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Abst rac t . This paper presents the vibration analysis of thick laminated composite cylin
drical shells by a new approach using the Continuous Element Method (CEM) Based 
on the analytical solutions for the differential equations of thick composite cylindrical 
shell taking into account shear deflection effects, the dynamic transfer matrix is built 
from which natural frequencies are easily calculated. A computer program is developed 
for performmg numencal calculations and results from specific cases are presented Nu
merical results of this work are compared with published analytical and Finite Element 
Method (FEM) results. Through different examples, advantages of CEM are confirmed: 
reduced size of model, higher precision, reduced time of computation and larger range of 
studied frequencies. 
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1. I N T R O D U C T I O N 

With the increasing use of composites as structural elements, studies on the vi
bration of laminated composite cylindrical shells receive a considerable attention. In the 
literature, various solution methods based on different beams, plates and shells theories 
have been applied to the vibration analysis of metallic and composite structures: analyt
ical approaches |1 , 2, 3, 4], mode superposition method [5], spline function method [6], 
wave-train closure principle [7], Rayleigh-Ritz method [8], finite element method (FEM) 
[9, 10] etc. 

The FEM is certainly one of the most popular methods tised for analyzing composite 
structures. However, it is well known that a sufficiently large number of finite elements 
is inevitable in order to obtain reliable structural dynamic responses owing to their high 
flexibility and largo size, especially at high frequency. Thus it may require high cost as well 
as a great amount of computer time. Furthermore, the modal analysis used in conjunc
tion with the FEM is limited to frequency regimes where the relative spacing of natural 
frequencies remains large compared with the relative parameter uncertainty [11]. Thus, 
recently, special techniques such as equivalent continuum method [12, 13], dynamic stiff
ness method [5, 14], transfer matrix method [15, 16), spectral clement method [17] and 
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continuous element method (CEM) [18, 19, 20] have been proposed to cope with such 
difficulties. In direct line, the CEM can be related to the dynamic stiffness method using 
the characteristic functions of structures. Elementary or refined theories which take into 
account many effects (inertia, shear, warping, etc.) for beams as well as for plates and 
shells can be used. In the framework of an elastodynamic theory and with a given set of 
boundary conditions, it is possible, for a simple, element geometry (for example, rectan
gular or triangular plate), to obtain the exact solution of the vibration problem [21]. More 
recently, several kinds of continuous element have been presented for dynamic analysis of 
some metallic structures. These elements concern straight isotropic beams, curved beams 
[21], isotropic thin plates [IS] and isotropic axisymmetric shells [19]. In [19] a procedure to 
obtain the dynamic stiffness matrix of an axisymmetric shell is presented. The dynamic 
stiffness relationship is written according to a series expansion of the displacement and 
force components and an integration of the dynamic transfer relationship. In the above-
mentioned works, the lack of discretization implied that loadings had to be defined on 
boundaries. The topology of the structure and the layout of the concentrated loads loca
tion determined the necessary number of continuous elements to be used. The procedure 
presented in [19] was extended to the case of distributed loads in the recent paper [20], 

To the authors' knowledge, in the literature available, no numerical solutions have 
been presented for the study on free vibration of thick laminated composite cylindrical 
shells by using CEM. 

This paper presents a continuous clement model based on the first-order shear de
formation theory for the free vibration of cross-ply thick laminated composite cylindrical 
shells with combinations of clamped, free, and simply supported boundary conditions. 
The method is used to obtain the dynamic stiffness matrix in order to determine natural 
frequencies of laminated composite shells which takes into account both the rotary inertia 
and shear deformations effects The accuracy of the present model is numerically evalu
ated by comparing the solutions with those obtained by using the conventional FEM or 
analytical method. 

