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Abstract. Based on the classical thin shell theory with the geometrical nonlineanity in
voo Karman-Donnell sense, the smeared stiffener technique and Galerkin method, this
paper deals with the nonlinear dynamic problem of eccentrically stiffened functionally
graded circular cylindrical shells subjected to time dependent axial compression and
external pressure by analytical approach. The present novelty is that an approximate
three-term solution of deflection taking into account the nonlinear buckling shape is cho-
sen, the nonlinear dynamic second-order differential three equations system is established
and the frequency-amplitude relation of nonlinear vibration i1s obtained in explicit form.

Keywords: Functionally graded material, discontinuous reinforcement, buckling, elastic-
ity, analytical modelling.

1. INTRODUCTION

Many authors studied the static buckling and postbuckling of FGM cylindrical
shells subjected to the mechanic and thermal loading. Shen [1,2] investigated the non-
linear postbuckling of thin FGM cylindrical shells and FGM hybrid cylindrical sbells in
thermal environments under lateral pressure and axial loading, respectively. Bahtui and
Eslami (3] investigated the coupled thermo-elasticity of FGM cylindrical shells. Batra and
Taccarino [4) presented the exact solutions for radial deformations of a functionally graded
isotropic and incompressible second-order elastic cylinder. Huang and Han |5-7) studied
the buckling and postbuckling of un-stiffened FGM cylindrical shells under axjal compres-
sion, radial pressure and combined axial compression and radjal pressure based on the
Donnell shell theory and the nonlinear strain-displacement relations and the nonlinear
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three term solution form is used. Sun et al. [8] proposed the accurate symplectic space
solutions for thermal buckling of functionally graded cylindrical shells. The postbuckling
of shear deformable FGM cylindrical shells surrounded by an elastic medium was studied
by Shen [9]. Dung and Hoa [10] investigated the nonlinear torsional buckling and post-
buckling of eccentrically stiffened functionally graded thin circular cylindrical shells. Liew
et al. [11) studied postbuckling responses of functionally graded cylindrical shells under
axial compression and thermal loads. Sofiyev |12] analyzed the buckling of FGM circular
shells under combined loads and resting on the Pasternak type elastic foundation. The
non-linear static buckling of FGM conical shells which is more general than cylindrical
shells, were studied by Sofiyev 13, 14]. Torabi et al. [15] studied the linear thermal buck-
ling analysis of truncated hybrid FGM conical shells.

For dynamic analysis of FGM cylindrical shells, Singh et al. [16] investigated tor-
sional vibrations of functionally graded finite cylinders. Darabi et al. |17] presented respec-
tively linear and uonlinear parametric resonance analyses for un-stiffened FGM cylindri-
cal shells. Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical
shells was investigated by Chen et al. (18]. Sofiyev and Schnack [19] and Sofiyev [20]
obtained critical parameters for un-stiffened cylindrical thin shells under linearly increas-
ing dynamic torsional loading and under a periodic axial impulsive loading by using the
Galerkin technique together with Ritz type variation method. Sofiyev [21-24] and Deniz
and Sofiyev [25] investigated the vibration and dynamic instability of FGM conical shells.
Torsional vibration and stability of functionally graded orthotropic cylindrical shells on
elastic foundations is presented by Najafov et al. [26]. Sofiyev and Kuruoglu [27] investi-
gated the torsional vibration and buckling of the cylindrical shell with functionally graded
coatings surrounded by an elastic medium. Tornabene and Viola [28] studied free vibra-
tion analysis of functionally graded panels and shells of revolution. Huang and Han [29)
presented the nonlinear dynamic buckling problems of un-stiffened functionally graded
cylindrical shells subjected to time-dependent axial load by using the Budiansky-Roth
dynamic buckling criterion [30]. Various effects of the inhomogeneous parameter, loading
speed, dimension parameters; environmental temperature rise and initial geometrical im-
perfection on nonlinear dynamic buckling were discussed. Dynamic analysis of thick short
length FGM cylinders was investigated by Asemi et al. [31].

