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A b s t r a c t . The propagation of Rayleigb waves along an obliquely cut surface in a direc
tional fiber-reinforced composite was studied recently by Ohyoshi [Ohyoshi T. Compoa 
Sci Ifechnol 2000; 60; 2191-6]. The author derived the secular equation of the wave, how
ever, it is still implicit. In this paper, a fully explicit secular equation of the wave is 
obtained by using the method of first integrals. FVom it we immediately arrive at the 
secular equation of the wave for the case when the cut surface is parallel to the fiber 
direction. This secular equation is much more simple than the ones obtained recently by 
Cerv [Cerv J. Int Rev Mech Eng (IREME) 2008; 2; 762-72] and Cerv et al. (Cerv J et al. 
Composite Structures 2010; 92; 568-77]. Based on the obtuned secular equations some 
approximate formulas for the velocity of Rayieigh waves are established and it is shown 
that they are good approximations The explicit secular equations and the approximate 
formulas for the velocity derived in this p ^ e r are useful for analjrzing the effect of the 
material properties and the orientation of the fiber direction on the Rayfeigh wave ve
locity, especially they are powerful tools for solving the inverse problem: determining the 
material parameters irom the measured values of the velocity. 

Key words: Fibres, mechanical properties, anisotropy, non-destructive testing, Rayieigh 
waves. 

1. INTRODUCTION 

The propagation of Rayieigh waves along an obliquely cut surface in a directional 
fiber-reinforced composite was studied recently by Ohyoshi [1]. The author derived the 
secular equation of the waves by solving analytically the fully quartic characteristic equa
tion. Among four complex roots of this equation two roots having positive imaginary parts 
are chosen in order to ensure the decay condition. Since the author could not give the an
alytical expressions of these two roots, the obtained secular equation is still not explicit. 
It is therefore not convenient in practical application. 

In this paper, we obtain a fully explicit secular equation of the wave by using the 
method of first integrals [2, 3, 4]. It is a quartic equation in terms of squared velocity 
FVom it we immediately obtain the secular equation for the case when the cut surface is 
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parallel to the fiber direction. This socular equation is a cubic equation in terms of squared 
velocity, and it is much more simple than the ones obtained recently by Cerv [5] and Cerv 
et al. [6]. Some approximate formulas for the velocity of Rayieigh waves are established 
for the case when the cut surface Is parallel or perpendicular to the fiber direction, and 
it is shown that they are good approximations. The obtained explicit secular equations 
and approximate formulas for the velocity will bo useful for evaluating the effect of the 
material properties and the orientation of the fiber direction on the Rayieigh wave velocity, 
especially they are powerful tools for solving the inverse problem: determining the material 
parameters from the measured values of the velocity. 

2. RAYLEIGH WAVES ALONG A N OBLIQUELY C U T SURFACE IN A 
DIRECTIONAL FIBERrREINFORCED COMPOSITE 

2.1. Basic equations 

Consider a thin fiber-reinforced composite plate occupying the half-space X2>0 and 
its fiber direction is parallel to the X-axis (see Fig. 1). Suppose that the Z-axis coincides 

0 ^ ^ 

ei\ 

~ 

-<e 

Y 

F14. 1. The thin fiber-reinforced composite plate X2 > 0 whose fiber direction 
parallel to the X-axis, the Z-axts coincides with the ^a-axis and the coordinate 
system (a:i,a:2) is the rotated one from (.V. 1') by counter clockwise angle fl (0 < 
fl<7r). 

with the X3-axis and the coordinate system (xi,X2) is the rotated one from iX,Y) by 
counter clockwise angle 6 {0 < 9 < -K). Suppose that the thin fiber-reinforced composite 
plate is subjected to the plane stress state 

0"31 = 0̂ 32 = (̂ 33 = 0 (1) 

Then in the coordinate system {X, Y), the stress-strain relation has the form [1, 6] 

<^XX = En£xX + Bu^YY, (^YY = Bi2£xX + B22SYY-, <^XY = 2BQQEXY (2) 
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where Btj are material (stiffness) coefficients which can be expressed in terms of the 
engineering constants (Young's and shear moduli, Poisson's ratios) as [1, 6] 

B\\ = , B22 = , Bu = -, = :; 1 ^66 = G12 (3) 
1 — U\2V2\ 1 - 1̂ 121̂ 1 1 - 1̂ 121̂ 1 1 — fl2l^l 

and satisfy the inequalities 

flfcfc > 0, fc = 1,2,6, BuBi2 - B12 > 0 (4) 

which are necessary and sufficient conditions for the strain energy of the material to be 
positive define. In the coordinate system {x\, X2) the stress-strain relation is [1, 6] 

