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Abstract. This paper presents an analytical approach to investigate the buckling and
postbuckling of functionally graded cylindrical shells subjected to axial and transverse
mechanical loads incorporating the effects of temperature. Material properties are as-
sumed to be temperature independent, and graded in the thickness direction according
to a simple power law distribution in terms of the volume {ractions of constituents Equi-
librium equations for perfect cylindrical shells are derived by using improved Donnell shell
theory taking into account geomctrical nonlincarity One-term approximate solulion is
assumed to satisfy simply supported boundary conditions and closed-form cxpressions of
buckling loads and load-deflection curves are detenmned by Galerkin method Analysis
shows the effects of material and the geometric parameters, buckling mode, pre-existent
axial compressive and thermal loads on Lhe nonlinear response of the shells

Keywords: Postbuckhng, lunctionally graded materials, cylindrical shells, improved Don-
nell theory, temperature effects.

1. INTRODUCTION

Cylindrical shell is onc of the most common structures found in many applications
of various industrics. As a result, problems relating to the stability including buekhng and
postbuckling behaviors of this type of shell have a major importance for safe and rcliable
design and attract attention of many rescarchers. Brush and Almroth (1] introduced an
excellent work on buckling of bars, plates and shells in which linear stability of cylindrical
shell structures under basic types of loading has been analyzed. However, the results were
mainly presented for isotropic shallow cyhindrical shells Birman and Bert (2] invesugated
dynamic stability of reinforced composite cylindrical shells subjected to pulsating loads
acting in the axial direction and in the presence of a thermal field on the basic of Donnel}
theory for laminated shells and a lincar analysis. They then considered the buckling and
postbuckling behaviors of reinforeed cylindrical shells subjected to the simultaneous ac-
Lion of a thermal field and an axial loading by using improved version of Donnell theory
ignoring the shallowness of cylindrical shells [3] Their paper also formulated conditions
for Lthe snap-through of a cylindrical shell under thermomechanical loading. Eslami et al
[4] established improved stability equations for lincar buckling analysis of isotropic short
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and long cylindrical shells under thermal loadings. An analytical approach was used in
above mentioned studies.

Duc to advanced characteristics in comparison with traditional metals and conven-
tional composites, Functionally Graded Materials (FGMs) consisting of metal and ceramic
constituents have reccived increasingly attention in structural applications in recent years.
Smooth and continuous change in material propertics enable FGMs to avoid interface
problems and unexpected thermal stress concentrations. By high performance heat resis-
tance capacity, FGMs arc now chosen to use as structural components cxposed to scvere
temperature conditions such as aircraft, acrospace structures, nuclear plants and other cn-
gineering applications Shabsiah and Eslami [5] employed Donnell shell theory and coupled
form of stability equations to study lincar buckling of simply supported FGM shallow cylin-
drical shells under thermal loads. Subsequently, they extended this analytical approach for
FGM nonshallow long cylindrical shells [6] in which improved terms of the classical thin
shell theory were incorporated. Lanhe ct al. [7] utilized the Donnell theory, uncoupled
form of stability cquation and onc-term approximate solution to determine closed-form
cxpressions of critical temperatures for simply supported FGM cylindrical shells. Buckling
behavior of cylindrical shells with FGM middle layer, imperfect FGM cylindrical shells
and FGM stiffened cylindrical shells under axial compressive load were analytically in-
vestigated in works (8-10), respectively. Postbuckling behavior of FGM cylindrical shells
has been presented in some studies. Shen (11] investigated thermal postbuckling of simply
supported FGM cylindrical shells under uniform temperature rise. He used the classical
shell theory, boundary layer theory of shell buckling and asymptotic perturbation tech-
nique to determine critical temperatures and postbuckling temperature-deflection curves
with both gcometric imperfection and temperature dependence of material propertics are
taken into consideration. Following this dircction, thermomechanical postbuckling behav-
iors of FGM cylindrical shells with and without piezoclectric layer were also reported in
works [12-14]. By using analytical method and the classical theory, nonlincar buckling and
postbuckling of FGM cylindrical shells under axial compression and combined mechanical
loads have been considered by Huang and Han [15, 16]. Recently, Darabi et al. [17} pre-
sented an analytical study on the nonlinear dynamic stability of simply supported FGM
circulay cylindrical shells under periodic axia) loading. Also, nonlincar dynamic stability
of FGM cylindrical shells with and without piezoclectric layers under thermomechanical
and thermo-electro-mechanical loads has been treated by Shariyat [18.19)]. He cmployed
a high-order shell theory proposed by Shariyat and Eslami (20} in which transverse shear
stress influences are also included, finite element method and a two-step iterative method
to determine buckling loads and postbuckling curves. It is excepted for works [3, 4, 6], most
of aforementioned investigations used the theories in which the shallowness of cylindrical
shells is assumed. This results from the complexity of basic equations when assumption
on the shallowness is ignored due to difficulty in defining a suitable stress function. How-
ever, improved terms should be included in the shell theories for more exact predictions,
especially nonshallow long cylindrical shells.

