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Abstract. The propagation of Rayleigh waves along an obliquely cut surface in a direc-
tional fiber-reinforced composite was studied recently by Ohyoshi [Ohyoshi T. Compos
Sci Technol 2000; 60; 2191-6]. The author derived the secular equation of the wave, how-
ever, it is still implicit. In this paper, a fully explicit secular equation of the wave is
obtained by using the method of first i Is. From it we i diately arrive at the
secular equation of the wave for the case when the cut surface is parallel to the fiber
direction. This secular equation is much more simple than the ones obtained recently by
Cerv [Cerv . Int Rev Mech Eng (IREME) 2008; 2; 762-72) and Cerv et al. [Cerv J et al.
Composite Structures 2010; 92; 568-77|. Based on the obtained secular equations some
approximate formulas for the velocity of Rayleigh waves are established and it is shown
that they arc good approximations Tho explicit secular equations and the approximate
formulas for the velocity derived in this paper are useful for analyzing the effect of the
material properties and the orientation of the fiber direction on the Rayleigh wave ve-
locity, especially they are powerful tools for solving the inverse problem: determining the
material parameters from the measured values of the velocity.
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1. INTRODUCTION

The propagation of Rayleigh waves along an obliquely cut surface in a directional
fiber-reinforced composite was studied recently by Ohyoshi [1]. The author derived the
secular equation of the waves by solving analytically the fully quartic characteristic equa-
tion. Among four complex roots of this equation two roots having positive imaginary parts
are chosen in order to ensure the decay condition. Since the author could not give the an-
alytical expressions of these two roots, the obtained secular equation is still not explicit.
It is therefore not convenient in practical application.

In this paper, we obtain a fully explicit secular equation of the wave by using the
method of first integrals [2, 3, 4]. It is a quartic equation in terms of squared velocity.
From it we immediately obtain the secular equation for the cese when the cut surface is
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paralle! to the fiber direction. This sccular equation is a cubic cquation in terms of squared
velocity, and it is much more simple than the ones obtained recently by Cerv (5] and Cerv
et al. [6]. Some approximate formulas for the velocity of Rayleigh waves are established
for the case when the cut surface ls parallel or perpendicular to the fiber direction, and
it is shown that they are good approximations. ‘The obtained explicit secular equations
and approximate formulas for the velocity will bo useful for cvaluating the effect of the
material properties and the orieutation of the fiber direction on the Rayleigh wave velocity,
especially they are powerful tools for solving the inverse problem: determining the material
parameters from the measured values of the velocity.

2. RAYLEIGH WAVES ALONG AN OBLIQUELY CUT SURFACE IN A
DIRECTIONAL FIBER-REINFORCED COMPOSITE
2.1. Basic equations

Consider a thin fiber-reinforced composite plate occupying the half-space z2 > 0 and
its fiber direction is parallel to the X-axis (see Fig. 1). Suppose that the Z-axis coincides

Fig. 1. The thin fiber-reinforced composite plate 2 > 0 whose fiber direction
parallel to the X-axis, the Z-axis coincides with the zj-axis and the coordinate
system (24, 22) is the rotated one from (X.Y) by counter clockwise angle 8 (0 <
9 <)

with the z3-axis and the coordinate system (z;,z2) is the rotated one from (X,Y) by
counter clockwise angle 6 (0 < 6 < ). Suppose that the thin fiber-reinforced composite
plate is subjected to the plane stress state

oy =0p=03=0 (1)
Then in the coordinate system (X,Y), the stress-strain relation has the form [1, 6]

oxx = Buexx + Bueyy, oyy = Buexx + Bueyy, oxy = 2Bssexy (2)
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where Bj; are material (stiffness) coefficients which can be expressed in terms of the
engineering constants (Young's and shear moduli, Poisson’s ratios) as [1, 6|

