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METHOD OF TRANSMISSION MATRIX FOR
INVESTIGATING PLANAR RELATIVE MOTIONS

Do Sanh
Hanoi University of Technology

Do Dang Khoa
University of Texas at Austin, USA

Abstract. In the paper [2] the method of transmission matrix applying for the case of
a loop with turning pairs investigated. In the present paper the kinematics of a loop
connected by composite joints, i.e. the one of revolute-translational joints are discussed
now. By means of proposed method the planar motion of rigid bodies is presented by a
point of general view.
Especially,the introduced method allows to apply effectively universal softwere, for ex-
ample, MATCAD, MAPLE, ... for investigating complex mechanical systems.

1. GENERAL INFORMATIONS ABOUT TRANSMISSION
MATRIX METHOD

Let us consider a figure S rotating about O of
the frame of reference Ox′y′ and oriented by the
angle ϕ in counteroclockwise direction. This frame
of reference is in translational displacement with
respect to the fixed frame of reference oOoxoy. As
is known, the last frame is refered to global or iner-
tia frame of reference. An other frame of reference
Oxy rigidly connected to the figure S at its point
O is assigned a body frame of reference. Let us
consider a point of the figure S. Its coordinates in
these frame of reference are named global - coordi-
nate and body-coordinate respectively. It is noticed
that the body-coordinates are constants, while the
global-coordinates are changing quantities at time.
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Fig. 1
Let us interest a point M connected rigidly to the figure S. Its components of body-

coordinates are denoted by the constants a and b. It is easy to establish the relationship
between the components of global-coordinates and body-coordinates. That are

0xM = u + a cosϕ − b sinϕ; 0yM = v + a sinϕ + b cosϕ, (1.1)

where u, v are the components of global-coordinate of the origin O.
The expression (1.1) can be written in the matrix form

∥∥∥∥∥∥

0xM
0yM

1

∥∥∥∥∥∥
=

∥∥∥∥∥∥

1 o u
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 0
0 1 v
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

cosϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

a
b
1

∥∥∥∥∥∥
. (1.2)



106 Do Sanh, Do Dang Khoa

By introducing the matrices

Tu =

∥∥∥∥∥∥

1 0 u
0 1 0
0 0 1

∥∥∥∥∥∥
; Tv =

∥∥∥∥∥∥

1 0 0
0 1 v
0 0 1

∥∥∥∥∥∥
; Tϕ =

∥∥∥∥∥∥

cosϕ − sin ϕ 0
sinϕ cos ϕ 0

0 0 1

∥∥∥∥∥∥
;

0 r =

∥∥∥∥∥∥

0xM
0y

M

1

∥∥∥∥∥∥
; r =

∥∥∥∥∥∥

a
b
1

∥∥∥∥∥∥
.

(1.3)

The formula (1.2) takes the following form
0r = TuTvTϕr. (1.4)

From now on the matrix is noted by bold letters and the vector is treated as the (3×1)
matrix, but the frame of reference is named briefly the frame.

By (1.4) the components of the velocity of the point M in the global frame is calculated
by the formula

0vvv = u̇uu(∗)TTT ′
uTTT vTTTϕrrr + v̇vv(∗)TTTuTTT

′
vTTTϕṙ + ϕ̇ϕϕ(∗)TTTuTTT vTTT

′
ϕ(∗), (1.5)

where [2] u̇uu(∗), v̇vv(∗), ϕ̇ϕϕ(∗) are the (3×3) diagonal matrices of the form

u̇uu(∗) =

∥∥∥∥∥∥

u̇ 0 0
0 u̇ 0
0 0 u̇

∥∥∥∥∥∥
; v̇vv(∗) =

∥∥∥∥∥∥

v̇ 0 0
0 v̇ 0
0 0 v̇

∥∥∥∥∥∥
; ϕ̇ϕϕ(∗) =

∥∥∥∥∥∥

ϕ̇ 0 0
0 ϕ̇ 0
0 0 ϕ̇

∥∥∥∥∥∥
, (1.6)

but the matrices TTT ′
u, TTT ′

v, TTT ′
ϕ are determined as follows

TTT ′
u =

∥∥∥∥∥∥

0 0 1
0 0 0
0 0 0

∥∥∥∥∥∥
; TTT ′

v =

∥∥∥∥∥∥

0 0 0
0 0 1
0 0 0

∥∥∥∥∥∥
; TTT ′

ϕ =

∥∥∥∥∥∥

− sinϕ − cosϕ 0
cosϕ − sinϕ 0

0 0 0

∥∥∥∥∥∥
. (1.7)