In this paper, buckling and postbuckling behaviors of FGM cylindrical shells under
mechanical Joads with and without temperature effects are investigated by an analytical
approach. Equilibrium equations are established by using improved Donnell shell theory
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with kinematic nonlincarity is taken into consideration. One-term approximate solution
satisfying simply supported boundary conditions is assumed and closed-form cxpressions
of buckling loads and nonlincar load-deflection curves arc determined by Galerkin method.
The cffects of material and geometric parameters, buckling mode. pre-existent axial com-
pressive and thermal loads on the stability of FGM cylindrical shells are considered and
discussed.

2. FUNCTIONALLY CYLINDRICAL SHELLS

Consider a functionally graded circular cylindrical shell of radius of curvature R.
thickness & and length L as shown in Fig. 1. The shell is made from a mixture of ceramics
and metals and is defined in coordinate system (x. 8. z), where z and & arc in the axial and
circumferential dircctions of the shell, respectively, and z is perpendicular to the middle
surfacc and points outwards (—h/2 < z < h/2).

Fig. 1. Configuration and the coordinate system of a cylindrical shell

Suppose that the matcrial composition of the shell varies smoothly along the thick-
ness is such a way the inner surface is metal-rich and the outer surface is ceramic-rich by
following a simplc power law in terms of the volume fractions of the constituents as

k
Vo) = (22;1’1) | Vinl2) = 1= Vi(2) ()

where V, and V,, are the volume fractions of ceramic and metal constituents. respectively,
and volume fraction index k is a nonnegative number that defines the material distribution.
It is assumed that the effcctive properties Projs of FGM cylindrical shell change in the
thickness direction z and can be determined by the linear rule of mixture as

Prejs(z) = PreVe(z) + ProVm(z) (2)

where Pr denotes a temperaturc-independent material property, and subscripts m and ¢
represent, the metal and ceramic constituents, respectively.

From Egs. (1) and {2) the effective propertics of FGM cylindrical shell such as
modulus of clasticity £, the cocfficient of thermal expansion a. and the coefficient of




4 Dao Huy Bich, Nguyen Xuan Nguyen, Hoang Van Tung

thermal conduction K can be defined as

2z + h\*
|E(2), a(2), K(2)] = [Em, tm, Km] + [Eem) @om Kom) ( oh ) (3)
whercas Poisson ratio v is assumed to be constant and
Een =Ec = Em\ aem = 0c — am , Kom = Kc = K. (4)

Itiscvident that E=E., ac =ae, K = Kcatz=h/2and E=Ep, a=0m, K =
Kmat z = -h/2.

3. GOVERNING EQUATIONS

In the present study, the improved Donnell shell theory is used to obtain the equi-
librium cquations as well as cxpressions of buckling loads and nonlinear load-deflection
curves of FGM cylindrical shells. The strains across the shell thickness at a distance z
from the middle surface arc

€1 = g0+ 2kz, €y = €yo + 2ky, Yoy = Yoyo + 2kzy (5)

where £20 and €,p arc the normal strains, yzy0 is the shear strain at the middle surface of the
shell, whereas kz, ky, kzy are the change of curvatures and twist. According to Sanders
assumption, the strains at the middic surface and the change of curvatures and twist
arc related to the displacement components u, v, w in the z, y, z coordinate directions,
respectively, as |1

1, w1 o,
€20 = Ug F W €0 =V~ R Wy Tao = Uy + Uz Fwgwy
] 1 ®)
k= —wWaz, ky = —wy, - RV kzy = Wy = 2RV*

where y = RO and subscript (, ) indicates the partial derivative.
Hooke law for a functionally graded cylindrical shell including temperature cffects
is defined as

(0z,0y) = _E [(ez,ey) + v{ey, €2) = (1 + v)aAT(1, 1))

1-2
s ™
Uzy—2(1+ )'7zy;

where AT denotes the change of environment temperature from stress free initial state or
temperature difference between the surfaces of FGM cylindrical shell.