In engineering design, plates and shells are usually reinforced by stiffeners for the
benefit of added load carrying capability with a relatively small additional weight. How-
ever, the investigation on this field has received comparatively little attention. Najafizadeh
et al. (32] bave studied linear static buckling of FGM cylindrical shell under axial compres-
sion reinforced by FGM stiffeners. Bich et al. [33-36) investigated the nonlinear static and
dynamic analysis of FGM plates, cylindrical panels, shallow shells and cylindrical shels
with eccentrically homogeneous stiffener system. Dung and Hoa {37) presented an analyt-
ical study of nonlinear static buckling and post-buckling analysis of eccentrically stiffened
functionally graded circular cylindrical shells under external pressure with FGM stiffen-
ers and approximate three-term solution of deflection taking into account the nonlinear
buckling shape.

To best of authors’ knowledge, there is no analytical approach on the nonlinear dy-
namic analysis of stiffened FGM shells subjected to time dependent external pressure and
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axial compression by analytical approach. In addition, the nonlinear three term solution
of deflection is popular used to investigate the nonlinear static analysis of shell [5-8 and
37], but there are a mathernatical difficulty on the nonlinear dynamic analysis. This paper
studies the dynamic behavior of stiffened FGM cylindrical circular shells under mechanic
loads. The nonlinear dynamic equations are derived by using the classical shell theory
with the nonlinear strain-displacement relation of large deflection, the smeared stiffeners
technique and Galerkin method. The three-term solution of deflection is used and the
frequency-amplitude relation of nonlinear vibration is obtained in explicit form.

2. ECCENTRICALLY STIFFENED FGM CYLINDRICAL SHELLS
(ES-FGM CYLINDRICAL SHELLS)

An ES-FGM cylindrical shell as shown in Fig. 1 is assumed to be thin with length
L, mean radius R, reinforced by hormogeneous ring and stringer stiffener systems. Stiffener
material is similarly designed with Refs. [33-36] is full ceramic if it is located at ceramic-rich
surface and is pure-metal if is located at metal-rich surface. The origin of the coordinate 0
locates on the middle plane of the shell, z,y = R, z axes are in the axial, circumferential,
and inward radial directions, respectively.

Fig. 4. Geornetric and the coordinate system of an eccentrically stiffened FGM cylindrical shell

Functionally graded material is assumed to be made from a mixture of ceramic and

metal with the simple power law exponent of volume fraction distribution
3
2:+h
ve=via = (Y5 ) VoYl = 1= e,

where A is the thickness of shell; & > 0 is the volume fraction index; z is the thickness
coordinate and varies from —h/2 to h/2; the subscripts m and ¢ refer to the metal and
ceramic constituents, respectively.
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Effective properties Pr.y of functionally graded material are determined by linear
rule of mixture
Progy = Pro(2)Vin(2) + Pre(2)Ve(2).
The Young’s modulus and mass density can be written by according to the men-

tioned law N
22+ h
E(2) = EmVim + E.Ve = Em + (Ec — Em) o

2z + h\*
p(2) = praVin + pVe = pm + (P — pm) ( oh )
and the Poisson’s ratio v is assumed to be constant for simplicity. According to the von
Karman nonlinear strain-displacement relations of cylindrical shell [38], the mid-surface
strain components are
o_Bu L(ow\' o v _w 1(8w\®
=5 T\5: ) YT R 2\5y
0_3u+@+6w6w _ % _ % _
Y= o T T ety T e T o X gy
where €2 and £ are normal strains, ¥, is the shear strain at the middle surface of shell,
Xz, Xy» Xey 8r€ the change of curvatures and twist of shell, and u = u(z,y), v = v(z,y),
w = w(z,y) are displacements along x, y and z axes, respectively. The strains components
can be written as the form

M

2

e =€0—zxz, Ey :zg —2ZXy, Yay = 72!, — 22Xzy. (3)

The deformation compatibility equation is deduced from Eq. (2)

%0 8%y 9%, 1 0%w 8w \* 8w dw
Bt e ot (aesy) o @
Hook's stress-strain relation for the shell is presented
oth = 1E_(Z,,)z (ex + vey), uj“ = lﬂjz,}z (ey + veg), 75:,' =20+ (?(-iz—)u)%y' ®)
and for stiffeners
ot = Ber, ot = Eyey, (6)

where Ej, E, are Young's modulus of stringer and ring stiffeners, respectively.