Similarly, the acceleration of the point M in the inertia frame is defined by the formula
0aaa = üuu(∗)TTT ′

uTTT vTTTϕrrr + v̈vv(∗)TTTuTTT
′
vTTTϕrrr + ϕ̈ϕϕ(∗)TTTuTTT vTTT

′
jrrr + ϕ̇ϕϕ2(∗)TTTuTTT vTTT

′′
ϕrrr, (1.8)

where the matrices üuu(∗), v̈vv(∗), ϕ̈ϕϕ(∗) are of the same form of (1.6), in which the quantities
u̇, v̇, ϕ̇ are substituted by ü, v̈, ϕ̈ respectively, but the matrix T ′′

ϕ is of the form:

T ′′
ϕ =

∥∥∥∥∥∥

− cos ϕ sinϕ 0
− sinϕ − cosϕ 0

0 0

∥∥∥∥∥∥
. (1.9)

2. KINEMATIC INVESTIGATION OF A MULTIBODY SYSTEM

Let us now consider a loop of n links, which are connected each other by the composite
joints. The links are numered in the progressive order 0, 1, 2, ..., n, where the link of the
index “0” is rigidly connected to the inertia frame.

For investigating such a system, let us study three of following typical groups of loops.
First group. Let us consider a loop of three bars connected together by pure turning

pairs Ai−1, Ai, Ai+1 and the links are numbered by (i− 1), i and (i+1). The body frame
are chosen as follows : The jth body frame connected to jth-body is denoted by Ajxjyj

(j = i − 1, i, i + 1). The xj axis is directed from Aj to Aj+1. The yj –axis is defined



Method of transmission matrix for investigating planar relative motions 107

by following the rule of right-hand orthogonal reference frame. The angle position of the
links is oriented by the angles between links, for example, the ϕi is the angle between
(i− 1)th-link and ith - link in accordance with counteroclockwise direction (Fig. 2).

Hereafter for simplicity the frames of reference
are expressed by the vectors located along the x-
axis [2]

Let us consider the point M rigidly conneted to
the (i+1)th-link, which is the last one in the group.
Hereafter the index located at left high corner of
the quantity means that this quantity is determined
with respect to the body frame of same index. For
example, the point M rigidly connected to the (i+
1)th-body, the coordinate of which in the (i + 1)th-
frame is a and b, in the ith-frame is ixM , iyM , but
in the (i − 1)th-frame is i−1xM , i−1yM .

Fig. 2

By introducing the symbols cosϕi ≡ ci, sinϕi ≡ si, Li−1 = Ai−1Ai; Li = AiAi+1,
where Li−1, Li are the length of the (i − 1)th-link and the ith-link respectively. It is
noticed that Li is the abscissa of the origin of the ith-body frame. It is easy to show that
the configuration of the point M (the position, velocity, acceleration) rigidly connected to
the (i + 1)th-body frame will be

i−1rrr = TTT iTTT i+1rrr, (2.1)
i−1vvv = ϕ̇ϕϕi(∗)TTT ′

iTTT i+1rrr + ϕ̇ϕϕi+1(∗)TTT iTTT
′
i+1rrr, (2.2)

i+1a = ϕ̈ϕϕi(∗)TTT ′
iTTT i+1rrr + ϕ̈ϕϕi+1(∗)TTT iTTT

′
i+1rrr

+ ϕ̇ϕϕ2
i (∗)TTT ′′

i TTT i+1rrr + ϕ̇ϕϕ2
i+1(∗)TTT iTTT

′′
i+1rrr + 2ϕ̇ϕϕi(∗)ϕ̇ϕϕi+1(∗)TTT ′

iTTT
′
i+1rrr, (2.3)

where

TTT j =

∥∥∥∥∥∥

cj sj Lj−1

sj cj 0
0 0 1

∥∥∥∥∥∥
; TTT ′

j =

∥∥∥∥∥∥

−sj −cj 0
cj −sj 0
0 0 0

∥∥∥∥∥∥
; TTT ′′

j =

∥∥∥∥∥∥

−cj sj 0
−sj −cj 0
0 0 0

∥∥∥∥∥∥
(2.4)

