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NONLINEAR ANALYSIS OF BUCKLING AND
POSTBUCKLING FOR AXIALLY COMPRESSED
FUNCTIONALLY GRADED CYLINDRICAL PANELS
WITH THE POISSON’S RATIO VARYING SMOOTHLY-
ALONG THE THICKNESS
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Abstract. In this paper an approximate analytical solution to analyze the nonlinear
buckling and postbuckling behavior of imperfect (uncnona]]y graded pancls with-the
Poisson's ratio also varying hly along the thick is d. Based on the
classical shell theory and von Karman's ion of ki linearity and ap-
plying Galerkin procedure, the equations for finding critical loads and load-deflection
curves of cylindrical panel subjected to axial compressive load with two types boundary
conditions, are given. Especially, the stiffness cocfficients are analyzed in explicit forro.
Numerical results show various effects of the inhomogeneous parameter, dimensional pa-
rameter, boundary conditions on nonlinear stability of panel. An accuracy of present
theoretical results is verified by the previous well-known results.
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1. INTRODUCTION

Functionally graded structures such as cylindrical panels and cylindrical shells in
recent years play the important part in the modern industries [1]. They are lightweight
structures and are able to withstand high-temperature environments while maintaining
their structural integrity. Therefore, researches on stability problems of functionally graded
materials (FGMs) structures have received considerable attention. Some investigations on
postbuckling of FGM cylindrical panels and cylindrical shells subjected to axial loading or
pressure loading in thermal environments are presented by Shen and Noda [2, 3]. They em-
ployed singular perturbation techniques to determine the buckling loads and postbuckling
equilibrium paths. Chang and Librescu [4) reported postbuckling of shear deformable flat
and curved panels under combined loading conditions. The problem on structural stability
of functionally graded panels subjected to aero-thermal loads is considered by Sohn and
Kim [5). The studies involving postbuckling of laminated cylindrical panels loaded by im-
proved arc-length method can be found in the paper of Kweon and Hong [6]. Wilde 6t al.
[7] presented investigation on critical state of an axially compressed cylindrical panel with
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three edges simply supported and one edge frec. Huang and Taucher (8] solved the problem
on large deflection of laminated cylindrical and doubly-curved panels under thermal load-
ing. By different methotls, the authors Dennis et al. [9], Yamada and Croll {10}, investigated
instability, buckling behavior ol pressure loaded cylindrical panels. Kabir and Chaudhur
[11] presented a dircet, Fourier approach for the analysis of thin finite-dimensional cylindri-
cal panels. Thermomechanical postbuckling of FGM cylindrical pancls with temperature
dependent propertics is investignted by Yang ct al. [12]. Geometrically nonlinear analysis
of functionally graded shells are considered by Zhao and Liew [13]. Alijani and Aghdam
[14], by applying the extended Kantorovich method, given a semi-analytical solution for
stress analysis of moderately thick laminated cylindrical panels with various boundary
conditions.

In the ficld of dynamic buckling of FGM structures, Sofiyev |15}, Huang and Han
116}, Ng et al. [17), Bich and Long [18], Dung and Nam (19] presented nonlinear dynamic
buckling and postbuckling analysis of FGM shallow and cylindrical shells subjected to
various loadings.

However, analytical investigations on nonlinear analysis of FGM cylindrical shells
and panels under mechanical or thermal loading are limited in number, so it is nccessary to
be more accelerated in this area. Recently, the results on the nonlinear analysis of stability
for functionally graded cylindrical panels under axial compression have been obtained by
Duc and Tung [20]. They presented an analytical approach to obtain explicit expressions
of buckling load and postbuckling load-deflection curves in the case Poisson’s ratio v being
constant and boundary conditions being simply supported.