The force and moment resultants of an FGMI cylindrical shell are expressed in terms
of the stress components through the thickness as

n/2
(N ALy) = / o5(), 2)dz, ij = 3.y, 7y (8)
-h/2
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Introduction of Egs. (3), (5) and (7) into Egs. (8) gives the constitutive relations in
the matrix form as

:\:: Ay Az 0 By B 0 €20 Bo/(1 - v)
Ny Az An 0 By By 0 €40 o/(1 - v)
Ney | _| 0 0 A 0 0 B || v | 0 ®
M, By By 0 Dy Dy 0 k. @ /(1 - v)
M, Biz B 0 Dy Dp 0 kzy &, /(1-v)
My, 0 0 Bes 0 0 Des| | 2ksy 0
where
Ey E)
All=A22=k_—‘/2, A12=VA1|,Ass=m
_ __E _ B
By —322—1—_‘/—2, B2 =vBy, Bss—m (10)
- _ _Es _ _ B
DlL*Dn—l_—V?, Dlz—VDxl,Des—m
and
E\ = Enh+ Egnh/(k+1), Ez = Ecnh?(1/(k+2) - 1/(2k +2))
Ey = Eqh®/12+ Egnh® (1/(k +3) = 1/(k +2) + 1/(4k + 4)] ,
h/2 X (Il)
2z + h\* 2: +h\*
(0, &) = / [E,ﬁsm( - )Hammm( = ) AT(1.2)dz
—h/2

The nonlincar cquilibrium cquations of a perfect cylindrical shell based on the im-
proved Donnell shell theory are
Nyz+ Neyy=0
1
Nayz + Nyy— 7 (Mzyz + Myy) =0
(12)
N, .
Mz gz + 2Mayay + Myyy + 2+ New e + 2Nzyway + Ny
+ (Nzyzr + Nyy)wy = Prhw sz +¢=0
where P, is axial uniform compressive force acting on two ends of the shell and ¢ is external
pressure uniformly distributed on the surface of the shell
Substituting of Egs. (6) into Egs. (9) and then into Eqs (12), the system of equi-
librium equations (12) is rewritten in terms of displacement components as follows
Li(u) + Liz(v) = Lia(w) + Pr(w) =0
Lar(u) + La2(v) - Laa(w) + Po(w) =0
Ly (u) + Laz(v) = Laz(w) + Pa(w) + Q3(u, w) + R3(v, w) (13)
®o
1-v

1
(w,n +wyy + ﬁ) — Prhwir+q=0
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where linear operators Lyy () (2. j = 1,2, 3) and vonlinear operators Pi() (¢ = 1.2.3), Qs(.).
are defined as follows

Lu() = Auaa—:z + :‘455(,;,3—1/22
Lip()=La() = (An + Ags — EZ—B“) 8;9;/
Lis() = La() = %63 + 311a 7 + (Biz + 2Bsg) 80031;
L) = (Ass- MTSS + ?2526> 8612 <An - QBT“ + %) 6—0;3
Las() = Laz() = (% - %) [% + (Bu - %) 66—;

+ (wvama- Dat0) 0
LJJ()=%()+%86—;+%"§_+ (a—l*'%)

+2(DIZ+2D66)6I;Lz;y2

() = A“;I 8612 + (A2 + Ags) 5= 3 0801,: + Ass%;—; (14)
B() = (Ass B]gs) ai;;y (An - B“) :y::

(e - P e) 20
Ps(w) = —}—1; (An% + A“Zzyz) +2(Bsg — Bi2) [;3)22 03;2

2w\? A, 0w Ay (Ow\?
#2080 Bw) (575 ) ‘ﬁ(%) - (%)
L3 | Pw (du\t w (Bw)? dwdw &
2 | 0z7 \ oz gy? \ dy ‘Bz By 820y
Ay 0w 9w\ 8w [ow)?
*(T*A“)[F(a_z +W<a_y
Budw 9w ow Ou d*w 0%y dw
Q3(uvw)_‘4ll<xa—x2+a—rza_z) + Ay 62+ 5.7 9z
2u Bw + du 8w
816y By &6 Ay dz0y

