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Abstract. In the study an extension of the Bubnov-Galerldn method in terms of the 
equivalent linearization method is presented. It is combined with sequential linearization 
and nonlinear procedure to yield a new method for solving nonlinear equations which 
can improve the accm:acy when the nonlinearity is strong. For illustration the Duffing 
oscillator is considered to show the effectiveness of the proposed method 
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1. INTRODUCTION 

Bubnov-Galerkin method is one of most popular approximate methods in many 
fields of applied mechanics since the method is general in scope and can be used for both 
conservative and nonconservative, both linezir and nonlinear systems. The idea was appar
ently first suggested in 1913 by Bubnov [1], whereas the first paper along with elaborative 
examples was written in 1915 by Galerkin [2]. In 1937 Dimcan [3] pubUshed the first com
prehensive review of the method in the Western literature. For a given differential equation 
the Bubnov-Galerkin method approximates the sought solution as a linear combination of 
comparison functions and requires the orthogonaJity of the residual to each of comparison 
functions. In this context the Bubnov-Galerkin method is also known as a weighted resid
ual method [4]. Although the method can be used for both linear and nonlinear systems, it 
is known that the accuracy of the method decreases when the nonlinearity becomes larger. 
EHshakoff [5] coimected the Bubnov-Galerkin method with the equivalent linearization 
method. 

In this paper a representation of the Bubnov-Galerkin method in terms of the equiv
alent linearization method is presented and a dual approach is subsequently adopted to 
suggest a new method for solving nonlinear equations. This combined approach allows 
improving the accuracy when the nonlinearity is strong. For illustration the Duffing oscil
lator and a nonlinear vibration of string are considered to demonstrate the effectiveness 
of the proposed method. 
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2. VIEW OF B U B N O V - G A L E R K I N M E T H O D FROM T H E 
STOCHASTIC LINEARIZATION C O N T E X T 

Consider the following nonlinear differential equation 

L{W)=(I (1) 

where L is a differential operator, W is an unknown function which satisfies specific 
boundary conditions. We replace approximately the function L{W) by a linear term 

L{W) SS kW (2) 

where tlie coefficient k is chosen from the condition of minimum mean square deviation 
criterion 

({L{W) - kWf) ^ min (3) 

where < . > is a functional which is usually taken in a form of integration operator over 
the domain of the operator L{W). One gets from (3): 

Using Eq. (2) one obviously observes that Eq. (1) is satisfied approximately if 

fc = 0. (5) 

Alternatively, from Eq. (4) we get another condition 

< L{W)W >= 0. (6) 

The Ekj. (6) is known as the orthogonality of the residual L{W) to the comparison 
function W. Hence, the Bubnov-Galerkin method can be employed in terms of the equiv
alent linearization method. Moreover, the accuracy of the method can be expected to be 
improved by using the dual approach developed recently by Anh [5]. Suppose that the 
operator L{W) can be expressed as a siun of two operators: 

L(W) = M{W) + N{W) (7) 

where M is the linear operator and N is the nonlinear operator. 
At this juncture sequential linearization and nonlinearization approach will be ap

plied to the nonlinear operator N{W). Note that Anh [5] refers to it as the dual approach. 
By the first step we replace N(W) approximately by a linear term 

N{W) « aW. (8) 

The difference can be measured by the following expression: 

(\N{W) - aWf\ . 

Second step consists in the replacement of the equivalent linear term aW by the original 
nonlinear term N{W) but now mtUtiplied by a factor. The difference can be measmred by 
the following expression: 

([aW - pN(W)f\ . 
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These two procedures should be optimized together, as follows, 

D = (^[N{W) - aWf\ + (\aW - l3N{W)f\ -» min (9) 

The coefficients a, 0 are determined from the following requirements 

which yield 

where 

3(D) 
da - . ^ - . 

1 {N{W)W) 
2 - 7 (W) 

^-^. 

{N{W)Wf 

(10) 

(11) 

(12) 

(12) 

To reiterate, using Eqs. (7) and (8), the original equation (1) is replaced approximately 
by the following one: 

M{W) +aW = 0 (14) 

Applying to Eq. (14) the classical equivalent Hnearization method or the Bubnov-
Galerkin method one gets 

{M(W)W) + a{W^) = 0. (15) 

Substituting Eqs. (11) and (13) into Eq. (15) yields 

{M{W)W) + - J — {N{W)W) = 0 (16) 
2 7 

or, noting Eq. (7), one gets 

{L{W)W) + ^ {N{W)W) = 0. (17) 

Substituting (13) into (17) results in the following equation 

a(l^)t^> + FW^>'-«^'^»^><'^^>=0. (18) 
^^ ' ' 2{{N(Wm{W^)-{N{W)Wf 

It is seen that the equation (18) differs from the Bubnov-Galerkin equation (6). 
Moreover, in general the orthogonality of the residual L{W) to the comparison function 
W is- not required anymore. Because in addition to the first term that coincides with the 
left side of Eq. (6), Eq. (18) contains an additional term. 
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3. ILLUSTRATIVE EXAMPLE: D U F F I N G OSCILLATOR 

