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Abstract. A fuzzy finite-element method for analysis of laterally loaded pile in multi­
layer soil with uncertain properties is presented. The finite-element formulation is es­
tablished using a beam-on-two-parameter foundation model. Uncertainty propagation of 
the soil parameters to the pile response is evaluated by a perturbation technique. This 
approach requires a few number of classical finite-element equations to be solved and 
provides reasonable results A comparison with vertex method is made in a numerical 
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1. INTRODUCTION 

Piles subjected to lateral loading can be found in many civil engineering structures 
such as offshore platforms, bridge piers and high-rise buildings. For the design of pile 
foundations of such structures, special attention needs to be concentrated not only on 
the bearing capacity but also on the horizontal displacements of the piles under lateral 
loading conditions. The deterministic analysis of lateral load-displacement behavior of 
piles is complicated and in general requires a numerical solution procedure (e.g., the finite 
difference method, finite element method). On the other hand, uncertainty is often present 
in the input data, especially in geotechnical engineering data. These uncertainties can be 
accounted for by using probabiUstic methods, e.g., methods proposed in [1-6]. However, 
very often the input data fall in the category of non-statistical uncertainty. The reasons 
for this uncertainty may be because the observations made can best be categorized with 
linguistic variables (e.g., the soil may be described with linguistic variables such as "very 
soft", "soft", or "stiff; "loose", "dense", or "very dense"), or because only a hmited number 
of samples are available and a particular soil property are unknown or vary from location 
to other location. These types of uncertainties can be appropriately represented in the 
mathematical model as fuzziness [7]. 

In this paper, a laterally loaded pile in multi-layer soil with imcertain parameters is 
considered. It is assumed that only rough estimates of the soil parameters are available and 
these are modeled as fuzzy values. The analysis of the pile-soil interaction is based on a 
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"Beam-on-two-parameter-linear-elastic-foundation" model. A finite element of the pile-soil 
system is formulated and the fuzzy pile deflection is developed by a perturbation-based 
technique. The fuzzy behavior of the pile is illustrated and compared with results obtained 
by vertex method via a numerical example. 

2. MODEL OF ANALYSIS 

Consider a vertical pile embed in a soil deposit containing nlayers, with the thickness 
of layer i given by H, (Fig. 1(a)). The top of the pile is at the ground surface and the 
bottom end of the pile is considered embedded in the n-th layer. Each soil layer is assumed 
to behave as a linear, elastic material with the compressive resistance parameter fcj and 
shear resistance parameter ti. The pile is subjected to a lateral force FQ and a moment MQ 
at the pile top. The pile behaves as an Euler-Bernoulli beam with length Lp and a constant 
flexural rigidity EI. The governing differential equation for pile deflection Wi within any 
layer i is given in [8] 

d^u 
= 0. (1) 

The Eq. (1) is exactly the same as the equation for the ''Beam-on-two-parameter-
linear-dastiC'foundatton" model introduced by Vlasov and Leont'ev [9]. The use of linear 
elastic analysis in the laterally loaded pile problem, especially in the prediction of de­
formations at working stress levels, has become a widely accepted model in geotechnical 
engineering. Also in the real problem where nonlinear stress-strain relationships for the 
soil must be used, linear elastic solution provides the framework for the analysis, in which 
the elastic properties of the soil will be changed with the changing deformation of the soil 
mass (e.g., the "p-y" method |10]), 

Layer n 

Beam-type element 

Ftg. 1. (a) A laterally-loaded pile in a layered soil; (b) F E discretization; (c) Beam-type element 
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In this paper, this Beam-on-linear-elastic-foundation model is the basis for the finite 
element formulation of the laterally loaded pile problem which will be presented in the 
next section. 

3. FINITE ELEMENT FORMULATION 

While the finite-difference method has sometimes been the preferred nmnerical so­
lution technique for Eq. (1), this paper uses the finite-element approach, which offers a 
convenient vehicle for dealing with boundary conditions and variable material properties, 
especially the fuzzy soil properties described later in the paper. 