When Poisson’s ratio v depends on thickness z, there exists some investigations of
Huang and Han {21, 22, 23]. These authors touched upon the problem on nonlinear buck-
ling and postbuckling of imperfect functionally graded closed circular cylindrical shells
subjected to different mechanical and thermal loadings with v = v(z) in the power law of
z, but the stiffoess coefficients A, being still defined in the integrating form, not yet ana-
lyzed. Therelore, an aim of this present rescarch is to extend the results of [20] considering
Young's modulus E = E(z) and Poisson's ratio ¥ = v(z), simultaneously for calculat-
ing and giving the stiffoess coefficients A, of |21, 22, 23] in explicit form. Based on the
classical shell theory and geometrical nonlinearity in von Karman sense, the approximate
analytical solutions have been prescuted. The resulting equations are solved by Galerkin's
procedure to obtain equations for finding ecritical loads and postbuckling load-deflection
curves with two types of boundary conditions. In the case v is a constant, the reached
results return to ones of [20].

2. FUNCTIONALLY GRADED CYLINDRICAL PANELS AND
FUNDAMENTAL RELATIONS

2.1. Functionally graded cylindrical panels

Let us consider a FGM cylindrical panel with uniform thickness h, mean radi\;s
R and length of straight edge a, of curved edge b. We choose a cylindrical coordinate
(z,y = RO, z) so that the axes x, y are in the longitudinal, circumferential djrections
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respectively and axe z is perpendicular to the middle surface and in the inward thickness
direction (—h/2 < z < h/2) (see Fig. 1). The cylindrical panel is subjected to the uniform

Fig. 1. FGM cylindrical panels

plane compressive loads of intensities 79 on £ = 0,z = a and pg on y = 0,y = b and an
uniform radial load of intensity Qp.

Assume that material properties vary through the thickness z with the power law
as follows [21]

2z + h\*
E=E(z)=E,,.+(E¢—E,,.)( Z2h ) = Ep + Eqnt* )
2z+ h\M
V=V(Z)=Vm+(llz—l/m)( 22: ) = U + Vet (2)
in which
22+h
Bon=Eo—Em, = ’2: \ Vom = Ve~ vy k20, 0. @)

The quantities Ep, E. and vy, v, are Young’s moduli and Poisson’s ratios of metal
(m) and ceramic (c), respectively.
2.2. Governing relations and equations

The strain components on the middle surface of imperfect cylindrical panel based
upon the von Karman’s theory are [21]

0 12 .
Ep=Ug T 510‘, + WWy,
w 1 .
ey = vy =+ g ety “

" .
=yt Uz T Wy T WaWy, + Wytsy.
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where u = u(x,y),r = v(z,y),w = w(r,y) arc the displacements along r,y and z axes
respectively. The quantity w* = w*(.r, ) is an initial imperfection of panel and assumed
smaller than thickness ol panel.

The strain components across the panel thickness at a distance z from the mid-plane
arc in the form
(5)

er= €04 ks, gy = €042k, Yy =2, + 22kay,

ky=-—w, ky=-wy, ky=-ws,
Note that the subscript A, in this paper indicates the partial derivative of A for i.
The stress-strain relationships of cylindrical panel are defined by Hookian law, as

£ E
(O m) = Tz lEanen) + viey ), oy = Mr o™ (6)
The force and moment resultants arc expressed by
h/2
(N Ny Noy) s (M, My, M)} = / (02000 0m) (1. 2)d. ™
-h/2
Substituting Egs (4)+(6) into (7), we gel
Ng Ao An 0 An An 0] [e
Ny Ao Ao 0 An An 0 53
Nyl |0 0 ap 0 0 An| |98, ®
M An An 0 A Ap 0 kz
M, Ay A 0 Ap Ap 0 k,
My, 0 0 Ay 0 0 Ax| [2ky

vhere the stiffness coefficients A,; (i =1,2,3;j = 0, 1,2) are defined by the formulae

hj2 E(s) h/2 )
; E(z)v(z
Ay, = _=2) - Elz)v(z)
o= [ A A= | P
—h/2 ~h/2

®
E(z)

S ATTEre

—h/2

Pz = 3 (A1, - A).

T}.u‘e e).(plicit ana!ytical expressions of A,; are calculated and given in the Appendix
The equilibrium equations of imperfect cylindrical panel are derived from [21]

Nzz + Ny, =0, (10)
Nzyz + Nyy =0, (11)

N,
Mzzz + 2Meyzy + My gy + E" + Nz (W + W) +

(12)
+ 2Nz (way + why) + Ny (wey +wly) + Qo =0.
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The geometrical compatibility equation deduced from (4) and (5), assuming w;
small so the quadratic terms of w,, may be omitted, becomes

0 0 0 !