ϕ̇ϕϕj(∗) =

∥∥∥∥∥∥

ϕ̇j 0 0
0 ϕ̇j 0
0 0 ϕ̇j

∥∥∥∥∥∥
; ϕ̈ϕϕj(∗) =

∥∥∥∥∥∥

ϕ̈j 0 0
0 ϕ̈j 0
0 0 ϕ̈j

∥∥∥∥∥∥

Second group
Let us concern to a three bars group, in which the middle link (i.e the ith-link) is in

translational displacement with respect to the front link and connected to the behind one
by revolute joint (Fig. 3). In this case the ith-body frame is in translational displacement
with respect to the (i − 1)th body frame. Therefore the abscissa of the origin Ai of the
ith-body frame in the (i− 1)th body frame is not constant. In connection with this let us
introduce the variable ui−1 ≡ Li−1. The xi−1 - axis coincides with the xi - axis, but the
origin of the ith - body frame is the one of (i + 1)th - body frame. Because of these we
have: Li = 0, ϕi = 0 (ci = 1, si = 0).
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Fig. 3 Fig. 4

In such a case we have

TTT i =

∥∥∥∥∥∥

1 0 ui−1

0 1 0
0 0 0

∥∥∥∥∥∥
; TTT ′

i =

∥∥∥∥∥∥

0 0 1
0 0 0
0 0 0

∥∥∥∥∥∥
; TTT i+1 =

∥∥∥∥∥∥

ci+1 −si+1 0
si+1 ci+1 0
0 0 1

∥∥∥∥∥∥
;

TTT ′
i+1 =

∥∥∥∥∥∥

−si+1 −ci+1 0
ci+1 −si+1 0
0 0 0

∥∥∥∥∥∥
; T′′

i+1 =

∥∥∥∥∥∥

−ci+1 si+1 0
−si+1 −ci+1 0

0 0 0

∥∥∥∥∥∥

(2.5)

Third group
Let us consider the three bars - group in which the middle link is in translational

displacement with respect to its behind link, but connected by turning pair to the front
one. In this case the co-ordinate axes of the ith-body and (i+1)th-body frame are coincided.
By this the oriented angle ϕi+1 = 0 (ci+1 = 1, si+1 = 0). Because of the origin of the
(i + 1)th –body frame putting at its masscenter, we have Li = AiCi+1 = ui, which is
changing at time. The transformation matrix TTT i+1 is of the form

Ti+1 =

∥∥∥∥∥∥

1 0 ui

0 1 0
0 0 1

∥∥∥∥∥∥
. (2.6)

By using above mentioned models it is possible to investigate kinematics of every
planar mechamism.

3. APPLICATION

Example 1. A quick-return mechanism is shown in Fig. 5. The crank OA = r at given
instant of time is in horizontal line on the right side at the angular velocity and acceler-
ation ω1, ε1 respectively. The distance between two rotating axes OC = h. Determine
the angular velocity and acceleration of the crank CB at the interested position of the
mechanism.

The mechanism consists of three links numered by the order 1, 2, 3. The inertia frame
is expressed by the vector xxxo putting at O and being in the horizontal direction.

The body frames are represented the vectors xxx1, xxx2, xxx3 as shown in Fig. 5. The origin
of these vectors located O, A and B, respectively.
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Fig. 5

In accordance with above mentioned things we have:

ϕ1 = 0 (c1 = 1, s1 = 0); ϕ3 = 0(c3 = 1, s3 = 0); L2 = AB = u,

where u is a changing quantity at time.
The mechanism under consideration belonging to the third group is a closed loop.

In connection with the latter it is necessary to interest the point C, which is fixed in
the global frame with the coordinates (0,−h). The body-coordinates of the point C are
(−L, 0).

By applying (2.1) in consideration of (2.6) and L1 = r, we get
∥∥∥∥∥∥

0
−h
1

∥∥∥∥∥∥
=

∥∥∥∥∥∥

1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

c2 −s2 r
s2 c2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥
=

∥∥∥∥∥∥

[c2(u − L) + r]
s2(u − L)

1

∥∥∥∥∥∥

In accordance with the given position, L − u = CA =
√

r2 + h2. By solving the
obtained matrix equation, it is easy to calculate

c∗2 =
r√

r2 + h2
; s∗2 =

h√
r2 + h2

where the symbol “ ∗” is the notation of the value of the quantity at the given instant of
time.