The pile is divided into m finite elements and to each j-th node of their interconnec­
tion, two degrees of freedom are allowed: qjy^ - the deflection and qje - the rotation of cross 
section with positive direction as in Fig. 1(b). Element of EB-beam type is chosen for each 
pile element with length l^ and two nodes, one at each end. The element is connected to 
other elements only at the nodes. To each element, two degrees of freedom are allowed at 
both ends: deflection, Wi and rotation, 6i, and W2, 62 respectively, positives in the system 
of local axes from Fig. 1(c). With these displacements, the element nodal displacement 
vector {g}g and the element nodal force vector {r}^ of respect to the system of local axes, 
are defined: 

{i}c = {"1 »i ^•i ^^f • {>•}. = {Ol J^l Ql '^^f (2) 

It is noted that Qi and Q2 from (2) include shear force in the pile section and also 
shear force in the soil. 

We assume the displacement function within an element in the form of cubic poly­
nomial 

We = Cto + CtiZ + 022 -I- a,32 - (3) 

Applying the boundary conditions 

We 0 = u ; i , - - 7 ^ ( O ) = 0i 

dz 

will give the coefficients of displacement function in terms of element nodal displacements, 
which arc substitute in (3) to obtain the expression of the deflection as 

We = Nl {z) iwi + N2 (z) 61 + Nz (z) K;2 + Â4 [z) B2 = \N\ {q)^, (5) 

where iVi (2), z = 1 , . . . , 4 are the shape functions (interpolation functions) 

, , ^ 3z^ 'iz' ', , , z' z^ 
A'3W = -j5---J3-.^*W = 77- ]2 

(6) 
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The strain energy in the beam element is 

U..\j.,..dV.\JE^[^)\z 

[N\ im iq}edz, 

0 

l^ T o 

vt, = \{ci}i[k\„{q}c.. with m„ = EiJ(£-,iN]j (J^myz. 

m 

(8) 

Strain energy in the two-parameter elastic foundation corresponding to the beam 
element is given by 

u,Sj,u.ldz^\jn{^^)\z 

^fw?mi^^2tj[lv^)\±m)d^ ile], 

v, = i^{qYcma,+mt){i}c 

with [k]^=kj[Nf[N]dz, l<:], = 2 t / ( ^ [ i V ] ) l^^[N]\dz. 

The total strain energy of the coupled element is 

(9) 

(10) 

(11) 

In Eq. (11), [fc]g = [k]^ + [k\^ + [k]^ represents the stiffness matrix of one-dimension 
finite element of pile on two-parameter elastic foundations. The terms of [it|j, (/t]„, [t], 
matrices are calculated using the relation (8) and (10). We obtain 

EI 

"if 

H„ = 

12 - 6 i , - 1 2 -Uc 
-6le ill etc 2ll 
- 1 2 6(e 12 Ue 
-Uc 2ll 6lc ill 

' 156 -22ie 54 IMe 
-22lc ill -13(e -3ll 
54 -13(e 156 22ie 
134 -3(2 -3ll ill 

(12) 

(13) 
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[k], 
2t 

' SOL 

i6 -3/e - 3 6 ~3lc 
-3(e ill 3lc -ll 
-36 3le 36 3lc 
-3le -ll 3lc 4(2 

The potential of element nodal loads is 

We = {g}Urh-
The total potential energy functional of the element is 

1 , 
ne = Ue •Wc ;{?}. W e W . - W r W . 

(14) 

(IS) 

(16) 

The equilibrium condition of the element is the first variation of (16) equals to zero, 
with arbitrary variation of the displacement 5 {q}^ ^ 0 

ra. = ^ J {?}. = ([kl {q)^ - {r}J 6 {,}. = 0, (17) 

or 

W.{9L = W,- (18) 
Eq. (18) is the equilibrium equation of element. This is followed by assembly, imple­

mentation of boundary conditions, introduction of loads and equation solution. To review 
the finite element solution, two examples of laterally-loaded pile with deterministic inputs 
are analyzed and compared with analytical solution (exact solution). Later in this paper, 
the soil parameters k and t in Eqs. (12), (13), (14) will be treated as fuzzy variable. 

