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Abstract. This paper presents the vibration analysis of thick laminated composite cylin-
drical shells by a new approach using the Continuous Element Method (CEM) Based
on the analytical solutions for the differential cquations of thick composite cylindrical
sheli taking into account shear deflection effects, the dynamic transfer matrix is built
from which natural frequencies are easily calculated. A computer program is developed
for performing numerical calculations and results from specific cases are presented Nu-
merical results of Lhis work are compared with published analyuical and Finite Elenient
Method (FEM) results. Through different cxamples, advantages of CEM arc confirmed:
reduced size of model, higher precision, reduced time of computation and larger range of
studied frequencics.
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1. INTRODUCTION

With the increasing use of composites as structural clements, studies on the vi-
bration of laminated composite cylindrical shells receive a considerable attention. In the
literature, various solution mcthods bascd on different beams, plates and shells theories
have been applied to the vibration analysis of metallic and composite structures: analyt-
ical approaches |1, 2, 3, 4], mode superposition method |5], spline function method |6],
wave-train closurc principle (7], Rayleigh-Ritz method [8], finite element method (FEM)
19, 10| cte.

The FEM is certainly one of the most popular methods used for analyzing composite
structures. However, it is well known that a sufficiently large number of finite clements
is incvitable in order to obtain reliable structural dynamic responses owing to their high
flexibility and large size, especially at high frequency. Thus it may requirce high cost as well
as a great amount of computer time. Furthermore, the modal analysis used in conjunc-
tion with the FEM is limited to frequency regimes where the relative spacing of natural
frequencics remains large compared with the relative parameter uncertainty [11]. Thus,
recently, special techniques such as equivalent continuum method |12, 13|, dynamic stiff-
ness method (5, 14], transfer matrix method |15, 16|, spectral clement method [17] and
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continuous element method (CEM) (18, 19, 20] have been proposed to cope with such
difficulties. In dircct line, the CEM can be related to the dypamic stiffness method using
the characteristic functions of structures. Elementary or refined theories which take into
account many cffects (inertia, shear, warping, ctc.) for beams as well as for plates and
shells can be used. In the framework of an elastodynamic theory and with a given set of
boundary conditions, it is possible, for a simple, element geometry (for example, rectan-
gular or triangular plate), to obtain the cxact solution of the vibration problem [21]. More
recently, several kinds of continuous clement have been presented for dynamic analysis of
some metallic structurcs. These elements concern straight isotropic beams, curved beams
[21], isotropic thin plates |18 and isotropic axisymmetric shells [19]. In |19] a procedure to
obtain the dynamic stiffness matrix of an axisymmetric shell is presented. The dynamic
stiffness relationship is written according to a scries expansion of the displacement and
force components and an integration of the dynamic transfer relationship. In the above-
mentioned works, the lack of discretization implied that loadings had to be dcfined on
boundaries. The topology of the structure and the layout of the concentrated loads loca-
tion determined the necessary number of continuous clements to be used. The procedure
presented in {19] was extended to the case of distributed loads in the recent paper (20).

To the authors™ knowledge, in the literaturc available, no numerical solutions have
been presented for the study on free vibration of thick laminated composite cylindrical
shells by using CEM.

This papcr presents a continuous clement model based on the first-order shear de-
formation theory for the free vibration of cross-ply thick laminated composite cylindrical
shells with combinations of clamped, free, and simply supported boundary conditions.
The method is used to obtain the dynamic stiffness matrix in order to determine natural
frequencics of Jaminated composite shells which takes into account both the rotary inertia
and shear deformations cffects The accuracy of the present model is numerically cvalu-
ated by comparing the solutions with those obtained by using the conventional FEM or
analytical method.

2. FORMULATION OF THICK CROSS-PLY LAMINATED
COMPOSITE CYLINDRICAL SHELLS
2.1. Kinematics of cylindrical shells
Consider a thick circular cylindrical shell of length L, thickness h and radius R (set

Fig.1). The shell consists of a finitc number of layers which arc perfectly bonded together.