Ezuy T Eyaz = Vzyoy = — RWaz + w‘z,, Wrr Wy + 20 w0, — (13)

— Wz w —w va;u

Introducing Airy’s stress function f = f(z,y) so that
Ne= Sy Ny=faz, Nay=—fzy (14)
It is easy seen that two equations (10}, (11) are automatically satisfied.

Substituting these functions (14) into N,, of relations.(8) and solving converscly, we
obtain

€2 = Jo (Ar0fiyy — Arofzx + Wz + Jowy,)
&= o(Awfn-Azofw+J1wyy+J2wn) (15)
0
= 2431 Way — fy),
Yoy = 30( NWry — fry)
where 1
Jo= YR Jy = AwAn — AnAn,  Ja = Apdz - AxnAn. (16)
1o — 4%

Substituting once again Eq. (15) into the expressions of Mj, in (8), then M; into
the equation (12) and taking into account (14), leads to

V' + fu + OV W [y (Waz + Wog) = 2f zy (Way + W)
+ fae (Wyy +w}) + Q=0

a7

where
Cz=JoJ2, Ca=Jo(Andy + An1Ja) — A,

s 2 s s
20" T 2o Ty

The equation (17) includes two unknowns functions w and f, so it is necessary to
find a second equation relating to these two functions. For this aim, substituting expression
(15) into the compatible equation (13), after some calculations, we get

vi=

Vif+0,Viuw-Cs (w?zy — WazWyy — % + 2w gy Wy, — W Wy — w,ww_'u) =0 (18)
Ja 1
A_w‘02 Todia

Two equations (17) and (18) are the governing equations used to mvesngate the
nonlinear stability of imperfect FGM cylindrical panels.

Remarks

i) If R — oo, the equations (17) and (18) return to the basic stability equations for
1mpcrfect FGM plates.

ii) In the case w* = 0, from (17) and (18) we obtain the governing equations for
perfect cylindrical panels.

where C) =
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iii) Egs. (15), (17) and (18) are similar to ones of [21], but the stiffness coefficients
Ajj, in this paper, are analyzed in the explicit form.
iv) If v = const, Egs.(17) and (18) coincide with ones of [20].

3. BOUNDARY CONDITIONS AND SOLUTION OF THE PROBLEM
3.1. Boundary conditions
Suppose that Lwo cases boundary conditions will be considered below
Case (1). Four edges of cylindrical panel are simply supported
w=M;,=Ngp=0, N,=-rgh ot =0, z=¢a
w=M, =Ny =0, Ny=-poh at y=0, y=b (19)

Case (2). Two cdges loaded z = 0 and z = a are simply supported, the remaining
two edges y = 0,y = b bcing unloaded and clamped. So we have
w=AM, =Ny =0, N:=-rgh at =0, z=¢
w 20
w=(')_y_Ny Nyy=0 at y=0, y=b (20)
3.2. Solving for FGM cylindrical panel with simply supported four edges

Based on mentioned boundary conditions (19), the deflection w and function f are
chosen in the form (20}

w=Wsin 2% sin n_:y‘ f=F [sin L Gn 1Y n7ry —8(z) - A(y)] ) (21)
in which Fdzo(’) poh, F% =roh, mn=123,..

For l.he initial imperfection w* = w*(z,y), we assume it has the form like the
deflection w, i.e.
sin?, mn=123,.. (22)

. . mnz
w" = Ehsin

where the coefficient £ € [0, 1) expresses an imperfection size of panel.
Now substituting Eqgs. (21) and (22) into Egs. (17) and (18) and applying Galerkin’s
procedure, leads to nonlinear algebraic two equations for F and W as

CyW [
RN
[(¥)1+ (T%) ] (CsF +CaW) + F [— W +en)Z 2b2 6162 E(mn)z] .

+mu4umQ§)+w(I)1 m;¢m4%-EQ=a

. 1
Herein, note that §; = 5[1 —(-1)"], & = 5 {1 = (=1)"], Bo 8182 =
being odd numbers while 816, = 0 if m or n even.