E,

E vi2E
Biy = , _ 2 pa=_mB _ w2 ’ -c 3
N T = vm Ban T—wgvm' 27 T—vgu 1 -wvpvm Bus 12 ()
and satisfy the inequalities
B >0, k=1,2,6, BiBn— B >0 (4)

which are neccssary and sufficient conditions for the strain energy of the material to be
positive define. In the coordinate system (z1,z2) the stress-strain relation is [1, 6]

an = Quen + Qize2 + 2Qi6¢12
022 = Q2611 + Q22622 + 2Q20€12 (5)
o12 = Qee11 + Q26e22 + 2Qe6¢12
where (1]
Qi1 = Buch +2(Biz + 2Bes)chss + Bish
Qyz = Buish + 2(Bua + 2Bes)chsi + Brach
Qu2 = (Bu1 + Baz — 4Bes)chsj + Bua(ch + 5§)
Qo6 = (Bu1 + Baa — 2B12 — 2Bes)chsg + Boo(ch + s5)
Q16 = —(Bi1 — Bya — 2Bes)c3ss — (Brz — Baa + 2Bss)css
Q26 = —(Bu — Biz — 2Bes)eosy — (Br2 — B + 2Bas)cso
in which cg := cos8, sy := sind and the strain ¢;; are expressed in terms of the displacement
gradients umn 2s
e11 = up, €22 = up2, €12 = (w12 +u21)/2 7
On view of (6) it is easily to show that
Qux(6) =Qui(m — 8) (k =1,2,6), Q12(6) = Qua(m — 6)

(8)
Qus(8) = —Qus(m — 8) (k=1,2)
and if By; = Bz (© E1 = E2):
Qui(0) =Qui(r/2 — 8) (k = 1,2,6), Qr2(8) = Qua(r/2-6) ©
Qus(6) = —Qre(n/2-6) (k=1,2)
In the absence of body forces, equations of motion are (1)
o1 + T122 = piiy, G121+ 022 = P2 (10)

Following the same procedure carried out in [7] Section 2, from Eas. (5), (7) and

(10) we have
4 -l
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where u = [u, uq]T. o =|oa, an]T. the symbol 7' indicates the transpose of matrices.
the prime indicates the derivativo with rospect to zz and

N= [M Nz]' Ny = [ (d1/d)6y —(1)91]_ N = 1] Qn —Qza]

K N —(da/d)8, d|-Qx Qs (12)
2 _
K= [aa. (s ,,?,;] . Ny=NT
Here we use the notations: 8 = 8/(0z), 8} = 8%/(9z3), 87 = 62/(6?) and
d = QuQus - Qs di = Q12Qzs ~ QuaQ1e (13)

dz =Q12Qe0 — Q16Q26, d3 = Qu1d + Qigds — Q22
From (8), (9) and (13) it implies that
d(8) = d(r - 8), di(8) = —dy(nx - 8), di(0) =dx(m - 6) (k=2.3) (14)
and if Byy = By (& Ey = E3)
d(8) = d(n/2 - 8), dy(8) = ~dy (/2 - 6), du(8) = du(r/2—6) (k= 2.3)  (15)

In addition to Eq. (11), tlic displacement vector u and the traction vector o are
required to satisfy the decay condition at the infinity

u(+00) =0, o(+00) =0 (16)
and the free-traction condition at the edge z2 =0
a(0)=0 (17)

2.2. Explicit secular equation

Now we consider the propagation of a Rayleigh wave, travelling with velocity ¢ and
wave number k in the z,-direction. The components u), u of the displacement vector and
012, 022 of the traction vector at the planes z3 = const are found in the form

{1, u2, a1z, 6} (21, T2, 1) = {Us(kz2), Us(kza), ikVi(kza), ikVa(kz2))e®1=) (18)
Substituting (18) into (11) yields

[f’] =iM [l‘f] (19)

where U = [Uy Uy]T, V = |\, Vy|T, and
M, Mz] di/d -1 1 Q2 -Qx
M= L My = . My=- ,
[Q M; P | -dy/d 0 274 |-Qw Qs
0= [X ‘0"3/“ g] . My=MT
X = pc?, the prime in Eq. (19) indicates the derivative with respect to y = kzy. From
(20), one can see that the characteristic equation |A —pI| = 0 of Eq. (19) is a fully quartic

equation for p (see also Eq. (18) in Ref. [1]), therefore we should employ the method of
first integrals |2, 3] in order to obtain the explicit secular equation of the wave.