Following Reissner-Mindlin assumption, the displacement components are assumed to be
u(z,0,z,t) = uop(z,6,t) + 2¢.(z, 0,1),
v(z,0, 5, t) = vo(z, 8, ) + zdbp(z, 6, ¢), Q)
w(z,0, 2, 1) = wo(z, 6,1),

where u. v and w are the displacement components in the z, 0 and z dircctions, respectively,

ug and g arc the in-planc displacements of the shell in the mid-planc, and ¢, and ¢g are
the shear rotations of any point on the middle surface of the shell. The strain-displacement
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Fig. 1. Laminated composite cylindrical shell

rclations of cylindrical shell of radius R can be written as
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2.2. Lamina constitutive relations

Consider a composite shell composed of N orthotropic layers of uniform thickness
with the principal matcerial axis of the k™ Jayer is oriented at an angle a with the z axis.
The stress-strain relations of the k™ layer by neglecting the transverse normal strain and
stress, are written as

% —(k) =) =k X
A I I

K (k) (k) Ak «
Bl | %5 % T 0 0 |4,
T, 9 = us) Qi Qes O 0 ’Y(f (3)
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where aff)arc the transformed stiffness and Qj; arc the lamina stiffness ceferred to prin-
cipal material coordinates of the kt* lamina [22].

2.3. Stress and moment resultants

The stress and moment resultants are given by
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The laminate constitutive relations become
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in which the laminatc stiffness coefficients (A,), B,j, D,,) are defined by

N
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with I{ = 5/6: the shear correction factor, zx—1 and z; are boundaries of the k'h layer.
For gencral cross-ply composite laminated cylindrical shells (Ajg = Agg = Ags =
Big = Bag = Dig = Do = 0), forces and moment resultants are determined by (22]

Nz = A“? + An(% + ?) + Bna;; + B2 Zg;

o a0

Nz = Aés(%ﬂ + z;‘;) + Bss(%w + 2(22)

M“B“Z +Blz(§_;00+—)+Dua +D,22‘g‘;, o
My = 31286 + Bn(% + %) + sz% + Dnz’g”o
Mzo = 366(% + g—;%) + Dae(%‘iﬂ + 2(279)'

Qs = K Ass(ds + E)

Qo = KAu(da + 222 - 0

R36 R
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2.4. Equation of motions

The equations of motions of the first-order shear deformation shell theory for a thick
laminated circular cylindrical shell are |22

N, 18 1 8%y ¢,
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ez ("’ﬂ + ﬁM”) *ragt R e Tham
12
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where;
N k41
L=3 / pWdz, (1=0,1,2) (10)
k=1 g

in which p(") is the material mass density of the k** layer.

3. CONTINUOUS ELEMENT METHOD FOR VIBRATION ANALYSIS
OF THICK LAMINATED COMPOSITE CYLINDRICAL SHELLS
3.1. Strong formulation
For natural vibration of the cylindrical shell, displacements and forces resultants
can be expressed by serics of Levy [22).
ug (z,6,) um(z) cos(mb)
v (z,0,t) oo | vg(z)sin(mb)
wo (z,0,1) » = Z wm(z) cos(mf) 3 e™*

¢ (z,0,t) m=1 | @zm(z)sin(mb)
¢ (z,0.1) ®m(z) cos(mb)
N (z,0,1) Nim(z) cos(md)
Nzo(z,0,t) o | Nggm(z)sin(mb) (11)
My (z,6,1) = Z Mim(z) cos(mf) 5 e*
Mo (z,6,1) m=1 | Mzgm(z)sin{m)
Q:(z,6,t) Qum(z) cos(mb)
Ny (z,0,1) 0 Nom(z) cos(m8)
My (z,0,t) = Z Mom(z) cos(mf) ) et
Qs (z,6,1) m=1 | Qgm(z)sin(md)