F=-CW +

2 2

(w+ 2511)516:] , @)

(24)

lifm andn
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By eliminating F in Eqs. (23), (24), after some calculations we obtain

[(04 — C3Cy) 7t (m?B2 + n?)* + €1+ GGy +RCzC:;)

(mmbB,)? (m?B2 + n?)?—

_Cz ('mbB,,)4 W 16mnn?B?
R? 3

(m?B? + n?)? [(czca +2C)W +2(CoCa+

1 b2 B, 2.2p4 25
+C1) x eh] Wa6,+ *6"‘3’;—“0 W(3W + 46h)6,8; - mm—ﬁCQWx (25)
x (W + Eh) (W + 26h)6262 + n2b2roh(m? B2 + n2)? (m2 B2 + An?) (W + ¢h) +

i lebz(m257+n7)2[ _ Broh }

816 =0

where B, = b/a, (= po/ro-

The equation (25) establishes the relation of load-deflection, so it is used to analyze
buckling and postbuckling behavior of imperfect FGM cylindrical panels subjected to loads
70,Po and Qo.

Since the aim of present study is only to consider cylindrical panel subjected to
axial compressive load, thus taking N,g = —7gh, Nyo = —poh = 0,Qo = 0, Eq. (25) yields

W | 7?(m?B?+n?)? (Ci+E,h*Cs) E\R?m*Bi

o= (W +¢) B2m2B? (D+GsC1) R + w2(m?2B2 + n?)?
16nh W 2
2(E\h C Sy82— 26
W W4 €) [(B1R*Cs +2C1) W + 2 (E1h?Ca + C1) €] * 6162 (26)
16mnR,BE,  W(W +46) . 51202B2E,
- a W(W +2¢)8763
312By(m?BZ +n?)2 (W +¢§) 182 + 972 B2 (m?B2 + n?)? (W +26)6763,
where
p=--% B-2 8-
h3 h’ h c (27)
a — W — C = 3
Ru=§, W=T‘ C’=T‘ Ca=ﬁ»

For a perfect cylindrical panel (£ = 0) subjected to only axial compressive load 7o,
Eq. (24) leads to

2(m2B2 +n?)? — C+Eh*Cs E R2m*B} 16nh
ro=" (gz ,,2+2'n) (D+CsCh) - @ R %) 2 2§2+ 52+ 35 <
am?B3 m2B2 + n?) m
(28)
S 16mnR.B3ET 512n?B2E] w0
x (E1h*T+2C1) Wal&rﬁB;,(m’Bz:-M)?Wﬁ’&+9nﬂB§(m2B,§+n2)2W 5163
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from which upper buckling compressive load may be obtained with W — 0 as

nf(m"3 24 n’)2 (D + F:;(Av‘l) B K(v‘l + E|I1203) EIRZ’T‘ZB:? )
i mzlﬂ n n2(m2B2 + n?)?

Note that the relution (29) may also be deduced from Eq. (28) with m or n being even

numbers.
Now we are interested in finding a lower buckling load. For that, consider ro = ro(W)

To upper = (29)

and m, n odd numbers and calculating /;;WO =0 we get

W Om i, By B, 37{70;,("1707 +n?

(E 1Cs+2C)).

th= G4n Gdbmu[VE.
.
In addition l—_”; > 0, the value of lower buckling load is
AT i,
2(m?B2+n?)? — . . (Ci+Eih*Cy) E\R2m*B}
Tolower = T BmiB (D+CiCh) - R + *(m?B? +,:2)2+
3R, By Bah 72hBy(m? B2 + n?)?

—_ 2 — -
x (BK2Cs +2C1) - (BT + 2C,) -

4b?
__ 9m’RIBJE, 3Rn
472 (m2?B2 + n?)?
B2E, m2(m?B? + n?)? 2 | o7 2
+ S o2 BT 1 ) 3mRy B, — T mBIE (E1h?*Cy + QC.)]
Quantities 7gupper 2nd Tglower given by (29) and (30) still depend on values of m

and 7, therefore one must minimize these expressions with respect to m and n to obtain
critical values of axial compressive load.