In order to calculate the angular velocity of the crank CB let us write the equations
(1.5) in consideration of (2.4) and (2.6), that is

∥∥∥∥∥∥

0
0
0

∥∥∥∥∥∥
=ϕ̇ϕϕ1(∗)

∥∥∥∥∥∥

0 −1 0
1 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥
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+ ϕ̇ϕϕ2(∗)

∥∥∥∥∥∥

1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−s∗2 −c∗2 0
c∗2 −s∗2 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ u̇uu(∗)

∥∥∥∥∥∥

1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0 0 1
0 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥
.

By developing the written equation, we get

s∗2(L − u∗)ϕ̇∗
1 + s∗2(L− u∗)ϕ̇∗

2 + c∗2u̇
∗ = 0;

c∗2(L − u∗ + r)ϕ̇∗
1 + c∗2(L− u∗)ϕ̇∗

2 + s∗2u̇
∗ = 0.

The solutions of these equations are of the form

ϕ̇∗
2 = −ϕ̇∗

1 +
c∗2

(L − u∗)
rϕ̇∗

1; u̇∗ = −rs∗2ϕ̇
∗
1

The absolute angular velocity of the crank CB denoted by ω2 will be [2]

ω2 = ˙ ϕ∗1 + ϕ̇∗
2 =

c∗2
(L− u∗)

rϕ̇∗
1 =

r√
r2 + h2

c∗2ω1.

The relative velocity of the slider A with respect to the bar CB at the given instant
of time is of the form

v∗r = −u̇∗ = rs∗2ϕ̇
∗
1 = rω1s

∗
2.

The positive signal of the expression of the velocity provides that the relative velocity
the same direction to the vector xxx3.

In other words, at the given instant of time the relative velocity is in the direction
from A to B.

In order to define the acceleration, let us apply the formula (2.3) in consideration of
(2.4) and (2.6), that are

∥∥∥∥∥∥

0
0
0

∥∥∥∥∥∥
=ϕ̈ϕϕ1(∗)

∥∥∥∥∥∥

0 −1 0
1 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ ϕ̈ϕϕ2(∗)

∥∥∥∥∥∥

1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−s∗2 −c∗2 0
c∗2 −s∗2 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ üuu(∗)

∥∥∥∥∥∥

1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0 0 1
0 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ ϕ̇ϕϕ∗2
1 (∗)

∥∥∥∥∥∥

−1 0 0
0 −1 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥
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+ ϕ̇ϕϕ∗2
2

∥∥∥∥∥∥

1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−s∗2 −c∗2 0
c∗2 −s∗2 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ 2ϕ̇ϕϕ∗
1(∗)ϕ̇ϕϕ∗

2(∗)

∥∥∥∥∥∥

0 −1 0
1 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−s∗2 −c∗2 0
c∗2 −s∗2 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ 2ϕ̇ϕϕ∗
1(∗)u̇∗(∗)

∥∥∥∥∥∥

0 −1 0
1 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ 2ϕ̇ϕϕ∗
2(∗)u̇∗(∗)

∥∥∥∥∥∥

1 −0 0
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−s∗2 −c∗2 0
c∗2 −s∗2 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥
.

By solving above establised matrix equation we obtain

ϕ̈∗
2 =

( c∗2r

L − u∗ − 1
)
ϕ̈∗

1 +
1

L − u∗ [rs∗2ϕ̇
∗2
1 − 2ϕ̇∗

1 + ϕ̇∗
2]u̇

∗;

ü∗ = −(L − u∗)(ϕ̇∗
1 + ϕ̇∗

2)
2 + rϕ̇∗2

1 c∗2.

In consideration of

ϕ̇∗
1 ≡ ω1, ϕ̇∗

1 + ϕ̇∗
2 ≡ ω2, ϕ̈1 ≡ ε1; ϕ̈1 + ϕ̈2 = ε2;

L − u∗ =
√

r2 + h2; s∗2 =
h√

r2 + h2
; c∗2 =

r√
r2 + h2

,

we get

ε2 = ϕ̈∗
1 + ϕ̈∗

2 =
r2

r2 + h2
ε1 +

rh

r2 + h2
ω2

1 − 2√
r2 + h2

u̇∗ω2,

where: ω1, ω2, ε1, ε2 are the absolute angular velocities and accelerations of the bars OA
and CB respectively
Example 2. Let us consider a mechanism shown in
Fig. 6. The length of the rod AC = L. The verti-
cal guider located at the distance h with respect to
the fixed rotating axis O. Determine the velocity and
acceleration of the sliding rod CA

The mechanism under consideration consists of three
bars, numered in the order 1, 2, 3, in which the slider
A (link 2) is in translational displacement with respect
to the crank 1. By such a way the consider mechanism
belongs second group. The inertia frame is expressed
by the xo in horizontal direction. The body frames are
expressed by the vectors xxx1, xxx2, xxx3 respectively as in
Fig. 6. The origin A of the 2nd body frame displaces
along the axis of the x-axis of the 1st- body frame. In
accordance with this we have

Fig. 6

ϕ2 = 0 → c∗2 = 1, s∗2 = 0.
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In addition, the oriented angle of the bar CA in the global frame is equal to
π

2
.