Taking into account the contribution of stiffeners by the smeared stiffeners technique
and omitting the twist of stiffeners [38) and integrating the stress-strain relations and their
moments through the thickness of shell, the force and moment of an ES-FGM cylindrical
shell are

Ss

FsA
Ny = (Au + = 5) 52+A1258— (Bn + Cs) Xz — Braxy,

E A,
Ny = A2l + (An + ) Es — Biaxz — (Ba2 + Cr) xy,

v
Sr

Ny = Ass 79, — 2BssXzy:
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=(Bii+Cy)el + Blzsg - (

E,lI
2 ‘) Xz — Diaxy,
s
My = Bued + (B + Cr) €} — Diaxe — <D22 + ﬂ) Xy» ®)

May = Be12, — 2DeeXzy,

where A,;, B,j, Dy; (4,5 = 1,2, 6) are extensional, coupling and bending stiffness of the un-
stiffened FGM cylindrical shell. They are defined as

E\v E,
An=Ap=—— Ap=—2L =1
B S 2T Ass 2(1+v)’
B, By Fy
By = By = _ B __ B
n=Br=1—"7 Bu =5 Bes 047 )
Egv Ey
Dy = Dyg = = =Y =3
1 2= 1,0 Dyy =2 Degg TA+0)
in which
E.—Ep (E — Ep) kh?
Ey=En+—=—""h, —7‘ =
! ("‘ k+1) B 2(k+1)(k+2)
E,, 1 1
Ey= |22 4 (B, - Em — L m
3 [2” )(k+3 k+2+4k+4)]h‘
dsh d.h3
I, = L= B 422
=T == A (10)
A'=j:EAsz‘ C—+ EAzr
s Sr
hs+h h.+h
=T 2
2R
85 , s =—,
ng ne
where

Cy and C, are negative for outside stiffeners and positive for inside ones.
s, and s, are the spacing of the stringer and ring stiffeners, respectively.
dg, hy and d,, b, are the width and thickness of the stringer and ring stiffeners, respectively.
Ay, A, are the cross-section areas of stiffeners.
1y, Iy, 24, z, are the second moments of cross section areas and the eccentricities of stiffeners
with respect to the middle surface of shell, respectively.
E,, E, are Young’s modulus of stringer and ring stiffeners, respectively.
From the Eq. (7), one can obtain inversely

€2 = A5y Nz — AjpNy + Biyxs + Biaxy,
0= A} N, — AlaNe + By xz + Bhaxy, (11)
'7:0:y = AggNzy + 2Bgs Xy,
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L1 E,A 1 B A
A“=Z( 553)1A52=Z( 5 ),
LA, 1
Ay = N
Er A,
A= ( ) (A + == ) A,
Bj, = A3 (Bu +Cs) - AuBm, (12)
B3y = A} (B2 + Cr) — Ajp B,
B}, = A3, Bi2 — A}y (B +Cr),
B3y = A1y Biz — A} (Bu + Cs),
. _ Bss
Bgg = Ao

Substituting Eq. (11) into Eq. (8) leads to

where

Mg = B[\ Nz + B3, Ny — DXz — Diaxy,
My = BiyN; + B3Ny — D3y Xz — Dioxy, (13)
Mzy = BggNzy — 2DggXay»

. El. . .
Diy =Dy + g — (Bn + Cs) By, — Bi2B3,,

D3y = D2

— (Ba2 + Cy) By,
(14)
Dip =Dy - (311 +Cs) By, — Bi2Bjy,
D3y = D12 = BuaBy, = (B2 + Cr) B3y,
Dgs = Dgs — Bes Bgg-