2B2E,
4¥m?B2E, (30)

¢ (E1h*C; + 2C)) +

Remarks
i) If Poisson’s ratio v = const, i.e. k; = 0, m,n are odd numbers and N, = —roh,
Qo =0, Ny = —pph =0 then C, =C3 =0.
Eq. (24) becomes
w Dr(m?B?2 + n?)? E R2m2B3
g = + 2 4
W+e¢) B2m?B? 72(m®B2 + n2)2]
S _ 1
___16mnR.B}E, W(3W +4¢) + 512n?B2E, Ww @n
3n2Bu(m?BE +n2)? (W +¢) 9m2B2(m?B2 + n?)? W +2)

ii) If v = const, £ = 0 and m, n odd numbers then Eq. (28) gives us

_ Dn’(m®B? + n?)? E\R2m?*B!
Bim?B2 m2(m2B2 + n2)?
_ v)
16mnR.B3E, 512n?B2E, ©2)

"~ 7B, (m?BZ + n?)? 91r2B2(m382 + n2)?
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Taking W — 0 then Eq. (32) gives the upper buckling load for a perfect panel
Dn?(m?B? + n?)? E\R¥m*B}

o= - E
0 B2m2B2 7(m2B2 + n?)2’ (33)
Egs. (31), (32) and (33) coincide with ones given in the paper [20].
iii) If cylindrical panel is perfect and isotropic and W — 0 then
ERY  —— E
Ey=Eh, E;=0, EQ=F, E1=T'=E_
5 BEs-E _ _E
TEQ-v)R T 12(1 -7
Noting Ba = 2, By = 2. Ry = &, Eq. (33) leads to
=  flo= g Ea.
. b?
. EWZ(mQE + n?)%a?h? Ebtm? (34)
0= .
12(1 - v2) bim? 1r2R7a"(m’b—22 +n2)2
a
The minimum value of rg, in this case, is
Eh
Py = b 35
W (35)

This is result can be found in [24].

3.3. Solving for FGM cylindrical panel with simply supported loaded two

edges and clamped unloaded two edges

Suppose a FGM cylindrical panel is only subjected to uniform axial compressive
load of intensity 7o on z = 0, z = a and uniform compressive radial load of intensity Qo.
Two edges y = 0, y = b are clamped and unloaded, while the remaining two edges are
simply supported.

In this case, the approximate solutions satisfying boundary conditions (20) are follow

T 2nmy
()

as

. mm.
w = Wsin

f=F [sm 72 Gin ﬂ - /\(y)] FX'(y) =roh (36)
w* —éhsm% (1 —coszn—by-) , mn=123,..

By the same method in the part 3.2, we substitute Eq. (36) into left side of Eqgs.
(17) and (18), and then apply Galerkin’s procedure, we get

1 4C) mm W 16m2n 1024mnn?

=1l mn —ww 1024mnm”
F A{ wils [3( a) +B]+C¢[ 262 = WW +26h) — 68 ¢
37)
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Aab b 4 2\?
[C;A-lR(T)] < 52r+c4w°—[ (=) +B]+F(W+gh) ("‘Zg’) “
512ab

45mnn?
mm 2 nm 2ZB— mm 2+ 2ﬂ)22
where 4= [(25) 4 ()] 8= | (5) "+ (5
Eliminating F in Egs. (37) and (38), leads to
W 4 (I + 26h) + agW (W + Eh) + auW (W + Eh) (W + 26h)+

2
6167+roh(W+£l)( )3“” 00—51—0

+7oh (W + €h) 3’";”’ +@5|Qo_ (39)
in which
ore o g () o (22 o] i)
4
R [Q(% +B],
o= = [0 77 ()| T2 o
@ = ‘% (5182)?.

Now, consider the case Qo = 0, i.e. the panel only is subjected to axial compressive
load, from Eq. (39), deduces

T = —da o

©~ 3bm?a? h(_+£)
Herein denote W = W/h.

If a cylindrical panel is perfect (£ = 0), Eq. (41) becomes

—4a
3bm?2n?