Therefore:
ϕ1 + ϕ2 + ϕ3 =

π

2
→ ϕ1 + ϕ3 =

π

2
→ s3 = c1, c3 = s1.

Besides, the mechanism under consideration is a semi-closed loop, because the point
C of the last link (link 3) is in displacement along the guider fixed in the global frame.
The global and body coordinates of the point C are (h, -ξ) and (-L, 0) respectively.

By applying (2.1) in consideration of (2.5)
we get




h
−ξ
1


 =

∥∥∥∥∥∥

c∗1 −s∗1 0
s∗1 c∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

s∗1 −c∗1 0
c∗1 s∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥
.

By the establised matrix equation, we find:

s∗3 =
h

u∗ ; c∗3 =
L − ξ∗

u∗ .

In order to calculate the velocity, let us write the equation (2.2), which is of the form
∥∥∥∥∥∥

0
ξ̇∗

0

∥∥∥∥∥∥
=ϕ̇ϕϕ1(∗)

∥∥∥∥∥∥

−s∗1 −c∗1 0
c∗1 −s∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

s∗1 −c∗1 0
c∗1 s∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ u̇uu2(∗)

∥∥∥∥∥∥

c∗1 −s∗1 0
s∗1 c∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0 0 1
0 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

s∗1 −c∗1 0
c∗1 s∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ ϕ̇ϕϕ∗
3(∗)

∥∥∥∥∥∥

c∗1 −s∗1 0
s∗1 c∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗1 s∗1 0
−s∗1 c∗1 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥
.

By this equation we calculate

ξ̇∗ =
s∗1
c∗1

u∗ϕ∗
1 =

s∗1
c∗1

u∗ω1; u̇∗ = c∗1u
∗ϕ̇∗

1 = c∗1u
∗ω1.

Concerning to the problem of acceleration, let us write the equation (2.3), that is
∥∥∥∥∥∥

0
ξ̈∗

0

∥∥∥∥∥∥
=ϕ̈∗

1(∗)

∥∥∥∥∥∥

−s∗1 −c∗1 0
c∗1 −s∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

s∗1 −c∗1 0
c∗1 s∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ ü(∗)

∥∥∥∥∥∥

c∗1 −s∗1 0
s∗1 c∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0 0 1
0 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

s∗1 −c∗1 0
c∗1 s∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ ϕ̈∗
3(∗)

∥∥∥∥∥∥

c∗1 −s∗1 0
s∗1 c∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−c∗1 −s∗1 0
s∗1 −c∗1 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥
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+ ϕ̇ϕϕ∗2
1 (∗)

∥∥∥∥∥∥

−c∗1 s∗1 0
−s∗1 −c∗1 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

s∗1 −c∗1 0
c∗1 s∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ ϕ̇ϕϕ∗2
3 (∗)

∥∥∥∥∥∥

c∗1 −s∗1 0
s∗1 c∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−s∗1 c∗1 0
−c∗1 −s∗1 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ 2ϕ̇ϕϕ∗
1(∗)u̇∗(∗)

∥∥∥∥∥∥

−s∗1 −c∗1 0
c∗1 −s∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0 0 1
0 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

s∗1 −c∗1 0
c∗1 s∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ 2ϕ̇ϕϕ∗
1(∗)ϕ̇ϕϕ∗

3(∗)

∥∥∥∥∥∥

−s∗1 −c∗1 0
c∗1 −s∗1 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−c∗1 −s∗1 0
s∗1 −c∗1 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

+ 2ϕ̇ϕϕ∗
3(∗)u̇∗(∗)

∥∥∥∥∥∥

c∗1 −s∗1 0
s∗1 c∗1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0 0 1
0 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−c∗1 −s∗1 0
s∗1 −c∗1 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−L
0
1

∥∥∥∥∥∥

By realizing the calculations we find

ü =
s∗1
c∗1

u∗ϕ̈∗
1 + u∗ϕ̇∗2

1 + 2
s∗1
c∗1

u∗ϕ̇∗2
1 =

s∗1
c∗1

u∗ε1 + u∗ω2
1 ;

ξ̈ =
(u∗ϕ̈∗

1 + 2u̇∗ϕ̇∗
1)

c∗1
≡ (u∗ε1 + 2u̇∗ω1)

c∗1
.