(20)
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Eliminating U from (19), we have
aV" — iV -4V =0 (21)

where the matrices a, B8, + are given by

_d 0
a=Ql= |X=d; | 22)
v %
2d, 1
B=MQ + QM = 1dx_‘§, X dX-d; (23)
X T dX -4 0
L Qn __dd_ Qn
MO M- M |d@X —d) "X T d Td@X-dy) ' d
v =MQTIM; - M, didy | Que & Qs @9

“d@X-dytd  daX -4y d
Note that a, 8,y are symmetric real matrices. From (16)-(18) it follows
V(0) = V(+00) =0 (25)

Our task now is to solve Eq. (21) along with the boundary condition (25). In the
component form Eq. (21) is written as follows

agV" = ifuV/ —mVi=0, (k,1=1,2) (26)

Multiplying two sides of Eq. (26) by iZ,, and then adding the resulting equation to
its conjugation give

(Vi Vm + V] Vi) + But(ViVin + V[ Vi) + ma(ViiVin + ViiVin) =0 (27)

where the bar indicates the complex conjugation. Now we introduce 2 x 2-matrices D, E, F
whose elements are defined as follows

Din =< iV"\Vin >, Btm =<V/,Vn >, Fim =<V,iVm >, {m=1,2 (28)

+00
where: < ¢,g >= [ (g + Pg)dy. From (25) and (28), we find out that D, E, F' being
0

0 d 0 e 0o f
:| T l: :| T [ ] (29)
—-d 0 -e 0 -/ 0

Now, integrating Eq. (27) from 0 to 400 provid&s
aD+BE +~9F =0 (30)

antisymmetric, i. .

D=
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From (28) and (30) it follows
and+ fue+mf=0
a12d + fize + y1af =0 (31)
and+ fne+y2f =0
Thus, we have v
air P

a2 Pz ma|=0 (32)

an fn v
in order that the homogeneous linear system (31) has a non trivial solution. Introducing
(22)-(24) into (32) yields
F(X,8) = dX?((d + d2) X - ds](d] ~ Qea(dX ~ da)|+
+(dX - dy)[(d+ d2)X — ds|[Q228X? — (¢* + o} + Qnud3) X +ddg]  (33)
- 24, X2(dX ~ d3)[Qus(dX — dg) — dydg] = 0
Equation (33) is the desired explicit secular equation and it is a quartic equation for
X = pc?. On use of (8), (9), (14) and (15) one can prove that F(X,8) = F(X,r - ) and
if By, = By (¢ Ey = Ey), then F(X,8) = F(X,7/2 ~ 6). From these facts and Eq. (33)
it follows *

X (8) = X(m —~ 8) and if Byy = Byz then X(8) = X(n/2-0) (34)
or equivalently
cpr(8) = cr(m — 0) and if By = Bap then cg(8) = cp(m/2 - 8) (35)
where cp is the velocity of Rayleigh waves.
Remark 1:

The first of (35) says that in the interval [0, #] the curve cg = cg(8) has always one
symmetry axis, namely the line 8 = /2. If Byy = By (& E) = E3), then in addition,
the lines § = n/4 and @ = 37/4 are symmetry axes of the curve cg = cp(f) in the
interval [0, /2] and [/2, n], respectively, by the second of (35). With this fact now we
can understand why the curves cgr = cp(6) in the figures 1.1, 15, 18, 19 in [6] have the
symmetry axis § = 7/2 in the interval [0, 7], while the curves cg = cg(9) in the figures 16,
17, 20, 21 in [6] have the symmetry axis 6 = /4 in the interval [0, 7/2] and the symmetry
axis 6 = 3m/4 in the interval [r/2, ], in addition.

By dividing two sides of Eq. (33) by (Bgg)'! we obtain the dimensionless secular
equation, namely

J(z,71,72,73,6) = dz?|(d + da)z ~ dy][d ~ Qes(dz — dy)|
+ (dz — d3)|(d + d3)7 — do][Qaadz® — (& + &} + Qaads)e + dds]  (36)
- 2d\2*(dx — d3)[Qas(dz — d3) — dydz) = 0
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where © = X/ Bgg called the squared dimensionless velocity, ry = Byy/Bgs, r2 = Bay/Bes,
ra = Bia/ Bgs, and