QQW(W *2) 4 ooV + aghW(W + 25)] Y

2
(W+¢)

o = [Q—hl + (02 +a3) W + a4hW2] . (42)

From this relation, let W — 0, we obtain the expression of upper buckling compres-
sive load as

—4a mn\?
rowper = g = [es~ g () ]

64a2C, 2 mm\4 256C2 .o a2Cq mm\4
X {27";71:21r4h‘s2 [3 (T) + B] B 27n71r2Rh62} " 3m?nh [2 (T) + B]
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In order to find a lower buckling compressive load, from (42) calculate :L_V; =0, it
is easy to receive

=5 - (02 + ag)
W= 221 93)
th 204k (44)
&
In addition <2 >0, 50 yields to
AW’ lw=w,,
—da [ay (a2 +a3)?

TOows = ot

AT dogh ] : (45)
4. NUMERICAL CALCULATIONS AND DISCUSSIONS

The FGMs considered, in this section, are made from two constituent materials:
Stainless steel (SUS304) and Silicon nitride (Siz N4) with the properties given by Shariyat
|25] E = 322.2 (GPa), Ey, = 207.7 (GPa), ve = 0.24, vy = 0.3177.

The accuracy of proposed approach and effects of dimensional parameters, of power
law indexes k and ky, of imperfection and boundary conditions on buckling and postbuck-
ling behavior are presented by numerical results.

For the sake of simplifying calculations A,j, the sum in Appendix taken values from
0to 5.

As a first example, the buckling load N;/(ER), Ny = roh, ro given by Eq. (34)
for isotropic cylindrical panels under axial compression {with v = 0.3) studied by Turvey
(1977) and Shen (2002) in |2] are reexamined and are compared in Table 1.

Table 1. Comparisons of buckling load N;/(ER) for isotropic cylindrical panels
under axial compression

Calculated by
Geometrical parameters | Turvey Shen Present Percent (%)
a/b=0.4, a/R=1.0, 0.73675e-4 | 0.71410e-4 | 0.77355e-4 4.99
b/h=25 (m,n)=(3,1) | (m,n)=(3,1) )
a/b=1.333, a/R=1.0, | 0.60523e-4 | 0.58737e-4 | 0.60756e-4 0.38
b/h=75 (m,m)=(2,2) | (m,n)=(2,2) i

The axial buckling loads Pr = Toupperbh, Toupper in Eq. (29), for perfect SigNy4 -
SUS304 cylindrical panels with different values of volume fraction indexes k and k; are
given and compared with results of Shen [2] in Table 2.

Two above comparisions show that the results from the present proposed method
agree well with the comparator solutions.

For further examples see below, the graphs from Fig. 2 to Fig. 7 are traced according
to Eq.(26) for simply supported panels and Eq.(41) for clamped panels respectively.

As part of the effects of imperfections, the postbuckling load-deflection curves for
FGM cylindrical panels shown in Fig. 2a and Fig. 2b. As can be observed, when the de-
flection exceeds a specific value, the curves become higher when £ is increased.
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Table 2. Comparizons of buckling londs P of perfect FGM simply supported

cylindrical panels

k=ky=1,

{m,n)=(1,1)

0 1 2
Wh

Prr (MK
 Shen [2002) Prosnt ] Fercent (%)
) 4.9565 5.98
5.0 5.4489 8.62
tm.n) = (1, 1) 2.0 5.8536 7.69
b=03ma/b=12[ 10 6.2758 7.01
To = 300 K 0.5 0.6488 6.95
a/R = 0.5, b/h =30 /3 6.8431 B 6.02
0.2 7.0504 g 6.67
/8 7.2280 7.7057 6.20
0.1 7.2968 S TI5T5 5.94
S 10.290 0544 2.41
5.0 11314 CiTom 517
(m.n)=(3.1) 2.0 12.215 12747 418
b=0.3m; a/b=12 10 13026 13494 347
To = 300K 0.5 13.797 14.284 3.41
a/R=10; b/h=30 173 14.199 14 698 3.40
0.2 14.648 15121 313
178 14.998 15.405 2.64
0.1 15142 15 509 2.37
- 1.2068 1.3180 161
(m,n)=(1,3) | (tm.n) = (3. 1) i
5.0 1.4261 1.4913 137
b=0.3m; a/b=1.2 2.0 1.5396 1.5934 338
To = 300K 1.0 1.6413 1.6867 2.69
a/R=05b/h=60 [ 05 1.7377 1.7855 2.68
173 1.7881 13373 2.68
0.2 1.8445 1.8901 2.41
/8 1.8889 1.9256 .91
0.1 1.9071 1.9386 1.62
10
b/h=30, a/b=1.2, a/R=0.5 = =1 perfect | b/h=30, 3/b=1.2, a/R=0.5

keky=1,

(m.n)=(1.1)