<yn = Qiieii + Qi2e22 + 2£?i6ei2 

(̂ 22 = Ql2£ll+Q22£22-t-2Q26ei2 (5) 

^12 = QieSu + Q26^22 + 2Q66£l2 

where [1] 

O n = B11C9 + 2(Bi2 + 2Bm)44 + Bjjsj 

Q22 = B11S9 + 2(Bi2 + 2B66)c»4 + B22c| 

Q12 = ( B „ + B22 - 4B66)cis^ + Bi2(cJ + st) 

Qm = (Bii + B22 - 2Bi2 - 2B66)c^sg + Essie", + sf, 

Qw = - ( B i i - B,2 - 2Bm)4^e - (Bu - B22 + 2B66)c«4 

Q26 = - ( B i i - B12 - 2B68)ci,4 - (B12 - B22 + 2B66)c^s« 

in which eg := cos9, sg := sinS and the strain ey are expressed in terms of the displacement 

gradients ttm,n S£ 

en = "1,1. £22 = "2,2. ei2 = (111,2 +"2,i) /2 (7) 

On view of (6) it is easily to show that 

Qkk(9) =Qkk(i' - » ) ( * = 1.2.6), Q12W = Qi2(ir - 6) (gj 
g/=6(9) = - « « ! ( » - « ) ( « : = 1.2) 

and if B n = B22 ( « Ei = Ei): 

Qkk{9) =Qkl.{n/2 - 9) (k = 1,2,6), 0,2(9) = Q,2(ir/2 - 9) ^^^ 

Qks(9) = -QU^I2-6){k = l,i) 

In the absence of body forces, equations of motion are [1] 

( J i l l + 1T12,2 = /«i'l, <^12,l + ''22,2 = Plii (1") 

Following the same procedure carried out in [7] Section 2, from Eqs. (5), (7) and 

(10) we have 

= A r | 1 (11) 
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where u = [ui, uj]^, a = [ffiai caa]^, the symbol T indicates the transpose of matrices, 
the prime indicates the derivative with respect to X2 and 

M _ h N,] ^^_\{d,/m -ail Ar,_i[fe -026] 
'^-[K N,\' ^ ' - [-(d2/rf)8l 0 J • ^ ' - d [-026 0=6 J 

Here we use the notations: 8, = 8/(81,) , 8? = 8V(8 i? ) , 8? = S'/idt') and 

rf = Q220e6 - O M ' ''1 •= OuOao - OasOis , , , , 

<h -QiiQix - QUQM, di = Qnd + Qied, - Qudi 

Prom (8), (9) and (13) it implies that 

<((») = rf(ir - »), <*,(») = - d , ( i r - e ) , < i t (e )=<i t ( i r -e ) («: = 2,3) (14) 

and if B,i = B22 (<=> E, = E2) 

<H9) = d(,r/2 - fl), </,(») = -rf,(jr/2 - fl), dk(9) = iik(ir/2 - fl) (* = 2,3) (15) 

In addition to Eq. (11), the displacement vector u and the traction vector a are 
required to satisfy the decay condition at the infinity 

u(+oo) = 0, <r(+oo) = 0 (16) 

and the fi-ee-traction condition at the edge X2 = 0 

<T(0) = 0 (17) 

2.2. Explicit secular equat ion 

Now we consider the propagation of a Rayieigh wave, travelling with velocity c and 
wave number fc in the x,-direction. The components u, , 112 of the displacement vector and 
(̂ 12, <722 of the traction vector at the planes 13 = const are found in the form 

{ u , , U2, <Ti2, (T22X11, X2, 0 = {f / l ( fc l2) , £/2(fcl2), ik\\(kX2). i f c V 2 ( f c l 2 ) } e ' " " - " (18) 

Substituting (18) into (11) yields 

where U = |f/, Ui]"^, V = |Vi ^2]^, and - = i o ' a ' - = K 0I' --M-teoti' 
(20) 

X = pc^, the prime in Eq. (19) indicates the derivative with respect to y = fcx2- From 
(20), one can see that the characteristic equation | A / - p / | = 0 of Eq. (19) is a fully quartic 
equation for p (see also Eq. (18) in Ref. [1]), therefore we should employ the method of 
first integrals [2, 3] in order to obtain the explicit secular equation of the wave. 
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Eliminating U from (19), we have 

aV" - i0V' - 7 F = 0 

where the matrices a, P, 7 are given by 

_ d 

dx — d^ 
0 

2d, 

1 
. X dX — ds 

X dX — dg 

0 

7 = M , 0 " ' M 3 - M2 = 

, J_ _ 0 ^ did2 O26 
d(dX -di) X d d(dX - dj) d 

did2 O26 4 Pee 

(21) 