The first example is taken from [11]. A pile of length Lp = 20 m, and flexural rigidity 
EI = 50,000kNm^ is driven into one-layer clay soil and subjected to a horizontal force 
Fo = 300 kN and moment MQ = 100 kNm at pile top. The lateral soil stiffness k is constant, 
and given by A: = 4, OOOkPa. The analytical solution of the deflection at the top for this 
case is 63.4802mm [11], which is compared with finite-element analysis using four, eight 
and twenty equal-length elements in Tab. 1. Gocd agreement is obtained using even coarse 
finite-element mesh. 

Table 1. Pile top deflection by finite-element and analytical solutions (mm) 

Analytical 

63.4802 

FE solution: number of elements 

4 

62.2033 

8 

63.3163 

20 

63.4753 

Table 2. Pile top deflection in the second example (mm) 

Analytical 

5.8428 

FE solution: nmnber of elements 

8 

5.8080 

20 

5.8414 

40 

5.8427 
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The second example is adapted fi-om [12]. A pile of length Lp = 20 m, radius r^ = 
0.3 m and modulus Ep = 2b x 106 kNm^ is subjected to a lateral force FQ = 300 kN and 
a moment MQ = 100 kNm at the pile head. The soil deposit has four layers with Hi = 
H2 = H3 = 5m. A two-parameter foundation model with fci = 56.0MPa, fca = 140.0MPa, 
ks = 155.0MPa and ki = 2D0.0MPa, and ti = ll.OMN, t2 = 28.0MN, ts = 40.0MN 
and t4 = 60.0 MN is assumed. The analytical solution for this case is obtained using the 
method proposed by Pham [13]. The top deflection is 5.8428mm, which is shown in the 
analytical column of Tab. 2. The finite-element solutions are obtained using eight, twenty 
and forty equal-element length elements and also shown in Tab. 2. It is shown clearly that 
the finite-element results will converge to the exact solution when the finite-element mesh 
is refined. 

4. F U Z Z Y ANALYSIS M E T H O D F O R L A T E R A L L Y - L O A D E D PILE 

In practical engineering problems, there are randomness and fuzziness with mechan­
ical parameter values of soil. It follows that the stiffness matrix and the pile response will 
be fuzzy. According to the finite element method, we have 

IKRij} = {/}. (19) 

In which, [K] is the fuzzy system stiffness matrix, {/} is the external force vector and 
{(?} is the fuzzy displacement vector (consisting of nodal deflections and nodal rotations). 

Basically, to evaluate fuzzy outputs through a finite-element model the concept of 
a-level discretization is adopted. All fuzzy input parameters are discretized using the same 
number of Q-levels (often 5 to 10). The core procedure is an a-Ievel optimization and can 
be operated according to any optimization algorithm. For each same a-level of the input 
parameters, the largest and the smallest output values can be determined, thus two points 
of the membership function of the output are known. By this procedure the fuzzy results 
are yield a-level by a-level. 

Although the optimization strategy is acknowledged as the standard procedure for 
fuzzy finite element analysis, it is often a time consuming process because finite element 
analysis has to be carried out for every evaluation in the input spaces. On the other hand, 
for the case of laterally-loaded pile, only some output quantities are of interest (e.g., pile 
top deflection, maximum bending moment). Therefore, methods which can yield faster 
results are desirable. The present paper introduces a perturbation-based approach for 
estimation of fuzzy deflection of laterally-loaded pile and adopts the vertex method [14] 
for comparison. 

4 .1 . Per tu rba t ion-based approach 

For simplicity, we assume that soil parameter a^ (here a, can be compressive pa­
rameters or shear parameters) are modeled as triangular fuzzy numbers. The fuzzy soil 
parameter denoted as 5,- is then given by di = {a^,a^,af-), where af < aj" < af, and 
a, IS the main value of a,, which is the value of a, with membership level 1. The fuzzy 
number a, can be determined as a sum of a distinct value af and a deviation 5ai, so that 
for membership level a 

a,c< = af^ -I- 6aia, (20) 
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where 5a^ is a triangulM: fuzzy number given by 

5ai - {5a^, 0,5af-) = (af - a f , 0, a f - a f ) . (21) 