2. FORMULATION OF THICK CROSS-PLY LAMINATED 
COMPOSITE CYLINDRICAL SHELLS 

2.1. Kinematics of cylindrical shells 

Consider a thick circular cylindrical shell of length L, thickness h and radius R (sec 
Fig. l ) . The shell consists of a finite number of layers which are perfectly bonded together. 
Following Reissner-Mindlin assumption, the displacement components are assumed to be 

u{x, 9, z, t) = UQ{X, e, t) + z<l)x{x, 0, t), 

v{x, 9, z, t) = vo{x, 6, t) -I- z<{>e{x, 0, t), (1) 

w{x,9,z,t) = woix,9,t), 

where u, v and w are the displacement components in the x, 9 and z directions, respectively, 
UQ and VQ arc the in-plane displacements of the shell in the mid-plane, and ^^ and î s are 
the shear rotations of any point on the middle surface ofthe shell. The strain-displacement 
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Fig. 1. Laminated composite cytindricat sliell 

relations of cylindrical shell of radius R can be written as 

dua , d(j)x 1 dvo 

1x6 • 
1 dtiQ dvQ 

"RW^H' 
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ae dx J ' 
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(2) 

2.2. Lamina const i tut ive relations 

Consider a composite shell composed of A'' orthotropic layers of uniform thickness 
with the principal material axis of the fc"" layer is oriented at an angle Q with the x axis. 
The stress-strain relations of the fc"* layer by neglecting the transverse normal strain and 
stress, are written as 
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w Q'S 

4'* 

(3) 

^{*) where Q,j are the transformed stiffness and Qij are the lamina stiffness referred to prin
cipal material coordinates of the fc"* lamina [22]. 

2.3. Stress and moment resultants 

The stress and moment resultants are given by 
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{N:„Ne,N:,e.Qx,Qe) ^ / {'7x,c^e,T:ce,r:,^,Te^)dz, (4) 

(Mx,Mfl,Mxd) = / {<7x,o'g,Txe)zdz (5) 

The laminate constitutive relations become 

{|MU^[ir,^l]{l;l}-{S}-[ttl{^::} <«) 
in which the laminate stiffness coefficients (A,j, Bjj, Dtj) are defined by 

N 

A.,="£Q%(~t+i - 'kl (i,3 = 1,2,4,5,6) 
k=l 

B.j = lJ2QiM^l-4l (i,J = l,2,6) (7) 

D„ = lf:,Q-M+l-4). (i,J = l,2,6) 
k=l 

with K = 5/6: the shear correction factor, z^-i and Zk are boundaries of the k^ layer. 
For general cross-ply composite laminated cylindrical shells (Aie = yl26 = .445 = 

Bl6 = B26 — Die — ̂ 26 — 0), forces and moment resultants are determined by [22] 

Ne = X,2 g j - + ^ 2 2 ( ^ + - ^ ) + Bi2-g^ + 5 2 2 ; ^ , 

Nxe - Ae,{-g^ + ^ + Bm{^ + ; ^ ) , 

*̂ " - -̂ '̂  a^ + ̂ ^ (̂flas + T ' + ^ ' ^ ^ + ^^^Bae' 

^-» - -^^'t a^ + Safl) + ^==("37 + flafl)' 

(8) 
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2.4. Equation of motions 

The equations of motions of the first-order shear deformation shell theory for a thick 
laminated circular cylindrical shell are [22] 

"ar + fl as ['^" - JR^") = •'""aiS" + ̂ ^^T 

& ["" + m'^") + lae + -R = '"-dW + ''-aW 
dQx dQe_ _ Ne^ ^ . S ^ (9) 
dx Rde R ° 3*2 

^ 4 . ^ ^ _ n _ . a'fo , f a'fe 
ai Bas ^ ' " a(2 "̂  -"̂  a^ 

where: 
w ^''+' 

Ii^J2 P*'''-^'^^- ( i - 0 , 1 , 2 ) (10) 

in which p'*' is the material mass density of the k^^ layer. 

3. CONTINUOUS ELEMENT METHOD FOR VIBRATION ANALYSIS 
OF THICK LAMINATED C O M P O S I T E CYLINDRICAL SHELLS 

3.1. Strong fornxulation 

For natural vibration of the cylindrical shell, displacements and forces resultants 
can be expressed by scries of Levy [22]. 