(22) 

(23) 

(24) 

d{dX -ds) d d(dX - d,) d 

Note that Q,/?, 7 are symmetric real matrices. FYom (16)-(18) it follows 

V(0) = V(+oo) = 0 (25) 

Our task now is to solve Eq. (21) along with the boundary condition (25). In the 
component form Eq. (21) is written as follows 

auVl' - iPklV; - -rtiV, = 0, (fc, i = 1,2) (26) 

Multiplying two sides of Eq. (26) by l E ^ and then adding the resulting equation to 
its conjugation give 

aki{iVi"Vrr, + nfVm) + MV/V^ + V^Vm) + IkiiViiVm + ViiVm) = 0 (27) 

where the bar indicates the complex conjugation. Now we introduce 2 x 2-matrices D, E, F 
whose elements are defined as follows 

Di^=<iVl',Vm>, Ei„,=<Vl,Vm>. i^im=< Vi,iV^>, i , m = l , 2 (28) 

-l-oo 
where: < ip,g >= J {fg+ 'ip9)dy. From (25) and (28), we find out that D,E,F being 

0 
antisymmetric, i. e. 

(29) 
' 0 d 

-d 0 
, E = 

0 e 

-e 0 
, F = 

0 / 

[-/ oj 
D = 

Now, integrating Eq. (27) from 0 to -l-oo provides 

aD + liE + iF = 0 (30) 
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FVora (29) and (30) it follows 

a i i d + ^ i i e - F 7 i i / = 0 

Thus, wc have 

«ijii + /3i3e + 7 i2 / = 0 (31) 

a22d + /322e -I- 722/ = 0 

(32) 

an 

a i 2 

033 

0u 

I3l2 

& 

711 

713 

722 

in order that the homogeneous linear system (31) has a non trivial solution. Introdudng 
(22)-(24) into (32) yields 

F[X, 9) = dX^[(d + d2)X- d,][4 - Q^idX - da)]-!-

-I- (dX - d3)[(d -h d2)X - d3][Q22dX^ - (d ' -H d? -I- 022<i3)A' -I- dd3] (33) 

- 2dtX\dX - d3)[Q26[dX - d3) - d,d2) = 0 

Equation (33) is the desired explicit secular equation and it is a quartic equation for 
X = pi?. On use of (8), (9), (14) and (15) one can prove that F(X, fl) = F{X, ir - fl) and 
if Bn = B22 (*> El = £2), then F(X, 9) = F{X, ir/2 - fl). FVom these tacts and Eq. (33) 
it follows * 

A-(fl) = X(ir - fl) and if B „ = B22 then A-(fl) = X(7r/2 - fl) (34) 

or equivalently 

CR{9) = CR(jr - fl) and if B , , = B22 then CR(») = CB(ir/2 - 9) (35) 

where CH is the velocity of Rayieigh waves. 
R e m a r k 1; 
The first of (35) says that in the interval [0, IT] the curve CR = Cfl(fl) has always one 

symmetry axis, namely the line 9 = IT/2. If B , , = B22 ( o E, = E2), then in addition, 
the lines fl = 7r/4 and 9 = 37r/4 are symmetry axes of the curve CR = cii(9) in the 
interval (0, J-/2] and [ir/2, ir], respectively, by the second of (35). With this tact now we 
can understand why the curves CR = Cfi(fl) in the figures 14, 15, 18, 19 in [6| have the 
symmetry axis 9 = ?r/2 in the interval [0, TTJ, while the curves CR = CR(9) in the figures 16, 
17, 20, 21 in [6] have the symmetry axis 9 = 7r/4 in the interval [0, 7r/2] and the symmetry 
axis 9 = 37r/4 in the interval [ir/2, TT], in addition. 

By dividing two sides of Eq. (33) by (Bee)^' wc obtain the dimensionless secular 
equation, namely 

fix, 1-1,r2, r3,9) s dr'^iid + di)! - dalfdl - Qeeidx - da)] 

+ idx- d3)l{d + d2)x - d"3llQ22dV - (d? -H d? -I- Q22d3):r -I- dds] (36) 

- 2dii^(dx - d3)[Q2d.ix - d3) - d,d2l = 0 



(37) 
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where x = X/BQQ called the squared dimensionless velocity, ri = Bu/Bee, r2 = B22/B66, 
ra = B12/BQQ, and 

Qn = r icj -f- 2(r3 + 2)481 + r2S^, (§22 = risj + 2(r3 + 2)cgsg -I- racj 

Q12 = (T-1 + rz - 4)cisi -t- r3(c^ -H 4 ) , Qee = (ri 4- r2 - 2r3 - 2)c|flg + ĉ  -H â  

Q16 = - ( r i - rs - 2)c^afl - (rs - r2 -I- 2)ctfs^ 

Q26 = -{ r i -T3- 2)cgsl - (ra - ra -h 2)c|5fl 

d = Q22Q66 - Q26) <̂ i = Q12Q26 - Q22Q16 

^2 = Q12Q66 - Ql6Q26t ^3 = ^nd+QiGdi -Qi2d2 

It is clear fi^m (36) that x depends on three dimensionless material parameters 
rfc (fc = 1,2,3) and the angle 9 (the orientation of the fiber direction), and fi-om (35) it 
follows 

a:(ri, r2, ra, 9) = x(ri , r2, ra, n-9) (38) 

and if B n = B22 (**• Ei = E2). we have in addition 

x{ri,r2,r3,9) = x{ri,r2,r3,TT/2- 9) (39) 

On view of (4) the dimensionless r^ are subjected to: ri > 0, r2 > 0 and r§ < rir2. 
The exphcit secular equations (33) and (36) are useful for evaluating the effect of the 
orientation of the fiber direction and of the material properties on the velocity of Rayieigh 
waves. They are also convenient tools for solving the inverse problem: determining the 
material parameters from measured values of the velocity. 

Fig. 2. Dependence oi y/x = CR/y/Bm/p on the orientation S of the fiber direction 
for the material SE84LV: Ei = 114.20 GPa, E2 = 8.80 GPa, G12 = 5.15 GPa, 
U12 = 0.28, p = 1540 kg m^^. 
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As examples, we apply the secular equation (36) to draw the curves x = x{9) for 
the materials: SE84LV and Fibredux whose material constants are listed in Ikble 1 in Ref. 
[6]. These curves are presented in Figs. 2, 3. By (38) It is sufficient to draw these curves 
in the interval [0, 90°]. 

Fig. 3. Dependence of v/x == CR/ sfB^fp on the orientation 9 of the fiber direction 
for the material Fibredux: E\ — Ei = 62.2 GPa, G\i - 5.08 GPa, vn = 0.041, 
p = 1560 leg m"^. 

2.3. Special cases 

When 9 = 0, firom (6) and (13) we have 

Qfcjt = Bfcfc, fc = 1,2,6, Q,2 = Bi2, Qi6 = Q26 = 0 

d = B22B66, rfl = 0, d2 = B,2B66, d3 = B66(B,iB22 - B?2) 

Introducing (40) into (33) yields a cubic equation for .V. namely 

B22BG6X^iBu 'X)-{Bee- X)[B?2 - B22{Bn - X)]'' = 0 
This is the secular equation of Rayieigh waves for tlic case when the fiber direction is 
parallel to the edge of the composite plate. One can sec t hat if a Rayieigh wave exists then 

0 < A" <min{Bii ,B66} (42) 

Remark 2: 
The secular equation (41) is much more simple than the secular equations (13), (21) 

in [5] obtained recently by Cerv, and it is valid for any orthotropic elastic materials. 
When the material is isotropic: Bi 1 = B22 = A -H 2fi, B12 = A, Bee = n, X, fi are the 

usual Lame constants, Eq. (41) reduces to the well-known Rayieigh equation 

x^ - 8.r- + 8(3 - 26)x - 16(1 - (S) = 0 (43) 

where x = pc^/n, 5 = (i/{X + 2/i). 

(40) 

(41) 
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(44) 

(45) 

When 9 = 7r/2, by (6) and (13) we have: 

Qii = B22, Q22 = B n , QBQ = Bee, Q12 = B]2, Q12 ~ B\2, Qie = Q26 = 0 

d = BnBeO) di = 0 , d2 = B^BQ^, ds = B66(BnB22 - B12) 

Using (44) into (33) we have: 

BnBee-^ (B22 ~ X) - {Bee - •^)(Bi2 - Bn(B22 - X)] = 0 

in which 0 < X < min{B22,B66}- Equation (45) is the secular equation of Rayieigh waves 
for the case when the fiber direction is perpendicular to the edge of the composite plate. 
It is a also cubic equation for X. 