According to Eq. (12), it can be seen that the stiffness matrix is Unear with respect 
to the soil parameters. Therefore, the fuzzy stiffness matrix can be expanded as 

[K] = \K'>] + Y.[K\M„ (22) 

where {IC]^ is the partial derivative of the stiffness matrix with respect to parameter, a^ 
taken at main values of all parameters. In the same maimer, the displacement response is 
expanded as 

{gT-fs'l + EW'-*" -̂ (23) 

Note that, the relation (23) is only an approximation of the actual displacement 
response. In the above formula [K^], {q^} are the stiffness matrix and the corresponding 
displacement vector, respectively, taken at a^. Substitute Eqs. (22) and (23) into (19), 
comparing similar items on 5, fallowings can be obtained 

[K^Mq") = {F}, (24) 

[K°]{il)i = -\kW}. (25) 

The above equations are deterministic equations, from which {g°}, {q}t can be 
calculated. The fuzzy sets {q] can then be approximated ft'om fuzzy sets 5ai based on the 
principle of expansion given by (23). At a membership level, the relationship between the 
two is 

{ S o = {9°} + 5];{9}.'5«.a. (26) 

According to the decomposition theorem, the membership function of a fuzzy set can 
be determined by its membership in each level a e [0,1]. We can see in each membership 
level a € [0,1] on Oi, 5a^a are defined by interval, i.e. Sa^a ^ [(5a^,(5a^]. The fuzzy 
nodal displacement, q^ at the membership level a defined by qja — [qj^t^ qf^ can be easily 
obtained by the following formula, 

9i ; = 5? + E min(g,,<Saf„ q.M^), (27) 

qf^ = 9? + ^max(gj,(5af^,gj,K^). (28) 

Eqs. (27) and (28) determine the lower and upper bounds of a fuzzy nodal displace­
ment corresponding to membership level a. 

It can be seen that, this method requires solving iV -|- 1 finite-element equations, 
with JV is the number of fuzzy soil parameters. 



180 Pham Hoang Anh 

4.2. Vertex method for pile top deflection 

In practice, often only the pile top deflection is of interest. Moreover, it can be shown 
that the pile top deflection is monotonic in each soil parameters k, and U. Therefore, the 
membership of the deflection can be evaluated by determining the membership at the 
endpoints of the level cuts of membership of each ki, t^. This method, which is the well 
known "Vertex method" introduced by Dong and Shah [14], will be adopted to evaluate 
the fuzzy deflection at pile top and compared with the above perturbation-based method 
in a numerical example. 

It is noted that, the number of finite-element solutions will increase (total 2̂ ^ de­
terministic-finite element analyses for each membership level). 

5. NUMERICAL E X A M P L E 

Consider the same pile as in the second example in section 3. However, the soil 
properties are uncertain and given by triangular fuzzy numbers. Three cases are examined: 

Case 1. Only soil parameters of layer 1 are fuzzy, while other layers have non-fuzzy 
properties: ki = (33.6,56.0,78.4) MPa, ti = (6.6,11.0,15.4) MN, other soil parameters are 
the same as the deterministic example. 

Case 2. Soi! parameters of the two upper layers are fuzzy, while other layers have 
non-fuzzy properties: fci - (33.6,56.0, 78.4) MPa, ^2 = (84.0,140.0,196.0) MPa, and (i = 
(6.6,11.0,15.4) MN, t2 - (16.8,28.0,39.2) MN. 

Case 3. All soil parameters are fuzzy: ki = (33.6,56.0,78.4) MPa, ^2 = (84.0,140.0, 
196.0) MPa, ^3 = (93.0,155.0,217.0) MPa and k^ = (120.0,200.0,280.0) MPa, and ti = 
(6.6,11.0,15.4) MN, f2 = (16.8,28.0,39.2) MN, 3̂ = (24.0,40.0,56.0) MN and t^ = (36.0, 
60.0,84.0) MN. 

In all three cases, each fuzzy parameter has the relative variation at different levels 
of membership with respect to the clear value at the membership of 1 not exceed 40%. 