The vector {y)z = {m, Vm, Wiy Gz, om, Nzms Nzgm,Qzms Mzm, Mzom} 7 is called
state vector. By replacing expressions (11) into (8) and (9), 13 cquations depending only
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on variable z will be obtained. Next, Ngm, Mom and Qpm will be expressed as functions of
Unm) Vs Worey ey Bym s Nzm, Nzom Qzmy Mzm, Mzom by using relation (8). Then, the deriva-
tions of state vector with respect to variable z are calculated from equations (8) and (9),
after some manipulations

% = fy (Vm, Wrn, Bom, Nzm, Mzm) dldvl”" = f6 (tm, $zm: Noom, Mzom, w)

‘%" = f2 (tm, Nzom, Mz6m) d'\;;""‘ = f7 (Ym, Wrm, $om, Nam, Mam, w)

d_zﬂ = s (Gams Qam) %"E = 3 (Vm, Wrn, by Nam Memyw)  (12)
2 — (o, o, Nms M) 2 = fo s, b Qs M)

280m 5 (gum Natm, Maom) AV _ . (o, Gt Nom M)

Equations (12) are written in the matrix form for each circumferential mode m
a(uin,

dx
3.2. Dynamic transfer matrix, dynamic stiffness matrix [K(w)|

= |Alm{y}T, where |A],, is a 10 x 10 matrix. (13)

The dynamic transfer matrix |T),, is given by

([T),, = elim® (14)
Then (T}, is scparated into four blocks
_ | Ty T
= [T T2 (15

Finally, the dynamic stiffness matrix [K (w)],, is determined by [19]

TR'T -7
K = 12 111 _ 12 16
R P - (16)

The natural frequencies is calculated from the determinant of the dynamic stiffness
matrix |K(w)),. For example,

- Free-free boundary condition: det(K) = 0.

- Clamped-clamped boundary condition: det(Tyz) = 0.

3.3. Assembly of dynamic stiffness matrices

The dynamic stiffness matrix can be easily assembled with other element matrices in
order to model a long cylindrical structure, cylinders with portions of different properties
or to overconic the problem of numerical instability relating to the too long length of the
clement.

The asscmbly procedure of the finite element method is used here. Fig. 2 illustratces
an example of assembly for two dynamic stiffness matrices. The global dynamic stiffness
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Fig. 2. Assembly of two cylindrical shell continuous elements

matrix [ (w)],, of a cross ply composite cylindrical shell structure is constructed from

two clements (K (w)),, and [K2(w)],, assembled along a common edge.

4. NUMERICAL RESULTS AND DISCUSSION

4.1. Validation of present study

A computer program bascd on Matlab is developed using the CEM to solve 2 num-
ber of numcrical cxamples on free vibration of composite cylindrical shells with different

boundary conditions.

Table {. Comparison of frequency parameters € = z.;R(p/E;)l/2 of cross-ply shells
simply supported at both ends (tbrec-layers, h/R = 0.02, L/R = 4, Matcrial 1)

Lamination | References m 23 Qy Qy Q
(outer/iner) (x1072)

0°/0°/0° Narita [9] 14.39 | 16.32 17.42 21.46 | 26.63
CEM 14.37 | 16.30 | 17.41 | 21.41 | 26.64

Differences (%) | 0,14 | 0,12 0,06 0,23 | 0,04
0°/90°/0° Narita [9] | 1482 | 1646 | 1873 | 25.73 | 25.79
CEM 14.82 | 16.46 | 18.73 | 25.69 | 25.77
Dafferences (%) | 0.00 | 0,00 0,00 0,16 | 0,08
90°/90°/0° Narita {9] | 16.10 | 21.21 | 22.62 | 31.20 | 32.44
CEM 15.99  21.08 | 22.59 |30.93 | 32.28
Differences (%) | 0,69 | 0.62 0,13 0,87 | 0,50
0°/0°/90° Narita (9) 17.16 | 17.47 23.90 25.82 | 31.49
CEM 17.11 | 17.41 23.81 | 25.78 | 31.36