+2{A12 + 2466)

+ (A2 + Ass) s——

Ry(,)
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_ Biy\ Ov 0*w Bes ov *w 0% ow
Ra(w.w) = ("“ ) a3 ("“ ) [25@ * wa—y]

(,4 _ﬂ) [31‘32 L Pvow
" 3y 0% " 942 By
By + Bae) 9%y Ow

+ | A2 + Ass — a5
( 2 66 R 91y oz
In what follows, specific expressions of thermal parameter ®q for two types of ther-
mal loads wi'l be determined.
3.1. Uniform temperature rise

Environment temperature can be raised from initial value 7, to final onc Ty and
temperature differcoce AT = Ty — T, is a constant. In this casc, the thermal parameter
&g can be expressed in terms of the AT from Egs. (11) as follows
Emtem + EcmOm n Ecm0cm

k+1 2k +1
3.2. Through the thickness temperature gradient

o =IATh , I = Epom +

(15)

In this case, the temperature through the thickness is governed by the one-dimensional
Fouricr cquation of stcady-state heat conduction cstablished in cylindrical coordinate sys-
tem whose origin is on the symmetric axis of cylinder rather than on the middle surface
of cylindrical shell
4 [1((;)55] + KO G R W) =Ta T(i= R4 =T, (16)
dz dz z dz
where 7, and Ty, arc temperatures at ceramic-rich and metal-rich surfaces, respectively. In
Eg. (16), Z is radial coordinate of a point which is distant z from the shell middle surface
with respect to the symmetric axis of eylinder, ic. Z= R+z2and R-h/2< 2 < R+ h/2.

The solution of Eq. (16) can be cxpressed as follows

AT Pod

TO=Tnr 5w — | QO o
%R—hﬂ
R-hj2

where, in this case, AT = T. — T,y is defined as the temperature difference between
ceramic-rich and metal-rich surfaces of the FGM shell. Due to mathematical difficulty.
this section only considers linear distribution of metal and ceramic constituents. i.e. k = 1
and

_ 2z2-R)+h
I((:)=K,,,+Km,[2—h] . (18)
Introduction of Eq. (18) into Eq. (17) gives temperature distribution across the shell
thickness as
R+z (Ke+ Km) 2+ K,,,,z/ﬂ

=Tn+ %, (R+hp [ Rhz " Ko J

T(z) (19)
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where z has been replaced by z + R after integration.
Assuming the metal surface temperaturc as reference temperature and substituting
Eq. (19) into Egs. (11) give & = HATh, where

(RBn—1)(1 = Rx)

K. E, + Ema
i { B am € (Ry +1/2) - 2Ke| 4 EmOem T Ben&
-7 Kem 2

3 | (3K + K2 2)]
Sep L (HmtHe m -1)-7K2)| +E -5/8
+45+K%n( 5+ 2K (n = 1)~ i em@em [=5/ 20)
R} 7 R R R 1 3 3 (3,
*’W‘T”(a}*T‘?*T Tarcz, (1Km + 2K (30 =1)
18K K K om + I mKe( Ko = 2]}
and
2Ry + 1 K,
= - =1 . 21
Ra=R/h, §=lngp— n=lags (21)

4. STABILITY ANALYSIS

In this scction, an analytical approach is used to investigate the nonlincar stability of
FGM eylindrical shells under mechanical and thermomechanical loads. Consider a perfect
cylindrical shell with simply supported cdge conditions. The boundary conditions at = =
0, L arc
W=wa =v=ug =0 (22)
The approximatce solution of the system of Egs. (13) satisfying the boundary con-
ditions (22) may bc assumcd as
u = U cos AmT sin oy
v =V sin Az oS pny (23)
w = Wsin A,z sin g,y
where A = ma /L, pn = n/R and m, n arc number of half waves in z dircction and waves
in y direction, respectively, and U, V, W are the amplitudes of displacements Substitution
of Eqgs. (23) into Egs. (13) and then applying Galerkin method for the resulting equations
yield
MU+ 0V + g 12 =0
I\ U+ 1oV + 1alV 4 mpit2 =0