A finite-element model of forty elements with equal length 0.5 m is used for the 
analysis. The results for membership function of pile top deflection in three cases are 
given in Tab. 3. In comparison with case 1, case 2 shows very small variation of the 
membership function, and case 3 gives almost the same results as case 2 (Fig. 2(a) and 
Tab. 3). It imphes that the fuzziness of pile top deflection depends largely on the properties 
of the first soil layer and the variation of soil parameters of lower layers has insignificant 
influence on the pile behavior. 

On the other hand, different results are obtained by the two methods, which can 
also be seen in Fig. 2(b). The vertex method gives exact bounds of the deflection in each 
membership level, while the perturbation method produces approximate results. At the 
membership level a = 0, difference between the results of the perturbation analysis and 
those of vertex analysis is about 13% (comparison is made for the support width of mem­
bership functions). Nevertheless, for relatively small variation of the soil parameters, the 
perturbation results and vertex results are basically consistent. When membership a > 0.4 
(in this case, the relative change of fuzzy variables with respect to clear value at mem­
bership of 1 less than 25%), the support width of perturbation results and vertex results 
differ not more than 5%. With the increase in membership, the accuracy of perturbation 
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results corresponding to the membership levels also increase, because with the increase in 
membership, the relative variation of fuzzy parameters is reduced, knproving the accuracy 
of the calculation, which is the characteristics of perturbation method. 

Table 3. Top deflection (10~^ m) in different membership levels 

Perturbation-

based analysis 

Vertex analysis 

a 

1 

0.8 

0.6 

0.4 

0.2 

0 

1 

0.8 

0.6 

0.4 

0.2 

0 

Case 1 

5.8427 

[5.4778, 6.2077] 

[5.1128, 6.5726] 

[4.7479, 6.9376] 

[4.3829, 7.3026] 

[4,0180, 7,6675] 

5.8427 

[5,5015, 6,2352] 

[5,2018, 6.6921] 

[4.9362, 7.2318] 

[4.6989, 7.8806] 

[4.4855, 8.6778] 

Case 2 

5.8427 

[6.4768, 6.2087] 

[5.1107, 6.5747] 

[4.7448, 6.9407] 

[4.3788, 7.3067] 

[4.0128, 7.6727] 

5.8427 

[5.5006, 6.2364] 

]5.2003, 6.6951] 

[4.9343, 7.2373] 

[4,6968, 7.8896] 

[4.4833, 8.6917] 

Case 3 

5,8427 

[6.4768, 6.2087] 

[5.1107, 6.5747] 

[4.7448, 6.9407] 

]4.3788, 7.3067] 

14.0128, 7.6727] 

5.8427 

[5.5006, 6.2364] 

[5.2003, 6.6961] 

[4.9343, 7,2373] 

[4,6968, 7,8896] 

14,4833, 8,6917] 

Ftg. 2. Membership function of top deflection (10 ^m) 

Using the proposed perturbation method, the envelope of the pile deflection, which 
is the possible minimum and maximum deflections along pile length, can also be easily 
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Fig. 3. Envelope of deflection along pile (nmi)-Case 3 

obtained as in Fig. 3. Pile deflection determined with main values of soil parameters is also 
plotted in the same figure. This gives the picture of the variation of pile behavior under 
uncertain soil conditions. 

6. CONCLUSION 

This paper has presented a fuzzy analysis method for laterally-loaded pile in multi-
layered soil. The pile is idealized as one-dimensional beam and the soil as two-parameter 
elastic foundation model. A fast fuzzy finite element algorithm was developed using the 
perturbation technique. This solving procedure is similar with the conventional finite el­
ement method and in principle does not require solving a large number of finite-element 
equations as often found in the optimization strategy. 

The method was established for the analysis of the pile behavior considering fuzzi­
ness in soil parameters. Numerical results show that the variation of the top soil layer 
properties has large influence on the pile deflection, while the fuzziness of lower layers has 
(almost) no impact. WTien the variation of soil parameters is small, the results axe gener­
ally consistent with the results of vertex method. In this case, the fuzzy analysis method 
in this paper provides a feasible way for a reasonable solution to practical engineering 
analysis and design problems. 
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