Qu = 116§ +2(r3 + 2)cdod + rasd, Qaa = r18§ +2(rs + 2)c2sd + rach

Quz = (r1 + 72 — 4)chsh + ralch + sf), Qos = (1 + 72 — 2ry — 2)cBod + cf + 4}

Qis = ~(r1 — r3 — 2)c3sg — (r3 — r2 + 2)cps3

Qa6 = —(r1 = ra— 2)cas] ~ (r3 — ra + 2)cYss

d = Q2Qus - Q3e, d1 = Q12Q26 ~ Q206

dy = Q12Q6s — Q16Qas, d3 = Qud + Q16di — Qu2ds

It is clear from (36) that = depends on three di ionless material | ters

re(k = 1,2,3) and the angle @ (the orientation of the fiber direction), and from (35) it
follows

(37

x(r1, 7, 73,8) = z(ry,r2, 73, 7 — 6) (38)
and if By = By (& E) = E;), we have in addition
z(r1,72,73,0) = z(r1, 72,73, 7/2 - 6) (39)

On view of (4) the dimensionless ry are subjected to: ry > 0, rp > 0 and r3 < ryry.
The explicit secular equations (33) and (36) are useful for evaluating the effect of the
orientation of the fiber direction and of the material properties on the velocity of Rayleigh
waves. They are also convenient tools for solving the inverse problem: determining the
material parameters from measured values of the velocity.
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Fig. 2. Dependence of /Z = cr/\/Bss/p on the ori ion @ of the fiber di

for the material SE84LV: E| = 114.20 GPa, Ey = 8.80 GPa, G12 = 5.15 GPa,
g =028, p= 1540 kg m~3.



130 Pham Chs Vanh, Nguyen Thi Khanh Link

As cxamples, we apply the secular equation (36) to draw the curves z = z(6) for
the materials: SEB4LV and Fibredux whose materlal constants are listed in Table 1 in Ref.
[6] These curves are presented in Flgu 2, 3. By (38) It i sufficient to draw these curves
in the interval [0, 907
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Fig. 8. Dependence of /z = cn/,/BGJp on the orientation 8 of the fiber direction
for the material Fibredux: E) = E; = 62.2 GPa, G)3 = 5.08 GPa, )3 = 0.041,
= 1560 kg m~3.

2.3. Special cases
When 6 = 0, from (6) and (13) we have
Qkk = Bix, k =1,2,6, Qi2= Bya, Qi6 =Qx =0

d = By;Bes, dy =0, dy = B12Bgs, d3 = Bss(B11 B2 — B) 0

Introducing (40) into (33) yields a cubic equation for X. namely
ByaBes X*(Bi1 — X) = (Bss — X)|BY — Ba(Byy - X))* =0 (41)
This is the secular equation of Rayleigh waves for the case when the fiber direction is
parallel to the edge of the composite plate. One can sce that if a Rayleigh wave exists then
0 < X < min{B, Bes} (42)

Remark 2:
The secular cquation (41) is much more simple than the secular equations (13), (21)
in |5] obtained recently by Cerv, and it is valid for any orthotropic elastic materials.
When the material is isotropic: Byy = Baa = A+2u, Biz = A, Bgs = p, A, p are the
usual Lame constants, Eq. (41) reduces to the well-known Rayleigh equation
23— 8r* + 8(3 — 26)z — 16(1 - 6) =0 (43)
where z = pc?/p, 6 = p/(A+ 2u).
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When 6 = /2, by (6) and (13) we have:
Qu = Bz, Qa2 =B, Qes = Bes. Q12 =B12, Q12= B2, Qi =Q =0
d = B1Bgs, dy =0, dy = BiaBes, d3 = Bes(B11Bx2 — By)
Using (44) into (33) we have:
Bu1Bes X* (B ~ X) — (Bes — X)|Bl; - Bu(Bx - X)* =0 (45)

in which 0 < X < min{Bj3, Bgs}. Equation (45) is the secular equation of Rayleigh waves
for the case when the fiber direction is perpendicular to the edge of the composite plate.
It is a also cubic equation for X.

(44)

3. APPROXIMATE FORMULAS FOR THE RAYLEIGH
WAVE VELOCITY

In this section we establish some approximate formulas for the Rayleigh wave ve-
locity for the cases when the fiber direction is parallel or perpendicular to the edge of the
composite.