3 4

(b) For FGM cylindrical panels with two edges

simply supported and two edges clamped

Fig. 2. Effects of imperfection £ on postbuckling load-deflection curves
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Fig. 3a and Fig. 3b illustrate the effects of volume fraction indexes k and k;. Three
values of £ = k; = 0,1,5 are used. As shown, the postbuckling load-deflection curves
are gradually lower when the values of k = k, increase, i.e. the load carrying capacity of
structure decreases with the greater percentage of metal. The prime reason for the fall of
the critical loads is that the higher value of & corresponds to a metal-richer cylindrical
panel which usually has less stiffness than a ceramic-richer one.

b/h=30a/b=12, a/R=0 5

(m.n)=(1,1)

1] b/h=30, a/b=12,0/R=05
7
=k,=0 y

25 3 $5

(a) For simply supported FGM evhndrical panels— (b) For FGM evlindrieal panels with two edges

Iy supported and twa o

gex clamped
Fig 3 Effects of volue fraction mdexes & and &y on posthuckling load-deflection carves

For the effects of geometrical parameters, the numerical caleulations ave manifested

by graph below

D —

i [- “mpertect (-01) | a/b=1,a/R=0'5
l——petect | k=k=1

167

1'b/h=20  (m,n)=(1.1)
2:b/h=30
3 b/h=40

12
om

(a) For simply supported FGM cylindrical pan- (b) For clamped FGM cylindrical panels
els

Fig. 4. Effects of ratio b/h on postbuckling load-deflection curves

Fig. 4. plots relation curves load-deflection versus width-to-thickness ratio b/h with
k=k1=1,£6=0,£=01.
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Fig. ». Effects of ratio a/b on postbuckling load-deflection curves

Fig. 5. plots thesc relation curves versus length-to-width ratio a/bwith k=k =1,
£=0,£=0.1.

Fig. 6. shows the effect of length-to-radius ratio a/R on (W/h,7o) relation curves.
It is obvious, from these figures, that the buckling loads and postbuckling load bearing

- mpeneq (E=0 1) |a/b=1, b/he40, k=ki=1 0 parfoct (5-0.1) |/b=1, b/h=0, k=k=1,
(m,n)=(1,1) 7 pertect (mn)=0,1) 7
: 2 8 1:2/R=02 ’ /
? 2:2/R=0.5 2,
3 X ”,
P L K 3.a/R=0.75 1
& Ca 20 ’,
= - 2 P .
) ~ N 5 3 - > % 2, 7z,
I N 2 3 Z 4
- N ~ Z P
1 S =
~ re, W, = %
"o 4 o
! 2 o s 8 (] 05 TS 2 25
(a) For simply supported FGM cylindrical {b) For clamped FGM cylindrical panels
panels

Fig. 6. Effects of ratio a/R on postbuckling load-deflection curves

capacity of imperfect FGM cylindrical panels are considerably reduced when b/h ratios
increase (Fig. 4). The values of ry when the deflection is still small, are decrease when a/b
increase, and they only increase together a/b when W/h ratio exceeds special value (Fig.
5). In Fig. 6, can be seen that the (W/h, o) relation curves graduate higher according to
a/R with W/h being still small and they become gradually lower when the W/h ratios
are greater than a any special value.
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The influence of two types boundary conditions on stability behavior has been also

carried out. The numerical results are represented by graph in Fig. 7 (a, b, c). It can be

seen that the critical buckling loads when panels are simply supported, are smaller than
ones when those structures are clamped. These results correspond to the facts.