Uo {x, 9,t) ^ { Ujrii^) cos(m^) 
VQ{X, 9,t) \ oo Vm{x)sm{md) 
WQ {x, d,t) > == y2 { '^mi^) cos(m^) 
^x {^^ ^, *) "1=5 <l>xm{^) sin(m0) 
4>e [x, 9,t) j [ '̂ 771(3;) cos(m6) 

Nx (x, 9,t) ^ ( Nxmix) cos{m9) 
N:r8(x,d,t) CO N^em{x) sm{me) I (11) 
M^ (x, 9,t) > = ^ { M^mix) cos{m8) 
Mxe{x,^,t) m=i MxOmix) sm{m9) 
Qx{x,e,t) J [ Qxm{x)cos{m9) 

{ Ne{x,9,t) ] 00 ( Ng^{x)cos{me) 
^ Mg{x,9,t) > - X^ < Mg^{x)cos{m9) 
[ Qe{x,d,t) J m=i [ Q0^{x)sm{me) 

The vector {j/}^ = {iVi, Vm, Wm, ^xm, <l>em, ^xm, ^xBm,Qxm, ^^xm, M^om}'^ is Called 
state vector. By replacing expressions (11) into (8) and (9), 13 equations depending only 
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on variable x will be obtained. Next, Num, Mem and Qem will be expressed as functions of 
Um, Vm, Vm, <t>xm, <l>ym, N^m, N^Dm.Q^m, M^m, M^m by using relation (8). Then, the deriva
tions of state vector with respect to variable x are calculated from equations (8) and (9), 
after some manipulations 

— = / l ("ra, vim, <l>em, N^m, M^m) ^ ^ = A ( tW, <l>xm, N^Om, A/jSra, t^) 
dx "••^ 

— = /2 ("ra, N^em, Afrfra) ^ ^ = A ("ra, " . „ , .*8ra, JV.ra, M . „ , L )̂ 
da; dx 

^ = h{<t>.m,Q.m) ^=fs{Vm,y'm,4tem,N,m,M^m,t^) (12) 
d l dx 

^ ^ = /4 ("ra, Wm, tpem, N^m, M„m) ^ ^ = k ("ra, *xra, Qxra, Wrfra) 
dx "X 

^ = /5 ( 0 . . . , NxBm, M^em) ^ ^ - /lO {Vm, W^, <i>6^. N,m, M,^, u;) 

Equations (12) are written in the matrix form for each circumferential mode m 

^Mm = [A],n{y}m. where [AU is a 10 x 10 matrix. (13) 
dx 

3.2. Dynamic transfer mat r ix , dynamic stiffness m a t r i x [A'(i*j)] 

The dynamic transfer matrix [T]^ is given by 

[T]^ = e''^'"'^ (14) 

Then [T]^ is separated into four blocks 

i^i"'=[?2; S ] (̂ '̂ 
Finally, the dynamic stiffness matrix [/l̂ (ti')]jr̂  is determined by [19] 

l̂ (")lra = [ T^'^r T-^r TH-^ 1 (1̂ ' 
L -^21 —-'22-(i2 Jfll -^22ii2 \ .^ 

The natural frequencies is calculated from the determinant of the dynamic stiffness 
matrix [iir(uj)]^. For example, 

- Free-free boundary condition: det{K) ^ 0. 
- Clampcd-clamped boundary condition: deti^\2) = 0. 

3.3. Assembly of dynamic stiffness matr ices 

The dynamic stiffness matrix can be easily assembled with other element matrices in 
order to model a long cylindrical structure, cylinders with portions of different properties 
or to overcome the problem of numerical instability relating to the too long length of the 
element. 

The assembly procedure ofthe finite element method is used here. Fig. 2 illustrates 
an example of assembly for two dynamic stiffness matrices. The global dynamic stiffness 
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1 /fin, 

1 ATjn, 

Fig. 2. Assembly of two cylindrical shell continuous elements 

matrix [iir(a;)]^ of a cross ply composite cylindrical shell structure is constructed from 
two elements [^i(w)],„ and [^2(0;)]^ assembled along a common edge. 

4. N U M E R I C A L RESULTS A N D DISCUSSION 

4.1. Validation of present s tudy 

A computer program based on Matlab is developed using the CEM to solve a num
ber of numerical examples on free vibration of composite cylindrical shells with different 
boundary conditions. 