Example 3. The crank OA, turning about fixed O,
is connected by turning pair to link 2, which moves in
slider 3. Slider 3 turns about fixed axis O. Determine
the angular velocity and acceleration of the link2 when
the crank OA is invertical direction (Fig. 7).

The mechanism under consideration is a closed
three bars loop,because the point C of the last link of
the group (link 3) is fixed in the inertia frame, which
is expressed by the vector xxxo. The body frame are
expressed by the vectors xxx1, xxx2, xxx3 shownas inFig.7. Fig. 7

The link 2 is in the translational displacement with respect to the last link (link 3).
The mechanism belongs to third group. In connection with this, it is easy to see that
ϕ∗

3 = 0 → c∗3 = 1, s∗3 = 0. Besides, the origin of 3th-body frame is in displacement
with respect to 2nd body frame, i.e. the quantity L2 =u is variable. The global and
body coordinate of the point B belonging to the link 3 are (h, 0) and (0, 0) respectively.
Applying the formula (2.1) for this point, we obtain the equation for defining the position
of the mechanism at given time, that is

∥∥∥∥∥∥

h
0
1

∥∥∥∥∥∥
=

∥∥∥∥∥∥

0 −1 0
1 0 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 −u
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥
.

By means of solving this equation, we find
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s∗2 =
h

u∗ ; c∗2 =
r

u∗ .

In order to determine the velocity let us write the equation (2.2) for the point B, that
is

∥∥∥∥∥∥

0
0
0

∥∥∥∥∥∥
=ϕ̇ϕϕ∗

1(∗)

∥∥∥∥∥∥

−1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 −u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥

+ ϕ̇ϕϕ∗
2(∗)

∥∥∥∥∥∥

0 −1 0
1 0 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−s∗2 −c∗2 0
c∗2 −s∗2 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 −u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥

+ u̇uu∗(∗)

∥∥∥∥∥∥

0 −1 0
1 0 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0 0 −1
0 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥

=

∥∥∥∥∥∥

[s∗2u̇
∗ + c∗2u

∗ϕ̇∗
2 − (c∗2u

∗ − r)ϕ̇∗
1]

[c∗2u̇
∗ − s∗2u

∗ϕ̇∗
2 − s∗2u

∗ϕ̇∗
1]

1

∥∥∥∥∥∥
.

It is easy to obtain

u̇∗ = s∗2rϕ̇
∗
1 = s∗2rω1; ϕ̇∗

2 = −ϕ̇∗
1 +

c∗2
u∗ rϕ̇∗

1.

The absolute angular velocity of the sliding rod AB will be

ω2 = ϕ̇∗
1 + ϕ̇∗

2 =
r2

u∗2 ω2
1

The relative velocity of the pitton B with respect to the sliding rod AB is equal to

ve = −u∗ − s∗2rϕ̇
∗
1 = − h

u∗ rω1

For the aim of calculating acceleration, let us write equation (2.3) for the point B,
that is

∥∥∥∥∥∥

0
0
0

∥∥∥∥∥∥
=ϕ̈∗

1(∗)

∥∥∥∥∥∥

−1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 −u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥

+ ϕ̈∗
2(∗)

∥∥∥∥∥∥

0 −1 0
1 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−s∗2 −c∗2 0
c∗2 −s∗2 0
0 0 0

∥∥∥∥∥∥

+ ü∗(∗)

∥∥∥∥∥∥

0 −1 0
1 0 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0 0 −1
0 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥
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+ ϕ̇ϕϕ∗2
1 (∗)

∥∥∥∥∥∥

0 1 0
−1 0 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
−s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 −u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥

+ ϕ̇ϕϕ∗2
2 (∗)

∥∥∥∥∥∥

0 1 0
1 0 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−c∗2 s∗2 0
−s∗2 −c∗2 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

1 0 −u∗

0 1 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥

+ 2ϕ̇ϕϕ∗
1(∗)ϕ̇∗

2(∗)