Dafferences (%) | 0,29 | 0,34 0,38 0,16 | 0,41
90°/0° /90° Narita [9] | 21.35 | 2354 | 3360 | 4018 | 41.40
CEM 21.25| 23.52 | 33.31 |40.02 | 41.07
Differences (%) | 0,47 | 0,09 0.87 0,40 | 0,80

In this cxample, the natural frequencics are calculated for cross-ply laminated cylin-
drical shells having small thickness ratio (h/R = 0.02) and moderate length (L/R = 4).
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The shell has three-layer cross-plies from outer layer to inner. All layers are of equal thick-
ness and material properties used are: £y = 138 GPa, E; = 8.96 GPa, Gy2 = Gy3 = 7.1
GPa, Gy = 3.45 GPa, v12 = 0.3, p = 1645 kg/m®, Material 1.

In numerical cxamples, the (requency parameters are defined as = wR(p/Ey)'/?
and arc presented for two cdge conditions: simply supported and clamped-free. The present
values are compared with the corresponding FE solutions given by Narita (9] in Tab. 1-2,

Table 2 Comparison of frequency parameters = Lu'R(p/E;)l/2 of cantilevered
(clamped-free) cross-ply shells (three-layers, h/R = 0.02, L/R = 4, Material 1)

Lamination | References m Qs Qs Qy 23
(outer/inner) (x1072)

0°/90°/0° Narita (9] | 8442 | 11.30 | 1151 | 17.25 | 20.79
CEM 8.439 | 11.29 | 11.51 |19.23 | 20.75
Dafferences (%) | 0,04 | 0,09 0,00 5,68 | 0,19
0°/0°/0° Narita |9] 8.453 | 9.732 12.33 14.17 | 20.31
CEM 8,449 ( 9.724 | 12.33 | 14.15 | 20.27

Dufferences (%) | 0,05 | 0,08 0,00 0,14 | 0,20
0°/0°/90° Narita (9] 9.535 | 11.56 14.38 22.28 | 22.34
CEM 9.641 | 11.62 | 14.23 | 22.11 | 22.20

Differences (%) | 1,11 | 0,52 1,04 0,76 | 0,63
90° /90°/0° Narita [9] | 10.09 | 11.49 | 20.05 | 20.53 | 23.6]

CEM 10.31 | 11.63 | 20.24 |20.77 | 25.00
Dafferences (%) | 2,18 | 1,22 0,95 1,17 | 5,89
90°/0°/90° Narita |9] 11.25 | 17.70 | 20.66 | 27.69 | 32.67

CEM 11.24 | 17.62 | 20.66 |27.59|32.39
Differences (%) | 0,09 | 0,45 0,00 0,36 | 0,86

It can be shown from Tab. 1-2 that the frequencies obtained by CEM of composite
cylindrical shells subjected to different boundary conditions arc in an extremely good
agrecment with those of Narita caleulated by FEM.

The present values arc compared with the results obtained by 3-D analysis, parabolic
shear deformation, constant shear deformation and thin shell theory [6). The comparison of
the fundamental frequency w* = gh(pn2G12)"/2 for various thickness-radius ratios (h/R)
with those results using 3-D analysis obtained by Ye and Soldatos 1], for simply supported
cylindrical shells with symmetric cross-ply laminates is presented in Tab. 3. The properties
for the comparison are R/L = g, E1/E; = 40,G12 = 0.6E,G13 = Gy3 = 0.5E,,vj2 =
0.25, Material 2.

