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ABSTRACT 
In this paper, we consider the following nonlocal problem: 

, 

where λ is a real parameter and Ω is an open bounded subset of R3 with Lipschitz 

boundary ∂Ω, s ∈ (3/4, 1), and the term f is a continuous function satisfying some 

suitable conditions. Using Fountain Theorem and variational method in fractional Sobolev 

space, we prove that there exist infinitely many weak solutions with unbounded energy 

to above problem. 

Keywords: Fractional Laplace equation; Fountain Theorem; Kirchhoff type problem; Cerami 

condition. 

 
Received: 02/10/2020; Revised: 30/11/2020; Published: 30/11/2020 

 

VỀ SỰ TỒN TẠI VÔ HẠN NGHIỆM YẾU  

CỦA BÀI TOÁN KIRCHHOFF THỨ 

 
Phạm Thị Thủy1*, Đỗ Thị Mai Hương2 

1Trường Đại học Sư phạm - ĐH Thái Nguyên 
2Trường Cao đẳng Sư phạm Thái Nguyên 

 
TÓM TẮT 

Trong bài báo bày, chúng tôi nghiên cứu sự tồn tại vô hạn nghiệm yếu của bài toán Kirchhoff chứa 

toán tử vi tích phân: 

 
trong đó λ là tham số thực và Ω là một miền mở bị chặn trong R3 với biên ∂Ω Lipschitz, s ∈ (3/4, 

1), f là hàm liên tục thỏa mãn một số điều kiện thích hợp. Sử dụng Định lý Fountain và phương 

pháp biến phân trong không gian Sobolev thứ, chúng tôi chứng minh sự tồn tại vô hạn nghiệm yếu 

với năng lượng không bị chặn của bài toán trên. 
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1 Introduction and main re-
sult

In this paper, we consider the following nonlocal
problem:{
−(a+ b||u||2X0

) LKu = f(x, u) + λu in Ω,

u = 0 in R3 \ Ω,

where λ is a real parameter, and Ω is an open
bounded subset of R3 with Lipschitz boundary
∂Ω, s ∈ (3/4, 1), and the term f is a continuous
function verifying the conditions stated in the
sequel. Moreover, a, b denote two positive real
constants and

||u||2X0
:=

∫
R6

|u(x)− u(y)|2K(x− y)dxdy.

The LK is the integrodifferential operator which
is defined as following:

LKu(x) :=

∫
R3

(u(x+ y) + u(x− y)

− 2u(x))K(y)dy, x ∈ R3, (1.1)

where the kernel K : R3 \ {0} → (0,+∞) is such
that

mK ∈ L1(R3), where m(x) = min{|x|2, 1},
(1.2)

and there exists θ > 0 such that

K(x) ≥ θ|x|−(3+2s) (1.3)

for any x ∈ R3 \ {0}. A model for K is given
by the singular kernel K(x) = |x|−(3+2s) which
gives rise to the fractional Laplace operator
−(−∆)s, that may defined (up to a normalizing
constant) by the Riesz potential as follows:

− (−∆)su(x)

:=

∫
R3

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy

for any x ∈ R3.

Definition 1. We say that u ∈ X0 is a weak
solution of problem (1.1) if

(a+ b||u||2X0
)

∫
R3×R3

(u(x)− u(y))

× (ϕ(x)− ϕ(y))K(x− y)dxdy

=

∫
Ω

f(x, u(x))ϕ(x)dx+ λ

∫
Ω

u(x)ϕ(x)dx

for any ϕ ∈ X0. Here, the space X0 is defined by

X0 := {g ∈ X : g = 0 in x ∈ R3 \ Ω},

where the functional space X denotes by the lin-
ear space of Lebesgue measurable functions from
R3 to R such that the restriction of any function
g in X to Ω belong to L2(Ω) and the map

(x, y)→ (g(x)− g(y))
√
K(x− y)

is in L2((R3 × R3) \ (CΩ × CΩ), dxdy), CΩ :=
R3 \ Ω.

We denote F (x, t) :=
t∫

0

f(x, τ)dτ and G(x, t) =

f(x, t)t− 4F (x, t), for all (x, t) ∈ Ω× R.

We assume that f ∈ C(Ω×R) satisfies following
conditions hold:

(f0) There exists a positive constant C such that

|f(x, t)| ≤ C(1 + |t|q−1),∀(x, t) ∈ Ω× R

for some q ