functions. Some numerical examples 
of the laminated composite plates under various dynamic loads, fiber orientations and 
lay-up numbers are provided. The accuracy and reliability of the proposed method is 
verified by comparing with analytical solutions, numerical solutions and results from 
Ansys software. 

Keywords. Transient analysis, laminated composite plate, isogeometric analysis, NURBS, 
Newmark integration. 

1. INTRODUCTION 

The transient response of laminated composite plates has received much attention 
from designers due to increasing applications of composite in high performance aircraft, 
vehicles and vessels. Whether they are used in civil, marine or aerospace, most structures 
are subjected to dynamic loads during their operation. Therefore, there exists a need for 
assessing the natural frequency and transient response of structures. 

Many numerical methods have been developed to compute, analyze and simulate 
the response as well as dynamic characteristics of laminated composite plates. Out of 
these methods, the finite element method (FEM) has become the universally applicable 
technique for solving boundary and initial value problems. In the past years, Reismann 
[1], Reismann and Lee [2] have analyzed simply supported rectangular isotropic plates, 
which are subjected to suddenly a uniformly distributed load over a square area on the 
plate. The transient finite element analysis of isotropic plate was also carried out by 
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Rock and Hinton [3] for thick and thin plates. Akay [4] determined the large deflection 
transient response of isotropic plates using a mixed FEM. For composite plates, Reddy [5] 
presented finite element results for the transient analysis of layered composite plates based 
on the first-order shear deformation theory (FSDT). Mallikarjuna and Kant [6] presented 
an isoparametric finite element formulation based on a higher-order displacement model 
for dynamic analysis of multi-layer symmetric composite plate. Wang and his co-workers 
developed the strip element method (SEM) for static bending analysis of orthotropic 
plates. Then, Wang et al. [7] extended the SEM to analyze dynamic response of symmetric 
laminated plates. 

Although FEM is an extremely versatile and powerful technique, it has certain dis­
advantages. Recently, Hughes and his co-workers have proposed a robustly computational 
isogeometric analysis [8]. Following this approach, the CAD-shape functions, commonly 
the non-uniform rational B-splines (NURBS) are substituted for the Lagrange polynomial 
based shape functions in the CAE. The computational cost is decreased significantly as 
the meshes are generated within the CAD. IGA gives higher accurate results because of 
the smoothness and the higher-order continuity between elements [9,10]. 

In this paper, a higher-order displacement field in which the in-plane displacement is 
expressed as cubic functions of the thickness coordinate with constant transveree displace­
ment across the thickness is used. The finite element formulation based on the higher-order 
shear deformation theory (HSDT) requires elements with at least C^-inter-element con­
tinuity. It is difficult to achieve such elements for free-form geometries when using the 
standard Lagrangian polynomials as basis functions. Fortunately, IGA can be easily ob­
tained because NURBS basis functions are C^~^ continuous. The governing equations of 
the laminated composite plates are transformed into a standard weak-form, which is then 
discretized into the system of time-dependent equations to be solved by the unconditionally 
stable Newmark time integration scheme. Several numerical examples with many different 
models are provided to illustrate the effectiveness and reliability of the present method in 
comparison with other results from the literature. 

The paper is outlined as follows. Next section introduces the HSDT for laminated 
composite plates. In section 3, the numerical formulation relied on the HSDT and IGA 
is described. The numerical results and discussions are provided in section 4. Finally, in 
section 6, concluding remarks are presented with the brief discussion of the numerical 
results obtained by the developed methodology. 

2. THE HIGHER-ORDER SHEAR DEFORMATION 
THEORY FOR PLATES 

Let fi be the domain in M̂  occupied by the mid-plane of the plate and UO,VQ,W 
and 0 = {0x\0y)'^ denote the displacement components in the x;y\z directions and the 
rotations in the x — z and y — z planes (or the-y and the-x axes), respectively. Fig. 1 shows 
the geometry of a plate and the coordinate system. A generalized displacement field of an 
arbitrary point in the plate based on higher-order shear deformation theory derived from 
the classical plate theory is defined as follows [9] 
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u (x, V, z, t) = «o (x, y, t) - z^"'!^"'*' + / {z) & (x, y, t) 

v(,x,y,z,t) = v„{x,y,t)-z'^'"^l'y'*'>+f{z)P,(x,y,t),[^<z<f^ W 

w (rt, y, z,t) = w {x, y, i) 

In this paper we exploit the third-order shear deformation theory (TSDT) of Reddy 
[11] and the distribution function is written as / (2) — z - Az^/Zh^. 

Fig. 1. Plate model and coordinate system 

The relationship between strains and displacements is described by 

£p = [exx £yy Ixyf ^ £o + Z£l + f{z)£2, 

7 = bxz fyzf = f'{z)es 
(2) 

dUQ 

dx 
dvo 
dy 

dvQ duo 
dx dy 

,£1 -

r d^w 
dx^ 
d'^w 

dy' 
d \ 

dxd 

dx 

dx dy 

(3) 

Neglecting a^ for each orthotropic layer, the constitutive equation of an orthotropic 
lamina in the local coordinate system is derived from Hooke's law for a plane stress con­
dition as 

3 n Q12 0 0 0 " ' • 
CT; I Q12 Q22 0 0 a 
^12 )= 0 0 (333 0 0 { 71*2 ^ (4) 

0 0 0 Q55 0 7*3 
0 0 0 0 Q44 J [ 7I3 
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where subscripts 1 and 2 are the directions of the fiber and in-plane normal to fiber, 
respectively, subscript 3 indicates the direction normal to the plate, and the reduced 
stiffness components, Qf_, are given by 

^'^ — — z^-- = — -,Q22 = ; — : i r . .fc"' ^33 — '^i2'y55 — ^n^^i'' — '^^•'• 
1- '^12^21 1 - ^12^21 - ^12^21 

(5) 
in which Ei,E2, Gn, '?23, G13 and 1̂2 are independent material properties for each layer. 

The laminate is usually made of several orthotropic layers. Each layer must be 
transformed into the laminate coordinate system {x, y, z). The stress-strain relationship is 
given as 

Q26 
Q33 

0 
0 

Q55 Q54 
7a:!; 

7' 

(6) 

where Q'^- is the transformed material constant matrix (see [12] for more details). 
From Hooke's law and the linear strains given by Eq. (2), the stress is computed by 

(7) 

where tTp and r are the in-plane stress component and shear stress, respectively, and D* 
is material constant matrices given in the form as 

(8) 

A,„B,j,D,„Eij,F,„H,j= j 

M2 

J-h 2 

h/2 

Q.jdz, i,j = 

{i.,z,z\f{z),zf(z),f{z))Q„dz, i,i = 1,2,6, 

(9) 

For forced vibration analysis of the plates, a weak form can be derived firom the 
following undamped dynamic equilibrium equation as 

/ <5ejD*epdSl+ / 6-f'D''idQ.+ f 5u^mQdfi - / 5wg{x,y,t)dn, (10) 
Jci Jn Jn Jn 

where q{x, y, t) is the transverse loading per unit area and the function depending on time 
and space; the mass matrix m is calculated according to the consistent form given by 

r /. 12 u 1 "i; 
n i = I2 h h\,',h,l2,h,Ii,h,h)= / p ( l , z , 2 ' , / W , 2 / W , / ' W ) d z , (11) 
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in which ii = [ ui U2 U3 ] with 

Ui = 

where p is the mass density. 

U 2 = ^ -W^y 

0 
U 3 = 

0 
(12) 

3. THE LAMINATED COMPOSITE PLATE FORMULATION 
BASED ON N U R B S BASIS FUNCTIONS 

3.1. Introduction to N U R B S basis functions [9] 

Given a knot vector S = {^1,̂ 21 • • • ,^n+p+i}, the associated B-spline basis functions 
are defined recursively starting with the zero*'' order basis function (p == 0) as 

and for a polynomial order p > 1 

•{; 
it 

«".,p(0 = 
^ - ^ i 

-?. 
iv.,, I (OH 

otherwise 

+ i , p - i (0-

(13) 

(14) 

A knot vector S is defined as a sequence of knot value ^i € R, ^ = 1 , . . . , n + p. If 
the first and the last knots are repeated p -I- 1 times, the knot vector is called open knot. 

By the tensor product of basis functions in two parametric dimensions ^ and 77 
with two knot vectors S = {^1,^2, • • • )?n-t-p+i} and H — {771,7/2, ••• i^^m+g+i}. the two-
dimensional B-spline basis functions are obtained as, NA (^, ^) = Ni^p ( 0 •'Ki.g iv) • Fig- 2 
illustrates a bivariate cubic B-spline basic fimction. 

Fig. 2. A bivariate cubic B-spline basis function with knot vectors 
S = H - {0,0,0,0,0.25,0.5,0.75,1,1,1,1} 
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To exactly represent some curved geometries (e.g. circles, cylinders, spheres, etc.) 
the non-uniform rational B-splines (NURBS) functions are used. Being different from B-
spline, each control point of NURBS has additional value called an individual weight I^A [8]-

Thus, the NURBS functions can be expressed as RA (^,^) = NACA/ Z ) N'A i^,ri)CA- It 
A=i 

is clear that B-spfine function is only the special case of the NURBS function when the 
individual weight of control point is constant. 

3.2. A higher-order plate formulation based on N U R B S approximation 

Using the NURBS basis functions defined above, both the description of the geom­
etry (or the physical point) and the displacement field u of the plate are approximated as 

x''(^,^)= X^i;>i(^,r7)P.i; u''(^,77)= Y^RA{^,V)<IA, (15) 
^=1 A=l 

where 71 X m is the number basis functions, x^ = (re y) is the physical coordinate vector. 
In Eq. (15), i?^(^,77) is rational basic functions. PA is the control points and 

^A = [ ^0.4 VQA yJA 0xA 0yA ] 'S the vector of nodal degrees of freedom associ­
ated with the control point A. 

Substituting Eq. (15) into Eq. (3), the in-plane and shear strains can be rewritten as 

[^p7r=E[BJ B$; B« B^fc^, (16) 

RA.X 0 0 0 0 
O' RA,y 0 0 0 

RA,y RA,X 0 0 0 

0 0 0 RA,, 0 
0 0 0 o' RA,y 
0 0 0 RA,, RA,I 

0 0 ~RA.„ 0 0 
0 0 -RA,,, 0 0 

0 0 -2RA„ 0 0 

0 Q 0 RA 0 
0 0 0 0 RA 

(17) 

For forced vibration analysis of the plates, undamped dynamic discrete equation 
can be written from Eq. (10) as 

M q + Kg = F(i)> 

where the global stiffness matrix K is given by 

A 
B 
E 

B 
D 
F 

E " 
F 
H 

" i + (B»)'-D'l 
" J 

(18) 

(19) 

The distributed transverse force in the z direction one has the following expression 

F{t) ^ J Ilq{x,y,t)dil, (20) 
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: [ 0 0 RA 0 0 ] . 

The global mass matrix M is given i 

- / . 
h' 

h 

N i • 

N2 
N3 

(21) 

(22) 

RA 0 
0 RA 
0 0 

; N 2 
-RA., 

-RA,, 
0 

N3 = 
0 RA 
0 0 
0 0 

0 • 

RA 
0 

(23) 
It should be noted that for forced vibration analysis, the approximate function is 

done with both space and time. For the displacements and accelerations at time t + At, 
Eq. (18) should be considered at time t -f At as follows 

Mqt+At+ Kq(^ At)- (24) 

To solve this second order time dependent problem, several methods have been 
1 such as, Wilson, Newmark, Houbolt, Crank-Nicholson, etc. In this paper, Eq. 

(18) is solved by the Newmark time integration method. The Newmark method is an 
implicit method. This method assumes that the acceleration varies linearly within the 
interval (t, t + At). The formulation of the Newmark method is [13] 

[M + QK(Af)"] qi = F i - lKq„ + KAtqo + ( i - a)Kqo(At)"l, (25) 

qi = qo + (1 

qi = qo + qoAt 

i5)qoA( 

1 _ 
2 ~ 

¥ SiiiAt, 

a)qo(At)2 + Qqi(At)^ 

(26) 

(27) 

The parameters a and S are constants whose values depend on the finite difference 
scheme used in the calculations. Two well-known and commonly used cases are average 
acceleration method (a = 1/4 and 6 = 1/2) and linear acceleration method (a = 1/6 and 
5 = 1/2). Here we used the average acceleration method, which is unconditionally stable 
if 5 > 0.5 and a > 1/4(5 -|- 0.5)^. 

4. N U M E R I C A L E X A M P L E S 

4 .1 . A s tudy of t h e convergence 

Free vibration analysis of the laminated composite plates is investigated correspond­
ing to right hand side of Eq. (18) equal to zero. Let us consider a four-layer [0^/90°/90*'/0'^] 
square plate with simply supported boundary condition. The effects of the length to thick­
ness a/h and elastic modulus ratios E1/E2 are studied. To show the convergence of the 
present approach, the length to thickness a/h = 5 and elastic modulus ratios E1/E2 = 40 
are used. As shown in Tab. 1, the normalized fi-equencies are computed using meshes of 
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9 X 9, 13 X 13 and 17 x 17. It can be observed that the differences of normalized fre­
quencies between meshes of 9 x 9 and 13 x 13 are not significant and between meshes of 
13 X 13 and 17 x 17 are identical. Hence, for a comparison with other methods, a mesh 
of 13 X 13 cubic elements can be chosen. The first normalized frequency derived from the 
present approach is Usted in Tab. 2 corresponding to various modulus ratios and a/h = 5. 
The obtained results are compared with analytical solutions based on the HSDT (14,15] 
the moving least squares differential quadrature method (DQM) [16] based on the FSDT, 
the meshfree method using multiquadric radial basis functions (RBFs) [17[ and wavelets 
functions [18] based on the FSDT. A good agreement is found tor the present method in 
comparison with other ones. It is also seen that the present results match very well with 
the exact solutions [14,15]. The influence of the length to thickness ratios is also consid­
ered as displayed in Tab. 3. The obtained results are compared with those of Zhen and 
Wanji [19] based on a global-local higher-order theory (GLHOT), Matsunaga [20| based on 
a global-local higher-order theory. Again, a good agreement with other published solutions 
is obtained. 

Table 1. The convergence of non-dimensional frequency parameter w — (uja^/h) {P/E2) 
of a four layer [0''/90*'/90''/0''] simply supported laminated square plate iajh ^ 5) 

Method 

IGA (present) 

Meshes 
9 x 9 

10.7876 
13 x 13 
10.7873 

17 x 17 
10.7873 

Table 2. A non-dimensional frequency parameter zo = {ua^/h) {p/Eif^^ of a [OO/OO /̂gO /̂O ]̂ 
simply supported laminated square plate {a/h — 5) 

Method 

RBFs-FSDT [17] 
Wavelets-FSDT [18] 

DQM-FSDT [16] 
Exact-HSDT [14,15] 

IGA (present) 

B1/E2 
10 

8.2526 
8.2794 
8.2924 
8.2982 
8.2718 

20 
9.4974 
9.5375 
9.5613 
9.5671 
9.5263 

30 
10.2308 
10.2889 
10.3200 
10.3260 
10.2719 

40 
10.7329 
10.8117 
10.8490 
10.8540 
10.7873 

Table 3. A non-dimensional frequency parameter w = (wa^/h) {P/E2Y' of a [0790*^/9070"] 
simply supported laminated square plate {E1/E2 = 40) 