The agreement correlated with the previously published results is given in the Tabs.
1-3. which indicates that the present analysis is accurate.
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Table 3. Comparison of the fundamental frequency w* = gh(pr2G12)!/? of sim-
ply supported cylindrical shells with symmetric cross-ply laminates by different
mcthods (R/L =1, Matenal 2).

0°/90°/90° /0° 90°/0°/0°/90°
h/R | Viswanathan|6] | Ye [3] CEM | Viswanathan([6] [ Ye (3] CEM
0.074118 0.064600 | 0.06397 0.051555 0.052748 | 0.05310
0.1 0.076309 0066335 | 0.06566 0.054261 0.059130 | 0.05907
0.082831 0.079277 | 0.07888 0.062899 0.070738 | 0.07089
0.170696 0.162844 | 0.15890 0.121318 0.130168 | 0.13325
0.2 0.176990 0.170868 | 0.16825 0.152241 0.150651 | 0.15267
0.177462 0.175188 | 0.17256 0.163189 0.158886 | 0.15915
0.275497 0.263048 | 0.25464 0.231831 0.218779 | 0.22732
0.3 0.280720 0.272860 | 0.26688 0.244864 0.236385 | 0.24281
0.294626 0.283798 | 0.27974 0.284595 0.268258 | 0.26990

4.2. Harmonic responses of Clamped-free composite cylindrical shell

25

In Fig. 3, the harmonic response obtained with 3 continuous clements is compared
with thosc obtained with 144 (24 x 6 mesh) and 900 finite elements (60 x 15 mesh) of
ANSYS SHELL 99 for clamped-free (0°/90°/90°/0°) cylindrical shell, (h = 0.0254 m,
R/h =20,L/R =2, Material 1)

With 24 x 6 mesh, there is a convergence of results obtained with CEM and FEM
up to 567.6 Hz. Beyond this limit, there is a discrepancy which can be explained by the
fact that the meshing in FE idealization is not finc cnough. An exccllent convergence is
noted for CEM and FEM with 900 elemcnts (60 x 15 mesh).

Frequency (Hz)

0 -

sy

Ansys 60215

Fig. 3. Comparison of harmonic responses of clamped-frec composite cyhindrical
shell (0°/90°/90°/0°) by CEM and by FEM with different mesh (A = 0.0254 m,
R/h =20,L/R = 2, Material 1)
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A good similarity can be observed between the three curves of harmonic responses
of free-frce (0°/90°/0°/90°) composite cylindrical shell by CEM and by FEM with 24 x 6
and 60 x 15 meshes in Fig. 4, Material 3: Ey = 138.6 GPa, Ey = 8.27 GPa, G» = 4.12
GPa, Gy3 = Ga3 = 0.6Ey, vz = 0.26, p = 1824 kg/m®.

Ansys60x1S - - - - Ansys 24x6 Fraauency iHz)

Fig. {. Comparison of harmonic responses of free-free (0°/90°/0°/90°) by CEM
and by FEM with different mesh (h = 0.0254 m, R/h = 20, L/R = 1, Material 3)

Some first natural frequencies for clamped-free (0°/90°/90°/0°) composite cylindri-
cal shell calculated by CEM and FEM are compared in Tab. 4.

Table 4. Natural frequencies for clamped-free composite cylindrical shell
(0°/90°/90°/0°), h = 0.0254 m, R/h = 20,L/R =2

[Mode [ m | CEM (Hz) [ Ansys 24 x 6 {Hz) | Errors (%) | Ansys 60 x 15 (Hz) | Errors (%) |
{ 1 3 194.26 194.43 0,09 194.24 0,01
{ 2 2 215.45 215.45 0,00 215.46 0,00
1 3 4 278.68 279.7 0.37 278.97 0,10
4 1 351.45 351.44 0,00 351.48 0,01
5 5 423.57 427.26 0.87 424.57 0,24
6 4 486.07 488.17 0,43 486,47 0,08
7 3 503.49 504.41 0.18 503.68 0,04
8 5 567.6 572.67 0,89 568.72 0,20
9 6 607.27 617.48 1,68 609.53 0,37
10 2 652.55 653.07 0,08 652.83 0,04
11 6 717.87 729.88 1.67 7204 0,35 =
12 7 823.47 847.42 2.91 827 79 Q,52
13 4 890.74 899.43 0,98 892.86 0,24
14 5 912.5 926.2 1,50 915.42 0,32
15 7 916.01 942.38 2.88 920.79 0,52