Table 1. Comparison of frequency parameters fi = u}R{p/E2) of cross-ply shells 
simply supported at both ends (tbrco-Iaycrs, h/R = 0.02, L/R = 4, Material 1) 

Lamination 

(outer/mner) 

07070° 

079070° 

90°/90°/0° 

0°/0°/90° 

90°/0°/90° 

References 

Narita ]9] 

CEM 

Differences (%) 

Narita ]9] 

CEM 

Differences (%) 

Narita [9] 

CEM 

Differences (%) 

Narita |9] 

CEM 

Differences (%) 

Narita [9] 

CEM 

Differences (%) 

fli 

14.39 

14,37 

0,14 

14.82 

14.82 

0,00 

16.10 

15.99 

0,69 

17.16 

17,11 

0,29 

21.35 

21.25 

0,47 

f!2 

16.32 

16.30 

0,12 

16.46 

16.46 

0,00 

21.21 

21.08 

0,62 

17.47 

17.41 

0,34 

23.54 

23.52 

0,09 

(xlO-2) 

17.42 

17.41 

0,06 

18.73 

18.73 

0,00 

22.62 

22.59 

0,13 

23.90 

23.81 

0,38 

33.60 

33.31 

0,87 

fl4 

21.46 

21.41 

0,23 

25.73 

25,69 

0,16 

31.20 

30.93 

0,87 

25.82 

26.78 

0,16 

40 18 

40.02 

0,40 

fis 

26.65 

26.64 

0,04 

25.79 

25.77 

0,08 

32.44 

32,28 

0,50 

31.49 

31.36 

0,41 

41.40 

41.07 

0,80 

In this example, the natural frequencies arc calculated for cross-ply laminated cylin
drical shells having small thickness ratio {hjR = 0.02) and moderate length (L/R = 4). 
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The shell has three-layer cross-plies from outer layer to inner. All layers are of equal thick
ness and material properties used are: Ei = 138 GPa, E2 = 8.96 GPa, Gu = G13 = 7.1 
GPa, G23 ^ 3.45 GPa, vu - 0.3, p = 1645 kg/m^. Material 1. 

In numerical examples, the frequency parameters are defined as f) = ujR{p/E2) ' 
and are presented for two edge conditions: simply supported and clamped-free. The present 
values are compared with the corresponding FE solutions given by Narita [9] in Tab. 1-2. 

Table 2 Comparison of frequency parameters il 
(clamped-frcc) cross-ply shells (three-layers, h/R 

= ujR{p/E2f''^ of cantilevered 
-- 0.02, L/R = A, Material 1) 

Lamination 

(outer/inner) 

0°/90°/0° 

0°/0°/0° 

0°/0°/90° 

90°/90°/0° 

90°/0°/90° 

References 

Narita [9] 

C E M 

Differences (%) 

Narita [9] 

CEM 

Differences (%) 

Narita [9] 

CEM 

Differences (%) 

Narita ]9] 

CEM 
Differences (%) 

Narita [9] 

CEM 

Differences (%) 

fii 

8.442 

8.439 
0,04 

8.453 

8.449 

0,05 

9.535 

9.641 
1,11 

10.09 

10.31 
2,18 

11.25 

11.24 
0,09 

SJ2 

11.30 

11.29 
0,09 

9.732 

9.724 
0,08 

11.56 

11.62 

0,52 

11.49 

11,63 
1,22 

17.70 

17.62 
0,45 

(xlO-2) 

11.51 

11.51 
0,00 

12.33 

12.33 
0,00 

14.38 

14.23 

1,04 

20.05 

20,24 
0,95 

20.66 

20.66 
0,00 

fi4 

17.25 

19,23 
5,68 

14.17 

14.15 
0,14 

22.28 

22.11 
0,76 

20.53 

20.77 
1,17 

27.69 

27.59 
0,36 

fis 

20.79 

20.75 
0,19 

20.31 

20.27 
0,20 

22.34 

22.20 

0,63 

23.61 

25.00 
5,89 

32.67 

32.39 
0,86 

It can be shown from Tab. 1-2 that the frequencies obtained by CEM of composite 
cylindrical shells subjected to different boundary conditions arc in an extremely good 
agreement with those of Narita calculated by FEM. 