After expanding and rearranging Eq. (41) becomes:

Baa(Baz — Bes) X® + Bya( B\ Bes — BraBes — 2612) X *
+ 812(612 + 2B Bes) X — Byably =0

(46)

Fig. 4. Dependence on by € [0,0.5] of x = ¢k /ck that is calculated by solving
directly the secular equation (41) (solid line), by the approximate formula (51)-
(52) (dashed line). Here we take b = 09937, by = 1.7532.

Dividing two sides of Eq. (46) by (Bes)® (> 0) leads to
m313+m217+m,z+mg=0,0<1=X/Bss<l (47)
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where
mg = bybg(1 — bybs), ma = byb3(1 = by — 2bybabs)
m = b?b;bg(bjba +3), mg= -—b%bgb;
by = Baa/Bu, ba =1 - B},/(B11Bn), bs = B11/Bes

(48)

According to Vinh and Malischewsky [8], in the interval [0, 1], the best approximate

second-order polynomial of z3 in the scusc of least squares is
1.622 - 0.6z + 0.06
Introducing (49) into (47) yields a quadratic equation, namely
(mg + 1.5m3)z? - (0.6mg — my )z + mg + 0.05m3 = 0
whose solution corresponding to the Rayleigh-edge wave is

_B-VBFZ4AC

z 24

where
A = byb[by(1 + 0.5b; — 2bybobs) — 1.5]
B = byb3[0.6(byby — 1) — bybab3(babs + 2))
C = 0.05b1b3(bybg — 1) — bZb2b3

Xy

ar

Fig. 5. Dependence on b € [0.1, 0.9] of T = ¢} /c}- that is calculated by solving
directly the secular equation (41), by the approximate formulas (51)-(52) and
(51)-(53). They almost totally coincide with each other. Here we take b, = 0.077,
by = 22.7813.

(49

(50)

(51)

(52)
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If we uzse the best approximate second-order polynomial of 23 in the space C[0, 1|,
namely: 1.52% — 0.5625z + 0.03125 (see [8]), then z is given by (51) in which

A = bybs[bs(1 + 0.55) — 2b,babs) — 1.5)
B = byb3[0.5626(b1b3 ~ 1) — bybob3(bobs + 2)] (53)
C = 0.03126b1b3(bybg — 1) — b3b3b4.

The Figs. 4, 5 , 6 show the dependence of the squared dimensionless velocity z on the

x5/
g

[t

b 0 3 ] 75 3 )
9,

3

Fig. 6. Dependence on b3 € [0.5, 4] of z = ck/ck that is calculated by solving
directly the secular equation (41) (solid line), by the approximate formula (51)-
(52) (dashed line). Here we take b, =1, by = 0.8432.

dimensionless material parameters by. It is shown from these figures that the formulas (51)-
(52) and (51)-(53) are highly accurate approximations. They are thrtefore significant in
practical applications, especially for solving the inverse problemn: determining the material
parameters of the composite from measured values of the velocity of Rayleigh waves.Since
these formulas are good approximations as shown from the Figs. 4, 5 , 6, they are useful
in practical applications.

Remark 3:

When the fiber direction is perpendicular to the edge of the composite, the Rayleigh
wave velocity is approximately calculated by (51)-(52) or (51)-(53) in which by = Byy/Baa,
by =1~ B%,/(By1yBys), by = By2/Bes-

4. CONCLUSIONS

In this paper, a fully explicit secular equation of Rayleigh waves along an obliquely

cut surface in a directional fiber-reinforced composite has been derived by using the method

of first integrals. Based on it, the symmetry properties of the dependence of the Rayleigh
wave velocity on the orientation of the fiber direction, which were indicated in Refs. [5, 6]
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throught numerical studies, are proved. From the obtained explicit sccular equation we
immediately derive the secular cquation of the wave for the case when the cut surface is
parallel to the fiber direction, and it is much more simple than the ones obtained recently
by Cerv |5| and Cerv et al. [8]. Some approximate formulas for the Rayleigh wave speed for
the cases when the fiber direction is parallel or perpendicular to the edge of the composite
plate are established. It is shown that they arc good approximations. The obtained explicit
secular equation and approxitnate formulas for the velocity would be useful in practical
applications.
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