8 5
— -impertect &=0.1) | k=k=1 — = mporloct =0 1) | k=ky=1
7 [|——peroct {m,nk(1,1) R rfoct (m,n)=(1,1) 7
6 1: clamped 1: clamped %
E s 2: simply supported 3 2: simply supported
= ry) =
3 e PR
- - 3
2 7\‘,&_ ! M
== === r, - ==
% 05 1 [ 2 ) [ 1 15 2
wh Wh
(a) For FGM cylindrical panels with a/b = 1.2,  (b) For FGM cylindrical panels with a/b = 1.5,
b/h=30,a/R=05 b/h =40, a/R = 0.5
6
k=k=1
= =impedect (5=0 1) "
—— perfect (m,n)={1,1)

1: clamped
2:simply supported

To (GPa)
w

05 1 2 25

15
wh
(c) For FGM cylindrical panels with ¢/b = 1,
b/h =40, a/R = 0.75

Fig. 7. Effects of boundary conditions on postbuckling load-deflection curves

The influence of boundary conditions, indexes k and k;, buckling mode (m, n) on
critical 1oads Toupper 80d Tglower for imperfect FGM cylindrical panel with b/h = 30, afb
= 1.2, a/R = 0.5, again are confirmed by numerical calculation in Table 3.

For this example, it can be seen that the critical buckling loads of simply supported
FGM cylindrical panels correspond to the buckling mode (m,n)=(1,1), while the critical
buckling loads of cltamped FGM panels reached with (m,n)=(3,1).
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Table 3. The influence of boundary conditions, of indexes k and k;, of buckling
mode (m,n) on critical loads rger

2:’:;?;’“’8 roer (Gpa) (man)=(1,1) | (mn)=(1,3) | (mm)=(3.1) | (m,n)=(3,3)
[ roupper (ki = k = 0) 2.6632 42.335 3.3023 11781
Towpper (k1 = k= 0.5) | 2.3817 37.073 2.9357 10.348
[Touppor (k1 = &k = 10) 1.6048 31.241 2.4179 87018
Simply Touppur (k1 = K = 00) 1.7678 28.611 2.2109 7.9575
supported TFolowar (K1 1.1207 42.288 2.5439 11.609
Tolower (K1 0.9733 36.970 22184 10.146
Tolower (K1 0.8337 31.178 1.8779 8.5583
Totawnr (k1 = 0.7627 28.581 1.7220 7.8470
roupper (ki = k = 0) 2.7677 202.13 3.7008 31.070
Simply Toupper (K1 = k = 0.5) | 4.2414 176.76 3.2834 27.176
supported [ Toupper (K1 3.4704 149.05 2.7130 22.913
z=0,z=a [roupa(hr 31813 136.61 2.4811 20.999
Clamped Totowor (K1 3.2858 20.212 2.9723 31.052
y=0,y=b [Tower (k1 = k = 0.5) 2.8558 176.73 2.5926 27.150
Tolower (k1 = Kk = 10) 2.4239 149.03 2.1833 22.895
Tolowr (k1 = k = 00) 2.2259 136.61 2.0114 20.987

5. CONCLUSIONS

This paper deals with the nonlinear buckling and postbuckling problem of axially
compressed imperfect FGM cylindrical panels by using the nonlinear deflection shell theory
taking into account the Poisson’s ratio v = v (2). The stiffness coefficients A,; defined in
the integrating form in [21, 22, 23] are analyzed in explicit form.

Approximate analytical solutions for two types boundary conditions are given and
applying Galerkin’s procedure are obtained the explicit relations finding critical buckling
loads and postbuckling load-deflection curves.

The nonlinear stability problem of simply supported-clamped FGM cylindrical pan-
els which has not been considered in [20] is solved too here.

The effects of inhomogeneous parameter, dimensional parameter, boundary condi-
tions, initial imperfections, buckling mode on nonlinear stability behavior of FGMs cylin-
drical panels are investigated.

The comparisions of results of present paper with the ones other authors |2, 20, 24]
have affirmed the reliability and accuracy of the proposed approach.

In the case v = const, the present results return to ones of [20|.

In this paper, we does not compare results with these ones of [21, 22, 23] because
those articles were only considered for the FGM closed circular cylindrical shell while our
results are obtained for FGM cylindrical panels.
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