Zhen et al. 
Matsunaga 

191 
20| 

IGA (present) 

a/h 
4 

9.2406 
9.1988 
9.3235 

5 
10.7294 
10.6876 
10.7873 

10 
15.1658 
15.0721 
15.1073 

20 
17.8035 
17.6369 
17.6466 

25 
18.2404 
18.0557 
18.0620 

50 
18.9022 
18.6702 
18.6718 

100 
ij.9.1566 

18.8352 
18.8356 
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4.2. Transient analysis 

In order to demonstrate the accuracy and effectiveness of the present method for 
transient analysis of laminated composite plates, four numerical examples with different 
transient loadings are studied. The obtained results are compared with other numerical 
or analytical solutions available in the literature or commercial software. For first three 
examples, cubic order NURBS basis function with 13x13 elements is used. All layers of 
the laminated plates are assumed to have the same thicknesses and material properties. 
The time step At = 0.1 ms is chosen for Sections 4.2.1 and 4.2.2. 
4.2.1. A three-layer square plate [O /̂gO /̂O'*] 

First, a fully simply supported three-layer square laminated plate sorted as 
[0'^/90''/0''] is considered. Material I is used, shown in Tab. 4. This example was also 
studied by Wang et al. [7] using the trip element method (SEM), which is chosen here to 
demonstrate the accuracy of the IGA in dynamic analysis of plates under different tran­
sient loads including step, triangular, sine and explosive blast loads. The length and the 
thickness of square plate are assumed to be a = 2Qh and h = 0.0381 m, respectively. The 
plate is subjected to a transverse load which is sinusoidally distributed in spatial domain 
and varies with time as 

q{x,y,t) = gosin(- (28) 

F{t)--

( 1 0<t<ti \ 
\ 0 (> ti J 

{• 
J sin(7rt/ti) 0 < « < ti 

-t/ti 
0 

<ti 
h 

0<t<ti 
t > h 

Step loading 

Triangular loading 

Sine loading 

Explosive blast loading 

(29) 

where ti = 0.006 s, 7 = 330 s" ' and 50 = 3.448 MPa. 

Table 4- Properties of material 

Material 

I 

II 

HI 

£i(GPa) 

172.369 

172.369 

131.69 

E2 (GPa) 

6.895 

6.895 

8.55 

G12 (GPa) 

3.448 

3.448 

6.67 

Gi3 (GPa) 

3.448 

3.448 

6.67 

G23 (GPa) 

3.448 

1.379 

6.67 

"12 

0.25 

0.25 

0.3 

P (kg/m=) 

1603.03 

1603.03 

1610 

Fig. 3 shows the time histories of central deflection of the plate under various dy­
namic loadings. The obtained results of present solution using IGA are compared with 
those obtained by Wang et al. [7] using the strip element method (SEM). As expected, the 
effectiveness of this work is fully believable when profiles relatively coincide with Wang et 
al.'s solutions. 
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(d) Explosive blast loading 

Fig. 3. Variation of the center deflection as a function of time for a (O /̂QO /̂O") square laminated 
composite plate subjected to various dynamic loadings 

Second, a fiilly simply supported three-layer square laminated plate sorted as 
[0^/90''/0'^] is also considered. Material II is used. The length and thickness of the plates 
are assumed to be a = 5/i and h = 0.1524 m, respectively. As above example, the plate is 
also subjected to sinusoidally distributed transverse load (with qo = 68.9476 MPa). The 
displacement at the center of plate is also studied. Khdeir and Reddy [21] originally inves­
tigated this benchmark solution. Fig. 4 shows variation of the displacement at the center 
of plate as a function imder various dynamic loadings. The present solutions based on IGA 
and TSDT are compared with exact solution of Khdeir and Reddy [21] using HSDT. As 
observed in Fig. 4, the profiles are relatively accurate, the error estimate is very small and 
approvable when comparing with exact solution. 
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M\l\l\hf 
Exact[Kh!jBlr,Re(My)| 1 / 

(a) Step loading (b) Triangular loading 

•nme(5) 

(c) Sine loading 

Time (5) 