The nonlinear equations of motion of a thin circular cylindrical shell based on the

. 0% v
assumption u < w and v € w, PgE 0, pros

— 0 [17,19,39)] are given by

at?
8N, 0Ny _
dz T
Ny BN,
oz T oy =0 (19)
M, aﬁsz M, 9w w 0%
952 520y + 5 + Nz e +2Nzyaﬂ,)y +N"Ty’+

Pw ow
+§Ny +90 =Gz + 2‘01“5'
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where p is the linear damping coefficient, and
A

As A, Pe — P ) As A
= 2)dz + pg— + py— = = — =
n /P( ) P o <Pm el LA PR aat (16)

lr

with p. = pm, ps = pm if stiffeners are full metal and p, = p,, ps = p. if stiffeners are full
ceramic. The first two of Eq. (15) are identically satisfied by introducing a stress function
¥

i) ) 82

N.=22% N =9
ey Noy 020y

Ly (17)

Substituting Eq. (11) into Eqs. (4) and (13) and the third of Eq. (15), taking into
account Egs. (2) and (17), we have

LB . A Oy o,
“E:;+(A66—2A,2)812—6y2+Ana—yd+192154—+
w w1 0%w w\? 9%wdw
By + Bl — 2B 2@ g TW 2OW _Twotw)
*+(Biv+ By, = 2B86) grz + Blog * Raw [(azay) oy | ="
(18)
Puw dw o, d'w . N Ly 0w
ey + Zmpﬁ + D“ﬁ + (D}, + D3, +4Dgg) 703:2i)y2+
LOw L B L AL L P
+an—32137*(Bu+3n—23m)31T0y2—Bmw— (19)
18% 9% 0w 82 0w e w =0
_1%y Opow K B—

Roz?  By? 9x2 | “0z0y by  0z® OyF
Eqs. (18) and (19) are a nonlinear governing equation system. They are used to
investigate the dynamic characteristics of ES-FGM circular cylindrical shells.

3. NONLINEAR DYNAMIC BUCKLING ANALYSIS

Suppose that an ES-FGM cylindrical shell is simply supported and subjected to
uniformly distributed pressure of intensity go and axial compression of imtensity rq respec-
tively at its cross-section (in N/m?). The boundary conditions of this study are

w=0, My;=0, Ny=-rgh, Ngy=0 at z=00L. (20)

Assume the buckling mode shape is represented by the popular form [5-8,39), the
simply supported boundary condition Eq. (20) is fulfilled on the average sense
mTﬂlsin%J+];sin2 % (21)
where fy = fo(t) is time dependent unknown uniform deflection of pre-buckling state,
fi = fi(t) is time dependent unknown linear buckling deflection, fp = fa(t) is time
dependent unknown nonlinear deflection, m is numbers of half waves and n is nminbers of
full wave in axial and circumferential directions, respectively.

w = fo+ f1sin
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Substituting Eq. (21) into Eq. (18) and solving obtained equation, leads to

2mrz + 0y cO8 2ny sin mnz sin ny i
@ = @) cos 13 P2 R ["41 A R

3mnz ny z2 Y 22)
+ 4 8in i3 sin 7" aoyh7 — rgh?,
where denote
n2a2 ANL — 16B3,m?n? m?n?
01= s “fff( B s Vo o= 53/t
3247, m*n 32A7,m2n 32A5,n2X (23)
B m2n?r2)? P _ m2n2n2A2j /
m—zfﬂ- 1 fifoo pa=——g— N2
A= AL mint + (Agg — 247,) mPn?aa? + Ag,niat,|
2
B = Bym*n® + (B, + By — 2Bs) m*n?r?)? + Bniat — %m’wl,
D = D}ym*n* + (D}, + D3, + 4D}s) m*n*aA? 4 Di,nix4, (24)
G = 81A},min? +9(Agg — 2A7,) m2n?m202 + Asniat,
L
A=