15U + 2V + I + 03U 2 4 ng W3 4 ngUIV 4 ngVIL —

Py m2r? +n_2 W 16®o _ 16q _
1-v\ L2 R? R(1 —v)n?mn  72mn

P hn?m? 94
=W (24)
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where
= AnT Lz + AssRQ Ve =l = LR [/112 + Ags — E(B” + BGG)]
m3m3 (B + 2Bge) mrn?
hy= = - _ A2 Amee TR
=l = A”LR Bu—r IR ‘
2B, Dy n? 2Bgs  Des)\ 72m?
’“‘("“'T*F wt A“_T+F 2a
Bu\ n Dy, Dyy +2Dgs =m2n
lba=lp= (An - ?> mt (T_B“ =t T_BIZ‘ZBﬁ) R
wimt 2rntm2n? Ay 2Biaa?m? 2By n?
133=Dn( T R|>+(Dl2+2DGE) TR TR LR T R
327m® 16 (A2 — Ags) 1
MEANGET T T LR
_ B“ 32n2 Bgs — Bi2\ 16m
ng = (A“ Ty Ags — A1z R ) 3R’
na = 32(Bi2 — Bgs)mn  16A12m _ 16Ann
27 3L7R? 3PRn " 3R
_9Ay (w'mt A
=0 ( o twr + (A + 2465) = 16L2R2 .
—a 327m? _ 32(A1n — Aes) n
T2 9rLR?
Bia — Bgs\ 32m Bi 32n°
e = (A“_ At =g ) oifR * ( R A”) ey
(25)
and m, n arc odd numbers. Solving the first two of Egs. (24) for U and V yiclds
U= (halaa = laha) W + (hana = lpn) 172
Inln = 12, (26)
V= (Lializ = hylaa) W+ (Lo = lung) W2
Lol - 1,
Substituting Eqgs. (26) into the third of Egs. (24) we obtain
16¢ —3 P,. 2m? 16 7tm? 2\ —] IAT | __
- =q, T e H - Wt | o—— - Fl— (2
atmn ta +a; RhLR Ry,7mimn li”L2 + R2 } 1—v 0
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where

- 2Dalashs — (l_ni%; +Iol}s)
=ha+ 3
luln - [17

ag = fig + i [ha (ot — Iaruy) + B (Lo — Ludz) + s (Thalas — le2lia) + s (lizhhs — D10g))

1 - S
a3 =iy + p [ (Thafiz = Iafy) + 7s (hi2fy — Ii2)]

(28)
in which
X= 711[21 - Tf; f
= 7m®  (Bis + 2Bgs) nmn?
L= Apyo 22— N
R} R} FLn
e 2B, Dy n? - 2Bss  Dgs\ wim?
by = (Au A + Rz) R2 + (Ass R + R —R)2|L2RI
o B\ n Du 4 n® Dy +2Dss 5 e n?m?in
by = <An R_) 7 + (Rh 3n> " + I Bz — 2Bss HiL}? )
- - mimi nt _ Sy 2mtm?n? Ay 2Bppn?m? 2Byn?
ly=D + =5 ] + (Dr2+ 2D LI -
33 11 (R"L“‘ H;‘) " ( 12_+ ss) H},LZR + R%. R}.L%z Ri »
_ s 32rm? 160 (A2 — Ass)
= Angers 3 >
R 9rRiL,
Bu 32n? - - Bss — Biz\ 16m
Ay 2) 2 (g = A,y — 28— Bz 16m
( u ) sezmpy T\ T AT =R — ) ggz
B 32mn(B|; — Bes) _ 16mAi;  16nd;p
ARG 3nRIL%,  3maiR]
_9AL (a'm'  nt - - m?n?
M= (R;L; tmE)T (Rra +2es) epers BRILE
A= 1 327m? 32n (A]Q—A_gg)
ST M enRILE, 9TRIL,
3 = Bia— Bes\ 32m B, - 32n?
= [ Ags - Aip 4 2788 Ho Ay
( 66~ e Ry ORILZ, (R,. A”) 97?mR}
(29)
and
Le=L/R, T =1n,
[A11, Az, A = = = B, Bi3. B
(A1, Av, Agg) = _hs_s] [Bu1. Bz Bes) = [“h+66] . (30)
S D, D
[Dn, D2, DGG] = —[ 1, Duz, Dol

h3



Postbuckhng of f ly graded cyhndnical shells bosed on improved Donnell eguations 11