Next, the comparisons of computing time by FEM and by CEM using the same
computer are shown in Tab. 5 and Tab. 6.
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Table 5. Computing time for free-frce composite cylindrical shells (0°/90°/0° /90°)

[ FEM (24x6) | FEM (60x15) | CEM (m=3) |
| 600 s | 5880 s | 30s |

Table 6. Cc ing time for clamped-frec posite cylindrical shells(0°/90°/90°/0°)

[ FEM (24x6) [ FEM (60x15) | CEM (m=3) |
| 720 | 5280 s | 72s |

Advantages of CEM are confirmed in Tab. 5 and Tab. 6. Using only 3 continuous
clements for meshing, CEM accelerates the calculation speed and save data storage ca-
pacity of computers. For the FEM model, it takes much more time to solve the problem
if we refine the meshing in order to have more exact result.

4.3. Inftuences of some parameters on frequency of composite cylindrical shel)

The cffects of thickness-to radius ratios, length-to radius ratios and the number of
Jayers on the frequencies of composite eylindrical shell are presented in Figs 5-6, Fig. 7
and Fig. 8, respectively.-

—+—CEMm=1 —=%—CEMm=2 —&— CEMm=3
——CEMm=4 CEMm=5__=- = FEMm=
[ - = im=3 -+ - =
1800 | - —EE:;::::% FEN m=3 FEMm=4
1600 - = —
1400
1200 -
1000 .
800 -
600
400
200
' .
0.02 0.04 0.06 0.08 0.1

Fraquency (H1)
000 ———

Fig. 5. Effect of h/R on simply supported composite cylindrical shell
{0°/90°/90°/0°, h = 0.0254 m, L/R = 2, Matcrial 1) by CEM and by FEM

From Fig. 5 and Fig. 6, it is scen that the raisc of the shell thickness will resuit in the
increasing of natural frequencics of the shell. The frequency decreases in general as L/R
increases. The decrease is fast for very short shells (Fig. 7). With the same shell thickness,
when the number of layers increascs, natural frequency incrcases (Fig. 8). This confirms
influence of the arrangement of material layers to the vibration of composite shell
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Frequency Hz)
2500 ————

2000

002 0.04 0.06 0.08 0.1

Fig. 6 Influences of h/R on clamped-free composite cylindrical shell
(0°/90°/0°/90°, h=0 0254. L/R=2, Material 1) by CEM and by FEM
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Fig 7 Effect of L/R onsimply supported com-  Frg. 8 Influence of number of layers

posite cylinder (0°/90°/90°/0°, h = 0.0254 m, on shuply supported composite cylinder

L/R =0.1. Matenal 1) (h = 00254 m, h/R = 0.1, L = 2R,
Material 1)

5. CONCLUSIONS

This article has succeeded in constructing the CEM model and in creating a com-
puting program by Matlab to solve the problem of vibration of thick composite cyhin-
drical shells nsing Continuous Element Mcthod. Through differcnt comparisons with the
published results and with the other calculation methods, the obtained results are very
satisfied

Numerical results of this rescarch show that CEM allows to compute the natural
frequencies of thick laminated cylindrical shells with high accuracy, widen the studied
frequency range. Using minimum meshing, this method increases the calculation speed
and cconomics the storage capacity of computers. In this paper, only in-axis composite
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shells are studied. But actually, there is no limitation on the manner of ply angles of the
lamina. Those problems can also be solved by using CEM.
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