(d) Explosive blast loading 

Fig. 4- Central deflection versus time for a [O /̂DO /̂O"] square laminated plate 
subjected to various dynamic I 

4.2.2. A four-layer square plate [30°/ - 30°/ - 30V30°] 

A fully clamped four-layer angle-ply square laminated plate with symmetrically 
stacking sequences [30°/ - 30°/ - 30°/30°] is considered. Material III is used. The length 
to thickness ratio of the plate is assumed to be a/h ~ 50. The plate is also subjected to 
a transverse load which is uniformly distributed over the plate and is called conventional 
blast loading [7]. 

in which go = 

? { I , ^ / , t ) = ? o ( l - - ) e - ° ' " ' ^ 
E2 

S.9476 KPa, i j = 0.004 s, ai = 1.98. 

(30) 
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Fig. 5. The time history of the center deflection of the [30°/ - 30 "̂/ - SO /̂SO"] 
fully clamped laminated plate 

The time history of the deflection at the center of the four-layer fully clamped 
(CCCC) laminated plate is investigated, as shown in Fig. 5. The results are compared 
with the solutions of Wang et al. [7]. Prom Fig. 5, the present results match well with the 
reference solutions. 
4.2.3. A circular four-layer plate (45°/ - 45°/ - 45''/45°] 

Finally, to increase lively for numerical examples and obtain the desired effect, we 
consider a [45°/ - 45°/ - 45°/45°] circular plate with fully clamped (CCCC) boundary 
condition as shown Fig. 6a. Material parameter III is used. The plate is also subjected to 
a conventional blast load as given in Section 4.2.2. The circular plate has the radius to 
thickness ratio is 10 {R/h — 10). A rational quadratic basis is enough to model exactly 
the circular geometry. Coarse mesh and control net of the plate with respect to quadratic 
and cubic elements are illustrated in Fig. 7. Time step for transient analysis is chosen 
At = 0.4 ms. The plate is meshed with 13 x 13 NURBS cubic elements as shown Fig. 6b. 
Fig. 8 illustrates the profile of displacements versus time at the center of the circular plate 

(a) 

Fig. 6. The circular plate, (a) geometry and (b) mesh t 

(b) 

1 13 X 13 cubic elements 
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subjected to conventional blast load. Obtained results are compared with solutions from 
ANSYS 13 which using SHELL 181 elements. It can be seen that the present solutions axe 
in good agreement with the solutions fi-om ANSYS software. 

( a ) p - 2 

Fig. 7. Coarse mesh and control points of a circular plate with various 

8 

e 

4 

I 5 
g 2 

i ° 
l-z 

-4 

-6 

/-J 1 ANSYS13|/-^\ 
i/\\ Presenl / ' \ \ 

// \ /'' \\ 
/ \ /' \* 
/ V /' \'' 

\ / V / ^ 

\ / V / 
\ / ' \ /1 

\y x/-

0 005 0 01 0.015 

Fig. 8. The deflection at the center of the [45°/ - 45"/ - 45745°] circular 
laminated plate subjected to a conventional blast load 

5. C O N C L U S I O N S 

Isogeometric analysis combined with TSDT to analyze the transient of laminated 
composite plates is first studied. The displacement field is generally defined and is de­
rived firom CPT. The Newmark time-integration algorithm was chosen to approximate the 
ordinary differential equations in time. We have successfully extended an application of 
the NURBS-based isogeometric finite element approach to analyze dynamic response for 
laminated composite plates as this work. IGA is the effectively numerical method. It has 
expressed well its role in solving the problems with just few elements especially curved 
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geome t ry as circle. T h e ca lcula t ion of these p r o b l e m s h a s b e e n d o n e ve ry fast . I t n o t only 

helps t o save costs b u t al^o increases t h e accu racy of so lu t ions . T h e n u m e r i c a l resu l t s 

agreed well w i t h t hose of available references a n d exac t so lu t ion , a n d hence i l l u s t r a t ed t h e 

accuracy a n d effectiveness of t h e present m e t h o d . 
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