3. APPROXIMATE FORMULAS FOR THE RAYLEIGH 
WAVE VELOCITY 

In this section we establish some approximate formulas for the Rayieigh wave ve
locity for the cases when the fiber direction is parallel or perpendicular to the edge of the 
composite. 

After expanding and rearranging Eq. (41) becomes: 

B22(B22 - Be6)X^ + B22(BnB66 - B22Be6 - 26i2)X^ 

+ ^12(^12 + 2B22B66)'V — B22&\2 = 0 
(46) 

Fig. 4. Dependence on 6, £ |0, 0.5] o! x = c'Jc^ that is calculated by solving 
directly the secular equation (41) (solid line), by the approximate formula (51)-
(52) (dashed line). Here wc take 62 = 0 9937, 63 = 1.7532. 

Dividing two sides of Eq. (46) by (Bee)^ (> 0) leads to 

m^x^ + mix' + mix -t- mo = 0, 0 < i = X/Bm < 1 (47) 
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ma = 6,63(1 - 6,63), rrn = 6,6^(1 - 6, - 26,6263) 

m, = 6?6a6§(6263 + 3), mo = -6;6^6j 

6, = B22/B,,, 62 = 1 - B?2/(BnB22), 63 = Bn/Bm 

(48) 

According to Vinh and Malischewsky [8], in the interval [0, 1], the best approximate 
second-order polynomial of x^ in the sense of least squares is 

1.51'-0.61-I-0,05 

Introducing (49) into (47) yields a qua<lratic equation, namely 

(m2 + 1.5m3)x̂  - (0.6m3 - m,)a: -I- mo -I- O.OSmj = 0 

whose solution corresponding to the Rayleigh-edge wave is 

B - -JBP - iAC 

where 

2A 

A = 6,63(63(1 + 0.56, - 2616263) - 1.5] 

B = 6,63[0.6(6,63 - 1) - 6,626 (̂6263 + 2)1 

C = 0.056,63(6,63 - 1) - 6;6|6j 

(49) 

(50) 

(51) 

(52) 

Fig. 5. Dependence on 63 G [0.1, 0.9] of i = c^/c^- that is calculated by solving 
directly the secular equation (41), by the approximate formulas (51)-(52) and 
(51)-(53). They almost totally coincide with each other. Here we take 61 = 0.077, 
H = 22.7813. 
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If we me the best approximate second-order polynomial of a;̂  in the space CfO, 1] 
namely: l.Sx^ - 0.5625x -|- 0.03125 (see [8]), then x is given by (51) in which 

A = 6i63[63(l + 0.56i - 2616263) - 1.5] 

B = 6163(0.5625(6163 - 1) - 616261(6263 + 2)] (53) 

C = 0.031256163(6163 - 1) - blblbl 

The Figs. 4, 5 , 6 show the dependence of the squared dimensionless velocity x on the 

Fig. 6. Dependence on 63 € [0.5, 4] of 2 = c^/^- that is calculated by solving 
directly the secular equation (41) (solid line), by the approximate formula (51)-
(52) (dashed line). Here we take 6] = 1, 63 = 0.8432. 

dimensionless material parameters 6^. It is shown from these figures that the formulas (51)-
(52) and (51)-(53) are highly accurate approximations. They are thrtefore significant in 
practical applications, especially for solving the inverse problem: determining the material 
parameters of the composite from measured values of the velocity of Rayieigh waves.Since 
these formulas are good approximations as shown from the Figs. 4, 5 , 6, they are useful 
in practical applications. 

Remark 3: 
When the fiber direction is perpendicular to the edge of the composite, the Rayieigh 

wave velocity is approximately calculated by (51)-(52) or (51)-(53) in which 61 = B11/B22, 
62 = 1 - By(BnB22), 63 = B22/B66. 

4. CONCLUSIONS 

In this paper, a fully explicit secular equation of Rayieigh waves along an obliquely 
cut surface in a directional fiber-reinforced composite has been derived by using the method 
of first integrals. Based on it, the symmetry properties of the dependence of the Rayieigh 
wave velocity on the orientation of the fiber direction, which were indicated in Refs. [5, 6] 
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throught numerical studies, are proved. From the obtained explicit secular equation we 
immediately derive the secular equation of the wave for the case when the cut surface is 
parallel to the fiber direction, and it is much more simple than the ones obtained recently 
by Cerv [5] and Cerv et al. [6]. Some approximate formulas for the Rayieigh wave speed for 
the cases when the fiber direction is parallel or perpendicular to the «ige of the composite 
plate are established. It is shown that they fu'c good approximations. The obtained explicit 
secular equation and approximate formulas for the velocity would be useful in practical 
applications. 
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