Eq. (27) is explicit cxpression of external pressurc-deflection curves accounting for
pre-existent edge compressive and thermal loads. It is predicted that due to the presence
of temperature conditions FGM cylindrical shells experience a bifurcation-type buckling
behavior with buckling pressure gy = TAT/ (Rp(1 — v)) (1 is replaced by H in case of
thermal gradient) which is independent of buckling mode (postbuckling behavior, however,
is sensitive to buckling mode). In contrast, in the absence of the temperature and edge
compressive foree the g(T1) curves originate from coordinate origin and the shell undergocs
bending at the onset of loading.

In a particular case which the cylindrical shell is only subjected to axial compression,

Eq. (27) leads to

RELY o 2
P = "gml; (Gl +axlV + ast! ) (31)
from which bifurcation compressive load Py is determined as
ayRELY
Po=—52 (32)
whercas lower buckling compressive load may be obtained at Wy = —a,/(2a3) as
— RLY a3
Pr = Pr(Wq) = poml E) (33)

and the intensity of well-known snap-through of compressed cylindrical shells is measured
by diffcrence between bifurcation and lower buckling loads, i-c. by a3REL%/(4a3n?m?).

5. RESULTS AND DISCUSSION

As part of the validation of the present approach. the buckling behavior of an
isotropic thin cylindrical shell under uniform axial compressive Joad is analyzed, which
was considered by Brush and Almroth [1) using adjacent cquilibrium criterion and Don-
nell shallow shell theory. The dirnensionless buckling axial compressive loads of a simply
supported cylindrical shell are compared in Tab. 1 with result of Ref. [1]. As can be
scen, a good agreement is achicved in this comparison study. Brush and Almroth’s results
arc slightly higher than our rcsults because the shallow shell theory, instcad of improved
theory, was used in their work

Table 1. Comparison of buckling loads P, x 10%/E for simply supported sotropic
perfect cylindrical shell under axial compression (v = 0.3).

A/ L/R=05 L/R=10 L/R=15

100 150 100 150 100 150
Present | 6.033(1,9)° | 4.043(3,9) | 5.954(1,7) | 4.018(3.11) | 6.033(3.9) | 4.043(9.9)
Ref. 1| | 6.087 4.047 6.063 4.035 6.087 4.047

€ The numbers in brackets indicate the buckling mode (m,n)
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To illustrate the proposed approach, we consider a ceramic-metal functionally graded
cylindrical shell that consists of aluminum and alumina with the following propertics
En=70GPa, am=23x1075°C™" . K, =204 W/mK ()
E.=380 GPa, u.=7.4x107%°C™", K;=10.4 W/mK

whercas Poisson’s ratio is chosen to be 0.3.

Table 2. Critical buckling compressive loads Peer (in GPa) for FGM cylindrical
shells. R/h = 100.

. L/R
1.0 2.0 3.0 6.0
0 2262(1,7)° | 2.229(1,5) 2.262(3,7) 2.079(1,3)
0.5 1.554 1.545 1.554 1.445
1.0 1.230 1.228 1.230 1.151
5.0 0.736 0.723 0.736 0.674

¢ The numbers in brackets indicate the buckling mode (m,n)

Tab. 2 considers the cffects of volume fraction index k and L/R ratio on critical
buckling loads P of FGM cylindrical shells under axial compression. As cxpected, the
critical valucs of buckling loads arc decrcased when k increases duc to drop in the volume
pereentage of ceramic constituent. It is also scen that critical loads are not always decrcased
when L/R incrcases.

Fig. 2 gives the cffects of k on the postbuckhing behavior of FGM cylindrical shells
under axial compression. As can be scen, both buckling compressive loads and postbuckling
load carrying capacity of cylindrical shells arc reduced when k is increased. However, the
mcreasc in buckling loads and postbuckling strength is paid by a more severe snap-through
phenomenon, i.c. a bigger difference between bifurcation and lower buckling loads and
curves become more unstable.