The present values arc compared with the results obtained by 3-D analysis, parabolic 
shear deformation, constant shear deformation and thin shell theory [6]. The comparison of 
the fundamental frequency bi' = g/i(p?r2Gi2)'/^ tor various thickness-radius ratios {h/R) 
with those results using 3-D analysis obtained by Ye and Soldatos [1], for simply supported 
cylindrical shells with symmetric cross-ply laminates is presented in Tab. 3. The properties 
for the comparison are R/L = g,Ei/B2 = 40,Gi2 = 0.6£2,Gi3 = G23 = 0.5B2,t)i2 = 
0.25, Material 2. 

The agreement correlated with the previously published results is given in the Tabs. 
i-3, which indicates that the present analysis is accurate. 
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Table 3. Comparison of the fundamental frequency w" = gh{pir'^Gi2)^^^ of sim
ply supported cylindrical shells with symmetric cross-ply laminates by different 
methods {R/L = 1, Material 2). 

0°/90°/90°/0° 

h/R 

0.1 

0.2 

0.3 

Viswanathan[6] 

0.074118 

0.076309 

0.082831 

0.170696 

0.176990 

0.177462 

0.275497 

0.280720 

0.294626 

Ye [3] 

0.064600 

0 066335 

0.079277 

0.162844 

0.170868 
0.175188 

0.263048 

0.272860 

0.283798 

CEM 
0.06397 
0.06566 
0.07888 
0.15890 
0.16825 
0.17256 
0.25464 
0.26688 
0.27974 

90°/0°/0°/90° 

Viswanathan[6] 

0.051555 

0.054261 

0.062899 

0.121318 

0.152241 

0.163189 

0.231831 

0.244864 

0.284595 

Ye[3| 

0.052748 

0.059130 

0.070738 

0.130168 

0.150651 
0.158886 

0.218779 

0.236385 

0.268258 

CEM 
0.05310 
0.05907 
0.07089 

0.13325 
0.15267 
0.15915 
0.22732 
0.24281 
0.26990 

4.2. Harmonic responses of Clamped-free composite cylindrical shell 

In Fig. 3, the harmonic response obtained with 3 continuous elements is compared 
with those obtained with 144 (24 x 6 mesh) and 900 finite elements (60 x 15 mesh) of 
ANSYS SHELL 99 for clamped-free (079079070°) cylindrical shell, {h = 0.0254 m, 
R/h = 20, L/R = 2, Material 1) 

With 24 X 6 mesh, there is a convergence of results obtained with CEM and FEM 
up to 567.6 Hz. Beyond this limit, there is a discrepancy which can be explained by the 
fact that the meshing in FE idealization is not fine enough. An excellent convergence is 
noted for CEM and FEM with 900 elements (60 x 15 mesh). 

Fig. 3. Comparison of harmonic responses of clamped-free composite cyhndrical 
shell 1079079070°) by CEM and by FEM with different mesh [h - 0,0254 m, 
R/h = 20, L/R = 2, Material 1) 
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A good similarity can be observed between the three curves ot harmonic responses 
of free-free (0°/90°/0°/90°) composite cylindrical sheU by CEM and by FEM with 24 x 6 
and 60 X 15 meshes in Fig. 4, Material 3: Ei = 138.6 GPa, E2 = 8.27 GPa, G12 = 4.12 
GPa, Gi3 = G23 = O.6E2, V12 = 0.26, p = 1824 kg/m^ 

(S60x15 Ansys24x6 [ Fieauoncv(H?l 

Si|-g-sgispg|i|&-S5||-5|gfsgaggs^^^^^ 

Fig. 4. Comparison of harmonic responses of free-free (0°/90°/0°/90'') by CEM 
and by FEM with different mesh {h = 0.0254 m, R/h = 20, L/R = 1, Material 3) 

Some first natural frequencies for clamped-free (0°/90°/90°/0°) composite cylindri
cal shell calculated by CEM and FEM arc compared in Tab. 4. 