For illustration of the effectivencHS of the equation (18) we consider the well known 
Duffing oscillator under random excitation 

L{W) = ^ + 2h^ + ulW + fiW^ - <Ti it) = 0 (19) 

where i [t) is the white noise process with unit intensity. The comparison function W is 
taken as a solution of the corresponding linear equation: 

^ + 2 / 1 ^ + J'o^ + kW-ai it) = 0. (20) 
dt'^ at 

Substituting (20) into (19) gives the residual 

L{W) = fxW^ - kW. (21) 

Thus by using the Bubnov-Galerkin method one gets 

{L(W)W) = {(/xM^^ - kW)W) = 0 (22) 

or 

where < . > is the mathematical expectation operator. The system of two equations (20) 
and (23) allows obtaining the unknown < W^ >. 

Using the present method one considers L{W) as a stun of two operators M{W) 
and N{W) where 

M{W) = ^ + 2h^ + ij^W - ai (t), N{W) = fiW^. (24) 
at'' at 

Substituting Eqs. (21), (23) into (18) gives 

{(,W^ - kW) W) + " ' <^^> ' - ' - ' ^"^'^ ^"^'liW^} = 0. (25) 

Noting that 
(ly^n^ = 1. 3 • 5 • • (2n - 1) ( IV ' )" (26) 

one gets 

3M iw'^f - k (ty') + t ' ° ~ ^) ^ ' ^ ' ' ' 'SM ( l y ' ) ' = 0 (27) 
^ ' ^ ' (30 - 9) ( W V ^ ' 

or 

* = y / ' < w " > - (28) 

It is remarkable that Eqs. (23) and (28) differ from each other. 
The results of mean-square response of Duffing oscillator (19) obtained by the 

Bubnov-Galerkin method (< W"^ > G M ) sJid present method (< W^ > P M ) are compared 
with the exact ones (< W"^ > E ) in Table 1. It is seen that the errors of mean-square 
responses determined by the present method are much less than the errors of mean-square 



A nem view of the Bubnov-Galerkin meUiod in Wie Unem^zation context 5 

response obtained by the straightforward Bubnov-Galerkin method for the case of strong 
nonlinearity. 

Table 1. Mean-Square Responses < W^ > of Duffing oscillator for c'^/{ih) = 
l,wo = 1 

7 
0.1 
0.5 
1.0 
5.0 
10 
50 
100 

(< W >E) 
0.8176 
0.5792 
0.4679 
0.2543 
0.1889 
0.0904 
0.0650 

(< W >GM) 
0.8054 
0.5486 
0.4343 
0.2270 
0.1667 
0.0784 
0.0561 

error % 
1.4876 
5.2861 
7.1938 
10.7384 
11.7721 
13.2721 
13.6491 

(< W >PM) 
0.8465 
0.6062 
0.4885 
0.2624 
2.6697 
1.8539 
0.0660 

error % 
3.5352 
4.6670 
4.4082 
3.1708 
2.6697 
1.8539 
1.6331 

It should be noted that the present method can also be used for investigating deter
ministic nonlinear vibrations. In fact, consider a particular case of Eq. (19) where h,a = 0, 
i.e. we have free periodic vibrations described by the following differential equation: 

L{W) = ^ + "̂ 0 W + M'^" = 0-

The corresponding linear equation reads 

dfi 
ui^W -I- ifcW = 0 

(29) 

(30) 

where the equivalent linear term is determined by Eq, (25) but the operator < , > is taken 
as follows 

\I (Mf (31) 

where I is a positive value. For the case I = 2n substituting W = a£OS0 into (25) yields 

([^(acost^)^ —kacosip]acostp) + 

U,' {(acos,p)'f - M' ((acosy)°) ( (gcosy ) ' ) , ., (32) 
^ . ^ ^M ((acosyj)*) = 0. 

2/z' {(acosipf) ((acosvj)') - M' ((acos.^)*) 

Noting 

one gets 

(cos4j') = r , (cosi^'') = - , {cosif") 
5_ 
16' 

, 15 2 

(33) 

(34) 

Hence, the frequency of the free Duffing oscillator (29) obtained by the present method is 

u, = (u,i + ^^^')y'. (35) 
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That approximate frctiiiciicy differs from t.lic approximate frequency 

u, = {u,g + j M o ' ) " ' (36) 

obtained by the classical linearized method, TIK; accuracy of two approximate frequencies 
(35), (36) can he investigated by comparing with tho exact one [6). 

4, CONCLUSION 

In tlie study the Bubnov-Galerkin method in the context of the equivalent Hneariza
tion method is first reiterated. A sequential linearization and nonlinearization method is 
I hen adopted to suggest a new method for solving nonlinear equations. This dual or se
quential method can improve the accuracy of the equivalent linearization technique when 
the nonlinearity is strong. For illustration the Duffing oscillator subjected to random ex
citation i,s considered to demonstrate the effectiveness of the proposed methodology. The 
method appears to have a certain potential, it ought to be explored for wider nonlinear 
classes. 
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