∥∥∥∥∥∥

−1 0 0
0 1 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

−s∗2 −c∗2 0
c∗2 −s∗2 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥

+ 2ϕ̇ϕϕ∗
1(∗)u̇

∗(∗)

∥∥∥∥∥∥

−1 0 0
0 −1 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

c∗2 −s∗2 r
s∗2 c∗2 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

0 0 −1
0 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥

+ 2ϕ̇ϕϕ∗
2(∗)u̇∗(∗)

∥∥∥∥∥∥

0 −1 0
1 0 0
0 0 1

∥∥∥∥∥∥

∥∥∥∥∥∥

−s∗2 −c∗2 00
c∗2 −s∗2 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

∥∥∥∥∥∥

0 0 1
0 0 0
0 0 0

∥∥∥∥∥∥

∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥

∥∥∥∥∥∥
.

In the developing form the obtained equation will be

ϕ̈∗
2 = − ϕ̈∗

1 +
c∗2
u∗ rϕ̈∗

1 +
s∗2
u∗ ϕ̇∗2

1 + 2(ϕ̇∗
1 + ϕ̇∗

2)
u̇∗

u∗ ;

ü∗ =s∗2rϕ̈
∗
1 − u∗(ϕ̇∗

1 + ϕ̇∗
2)

2 + rc∗2ϕ̇
∗2
1 .

The absolute angular velocity of the rod AC and the relative velocity of the rod AC
with respect to the turning pistton B are of the form respectively

ε2 =ϕ̈∗
1 + ϕ̈∗

2 =
c∗2
u∗ rϕ̈∗

1 +
s∗1
u∗r(ϕ̇∗

1 + ϕ̇∗
2)

2 + 2(ϕ̇∗
1 + ϕ̇∗

2)
u̇∗

u∗

ar = − ü∗ = s∗2rϕ̈
∗
1 − u∗(ϕ̇∗

1 + ϕ̇∗
2)

2 − rc∗2ϕ̇
∗2
1 .

At the given time we have

u∗ =
√

r2 + h2; c∗2 =
r√

r2 + h2
;

s∗2 =
h√

r2 + h2
; u̇∗ = s∗2rϕ̇

∗
1; ϕ̇∗

2 = −ϕ̇∗
1 +

c∗2
u∗ rϕ̇∗

1.

By substituting these date into the above expressions we find

ε2 =
r2

r2 + h2
ε1 +

hr3

(r2 + h2)2
[2 +

r2

r2 + h2
]ω2

1;

ar =
hr√

r2 + h2
ε1 −

r2

√
r2 + h2

(
r2

r2 + h2
− 1)ω2

1,

where ω1 and ε1 are the absolute angular velocity and acceleration of the crank OA at the
given instant of time respectively.



116 Do Sanh, Do Dang Khoa

4. CONCLUSION

In the paper the transmission matrix method is applied for investigating the relative
motion of planar mechanisms. The proposed method are an useful tool for solving the
problems of kinematics and dynamics of rigid body systems, for example, the synthetic
and analysic problem of motions. It is important that by such a way it is possible to
approach the softwere as MATCAD, MAPLE,... for studing the complexed systems

This work is completed by financial support of the Basic Program in Natural Science.
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PHU.O.NG PHÁP MA TRÂ. N TRUYÈ̂N KHA’O SÁT CÁC

CHUYÊ’N DÔ. NG TU
.
O
.
NG DỐI

Nô.i dung cu’a bài báo là tiếp tu.c xây du..ng phu.o.ng pháp ma trâ.n truyè̂n dê’ kha’o sát bài toán
chuyê’n dô.ng tu.o.ng dối cho hê. vâ.t rá̆n (trong bài báo dè̂ câ.p dến bài toán các chuyê’n dô.ng phă’ng).
Bài toán nhu. vâ.y du.o..c quan tâm nhiè̂u trong kỹ thuâ.t, dă. c biê.t trong các bài toán tô’ng ho..p
chuyê’n dô.ng, tru.́o.c hết là nhũ.ng bài toán diè̂u khiê’n chuyê’n dông chu.o.ng tr̀ınh các hê. co. ho.c.
Mô.t kết qua’ quan tro.ng là phu.o.ng pháp du.o..c dè̂ xuất cho mô.t quan diê’m tô’ng quát dối vó.i bài
toán kha’o sát dô.ng ho.c các hê. co. ho.c.