Table 4. Natural frequencies for clamped-free composite cylindrical shell 
(079079070°), h = 0.0254 m, R/h = 20, L/R = 2 

Mode 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

m 
3 
2 
4 
1 
5 
4 
3 
5 
6 
2 
6 
7 
4 
5 
7 

C E M (Hz) 
194.26 
215.45 
278.68 
351 .45 
423 .57 
486 .07 
503.49 
567.6 

607 .27 
652 .55 
717.87 
823 .47 
890.74 
912 .5 

916 .01 

Ansys 24 x 6 (Hz) 
194.43 
215.45 
279.7 
351.44 
427.26 
488.17 
504.41 
572.67 
617.48 
653.07 
729.88 
847.42 

899.43 
926.2 

942.38 

Errors (%) 
0,09 
0.00 
0.37 
0,00 
0.87 
0,43 
0.18 
0.89 
1,68 
0,08 
1.67 
2.91 
0,98 
1 50 
2.88 

Ansys 60 x 15 (Hz) 
194.24 
215.46 
278.97 
351.48 
424.57 
486.47 
503.68 
568.72 
609.53 
652.83 

720 4 
827 79 

892.86 
915.42 
920.79 

Errors {%) 
0,01 
0,00 
0,10 
0,01 
0,24 
0,08 
0,04 
0,20 
0,37 
0,04 
0,35 
0,52 

0,24 
0,32 

0,52 

Next, the comparisons of computing time by FEM and by CEM using the same 
computer axe shown in Tab. 5 and Tab. 6. 
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Table 5. Computing time for free-free composite cylindrical shells (0°/90°/0°/90°) 

FEM (24 X 6) 

600 s 

FEM (60 X 16) 

5880 s 

CEM (m = 3) 

30 s 

Table 6. Computing time for clamped-free composite cylindrical shells(0°/90°/90''/0°) 

FEM (24x6) 

720 s 

FEM (60 X 15) 

5280 s 

CEM [m = 3) 

72 s 

Advantages of CEM are confirmed in Tab. 5 and Tab. 6. Using only 3 continuous 
elements for meshing, CEM accelerates the calculation speed and save data storage ca
pacity of computers. For the FEM model, it takes much more time to solve the problem 
if we refine the meshing in order to have more exact result. 

4.3. Influences of some parameters on frequency of composite cylindrical shell 

The effects of thickncss-to radius ratios, length-to radius ratios and the number of 
layers on the frequencies of composite cylindrical shell arc presented in Figs 5-6, Fig. 7 
and Fig. 8, respectively.' 

Fig. 5. Effect of h/R on simply supported composite cylindrical shell 
(0°/90''/90°/0°, h - 0,0254 m, L/R = 2, Material 1) by CEM and by FEM 

FVom Fig. 5 and Fig. 6, it is seen that the raise of the shell thickness will result in the 
increasing of natural frequencies of the shell. The frequency decreases in general as L/R 
increases. The decrease is fast for very short shells (Fig. 7). With the same shell thickness, 
when the number of layers increases, natural frequency increases (Fig. 8). This confirms 
influence of tho arrangement of material layers to the vibration of composite shell. 
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Frequency (Hz) 

2500 

— • — C E M m = 1 —%^—CEMm=2 
— * — C E M m=4 — — CEM m=5 

- - • — F E M m = 5 

— * — C E M m = 3 
— — FEMm=1 

Fig. 6 Influences of h/R on clamped-free composite cylindrical shell 
(0°/9070°/90°, h=0 0254. L/R=2, Material 1) by CEM and by FEM 

Fig 7 Effect of L/R on simply supported com- Fig. 8 Influence of number of layers 
positc cylinder (0°/90''/90°/0°, h — 0.0254 in, on simply supported composite cylinder 
L/R = 0.1. Material 1) { h = 0.0254 m, h/R = 0.1, L = 2R, 

Material 1) 

5. CONCLUSIONS 

This article has succeeded in constructing the CEM model and in creating a com
puting program by Matlab to solve the problem of vibration of thick composite cylin
drical shells 'ising Continuous Element Method. Through different comparisons with the 
published results and with the other calculation methods, the obtained results are very 
satisfied. 

Numerical results of this research show that CEM allows to compute the natural 
frequencies of thick laminated cylindrical shells with high accuracy, widen the studied 
frequency range. Using minimum meshing, this method increases the calculation speed 
and economies the storage capacity of computers. In this paper, only ir-axis composite 
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shells are studied. But actually, there is no limitation on the manner of ply angles of the 
lamina. Those problems can also be solved by using CEM. 
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