Substituting the expressions (21) and (22) into Eq. (19) and then applying Galerkin
method lead to

o p1d’f dfo df2
h= B LORS 2 Rpyp? 2%
aoy Rqo — Rpy T R 5 di? 2Rp 1 L Rpyp I (25)

d? d B? 44 a)4
vadhy 2L4p1u£ + (D + 7) A+ (m L "—) i+

di? 1643,  16Aj,
ZBm2:2w2A2 i (,\1‘4;1 A;lBalm21r2) s )
(W W) f11% = m*n? Lo fi — o0y hn® L2 fy = 0,
m% +2pm% + Pl%% + %mu%+
[ ()" R D) | omimimn + 32 () )
wgmintes () (3) (5-5) #io @)
om0 [oma (5)" - 4 (5 i e

h_
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For circular cylindrical shell, the circumferential closed condition must be considered

as [29,39)
ZWRLa 27R L 178 9
ov - o, w_ (oW = 2,
[fgen-Tllesi@ e o
0 0 0 0

From Egs. (11), (17), (21) and (22), this integ,ral becomes
2
—2A3,00,h + 243570k + (f2+2f0) (%) fi=o. (29)
Eliminating gy from Eqs (25)-(27) and the condition of closed form (29), lead to

d*fo dfo 4 dfz 2 _
( a2 P + Ziz T2 ) Hen(fo+20) - ennfi — ansgo + araro =0,
(30)
fo dfo d’fy dfy Lo d’f df:)
Ch o 2 +
a“h(dt’ g )t e )2 e (31)
+onfi+anfifs+anfl +osfifi - ﬁmqnfl —anrofi =0,
(ddtj;z +2u—= ({:) +aa [} + anff2 + s f2 — egarof =0, (32)
in which
1 n? 1 Ajsh
= = . ay=—, oau= , 33)
an 2AT, R, o2 54T, B 8= "= A Ror (
Rn2)\? 1 32)
D{ql—T. &zz—LA—pl(D+A f
1 [2Bm2n?22)2  n2)% (AL — <Bjm*n?)
a = Ti - I )
EARNZPS A 147, (34)
1 min4 it 1 mininint mintrin?
o4 = 77— —.+*.>. es=p - \—a t—¢ )
Lipy \1643, 16A4j, Lip
Rn2)? _ m2a?h
g = Tm Qg7 = 27

( ) ] 1A} 1m2 ) +2§ (mTﬂ)2 %);}’
N ‘< %) G (f : -) .

1 ymm\2 AL-4B;,m’w2}
[ "R (T) Aym?n? ’

2

=

I
D=
I—H
—

A~

oy

It
/\
\_/

=]
8
g
||
f—'H
=
[~
52
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Simplifying Eqs. (30)-(32), we have

(d J;o +2 dfu) + Biifo - Praf? — Brafifa + Bisfa + Brsrof2 — cazgo + craro = 0,

dt
(36)
(% +2p fl) +anfi + Bufifo + Boafifa+ assfrf} + BuafP = Prufiro =0, (37)
2 d
( lﬂj; +2p ;ti) +aa f + anfifa + assfr — azrof2 =0, (38)
where
1 1 1 1
B =200, b1z = o + a2, fia = Eﬂsmﬁu =an — §H33\ﬂ15 = 5o (39)
03
Bo1 = —Puaz, B =—Puoa — 033% + aag, )
40
P23 = Pracar — 031% +ag,  Pu = a7+ oam.
Denoting f = Wmax, from Eq. (21), the maximal deflection of the shells
f=fot fi+fa (41)

L iTR
locates at z = L— = 7% here i,j are odd integer numbers. Note that fo = fo(t),

2n
fr=ht), f f2(t)imdf f(t) in Eq. (41).
From Eqs (36)-(38) and (41), the effects of input parameters on the dynamic re-
sponse of shells are investigated.