Fig. 3 shows the effects of L/R ratio on the postbuckling of FGM cylindrical shells
under axial compression. Although there is not much change of bifurcation point loads,
buckling modes and postbuckling curves are considerably varied due to the variation of
L/R ratjo. Specifically, both number of waves in the circumferential direction and post-
buckling bearing capability of shells are reduced when L/R is enhanced. In addition, the
increase in L/R is accompanied by an unstable postbuckling behavior, i.e. a more severe
snap-through response.

Figs. 4 and 5 illustrate the effects of buckling mode and pre-existent axial com-
pressive load on the nonlinear response of FGM cylindrical shells subjected to uniform
external pressure. As can be observed, for a specific buckling mode nonlinear equilibrium
paths become lower and the intensity of snap-through is enhanced for higher values of
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P, (GPa) P, (GPa)
U

LR =20, Ah = 100 (m.n) = (1.5)

LR =20, RM = 100. (m.n) = (1.5)

Fig. 2. Effcets of k on the postbuckling be- Fig 3. Effects of L/R ratio on the postbuck-
havior of FGM cylindrical shells under axial ling behavior of FGM cylindrical shells un-
compression. der axial compression.

pre-cxistent axial compressive load. Furthermore, the cylindrical shells carry better exter-
nal pressure and the nonlincar response to be more benign as the number of waves in the
circumfcrential dircetion increcases.

G0 ePa X ) Sy 107 (GP2)
UR = 2.0, R = 100, k = 1.0, (m.n) = {1,3)

LA =20, A= 100, k= 1.0, () = (1.5)

25 WP -0 R
28,.0508 , TP=D5GPa
2 38 <106Ps 3P, <10GPa

s
o .
° ! n 3 N % 05 Vowm 15 2 25
Fig. 4. Effects of pre-existent compressive Fig. 5. Counterpart of Fig. 4 for case of n = 3.

Joad on the nonlinear response of FGM
cylindrical sheils under external pressure.

Figs. 6 and 7 depict the effects of environment temperature and through the thick-
ness temperature gradient on the nonlinear response of FGM cylindrical shells under uni-
form external pressure in the presence of pre-existent axial compressive load. As mentioned
above, duc to thermal loading conditions, FGM cylindrical shells experience a bifurcation
type buckling behavior. The increase in thermal loads is followed by both higher bifurca-
tion point pressure and more severe snap-through behavior. It is interesting to note that
all pressure-deflection curves go across a point for vanous values of temperature differ-
ence AT This behavior trend of FGM shells is similar to the nonlinear response of FG\
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cylindrical panels subjected to simultaneous action of external pressure and thermal loads
presented in [21].

q(GPa}

UR‘ -20,RM =100k« 1.0,
< 1.0GPa, (mn) « (1.8)

0.08

a {GPa)
0.06

UR-20.Ah=100,k 1.0
00 P -10GPa {ma) = (1.8).T, =27°C

D.Nl 1:aT=0
L aTo
a0 29 200°C
| 2:aT-s00%C
0.02;

ooer 1T, =27°C

0.08
0.01
o,
-0 o
— J— —_ - —_—
-0.07, T 3 . % 003 7 N 3 +
iR wm

Fag. 7. Effects of the temperature gradient
on the nonlinear response of FGM eyhndri-
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Fig. 6. Effects of the environment temper-
ature op the nonlinear response of FGM
cylindrical shells under external pressure.

6. CONCLUDING REMARKS

This paper presents an analytical approach to investigate buckling and postbuckling
behaviors of FGM circular cylindrical shells subjccted to axial compressive load, uniform
external pressure accounting for the effects of temperature conditions. Equilibrium equa-
tions are established within the framework of improved Donnell shell theory taking into
account the nonshallowness of cylindrical shell and geometrical nonlinearity. One-term
approximate solution satisfying simply supported boundary conditions is assumed and ex-
plicit expressions of buckling loads and postbuckling load-deflection curves are determined
by using Galerkin mecthod. The study shows that buckling loads and postbuckling behavior
of FGM cylindrical shells arc greatly influenced by material and geometrical parameters
and temperature conditions. The results also reveal that buckling mode and pre-existent
axial compressive load have significant cffects on the nonlinear response of the shells. The
improved theory should be used to predict the nonlincar behavior of nonshallow cylindrical
shells.
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