3.1. Nonlinear vibration analysis
This section considers an ES-FGM cylindrical thin shell under uniformly lateral
pressure gg = @sin (¢ and rg = 0, Eqs. (36)-(38) become

d
( d’.go + 2;1{3‘[:) + B fo - Biaft — Biafifa + Brafo — a13Qsin 2t = 0, (42)

(ddtj;l +2u dt) +anfy + B fifo+ Bufife+axsfLfi + Bufi =0, (43)

&
<d£2+2“£)+03lf1 +apfifs+apnfr=0, (44)

where Q is excitation force and § is excitation frequency. From these equations, nonlinear
response of ES-FGM shell is investigated by using the fourth order Runge-Kutta iteration
method.

It is difficult to determine the fundamental frequencies of natural vibration, frequency-
amplitude relation of nonlinear vibration of shell. In this paper, ones can be investigated
by ignoring the uniform buckling shape and nonlinear buckling shape, Eq. (31) becomes

(ad bl dfi

o

az Ty ) +anfi +aufi - ap/QsinQt =0. (48)
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For the free and linear vibration without damping, the Eq. (45) becomes

% +onfi=0 (46)

The fundamental frequency of natural vibration can be determined by
Wmn = an. (47)

where Wy is fundamental frequency of natural vibration of shell.
Using the solution fi(t) = 7nsin () and applying the procedure like Galerkin
method to Eq. (45), the frequency-amplitude relation of nonlinear vibration is obtained

4 3 8
QF - 4 = an + ~aun’ — —a%Q. (48)
T 4 3%

Q
By introducing the non-dimension frequency parameter £ = — | Eq. (48) becomes
Wmn

dp

Jay 4 8 oy
TWmn 4

&, T we, e (49)

€-——s=1+

The frequency-amplitude relation of nonlinear free vibration @ = 0 is determined by

§=1+§ﬂ2

— 50
TWmn 10k, (50)

3.2. Buckling analysis
3.2.1. Linear static bucklhing analysis of ES-FGM cylindrical shells

Omitting the linear damping, uniform buckling shape, nonlinear buckling shape and
putting f; =0, f; = 0, and taking f, # 0 Eq. (31) becomes

Qg + o f] — azsqo — oarro = 0. (51)

By ignoring the nonlinear term of f; and ro = 0 in Eq. (51), the linear upper static buckling
load of ES-FGM cylindrical shells under only external pressure can be determined by

an

Qb = (52)

Similarly, the linear upper static buckling load of ES-FGM cylindrical shells under only
axial compression (gp = 0) leads to

oz

p (53)

Tsbu =

From Eqs. (52)-(53), the Jinear static critical buckling loads of shells are determined by
Feer = MiN rgy ¥ (m.n) and gsor = min gg, ¥{(m.n).



212 Dao Van Dung, Vu Hoat Nam

8.2.2. Dynamic buckling analysis of ES-FGM cylindrical shells

The nonlinear dynamic critical buckling analysis of ES-FGM circular cylindrical
shells based on Eqgs. (36)-(38), is investigated for two load types as follows.

Firstly, ES-FGM cylindrical shell is subjected to only lateral pressure varying as
linear function of time go = cgt in which ¢; (N/m?) is the loading speed of external
pressure.

Secondly, ES-FGM cylindrical shell is subjected to only axial compression varying as
linear function of time rg = ¢,t where ¢, (N/mzs) is the loading speed of axial compression.

Egs. (36)-(38) are the nonlinear second-order differential three equations system.
This equation system may be numerically solved.

4. CONCLUSIONS

A formulation of governing equations of eccentrically stiffened functionally graded
circular cylindrical thin shells subjected to time dependent axial compression and external
pressure based upon the classical shell theory and the smeared stiffeners technique with
von Karman-Donpell nonlinear terms is proposed in this paper. An approximate three-
term solution of deflection taking into account the nonlinear buckling shape is used. The
nonlinear dynamic equations of ES-FGM circular cylindrical shells are obtained by using
the Galerkin method. Fundamental frequency of natural vibration, frequency-amplitude
relation of nonlinear vibration and upper static buckling loads are obtained in explicit
forms. Dynamic responses will be numerically investigated and nonlinear dynamic buckling
loads will be determined by applying Budiansky-Roth criterion in next part.
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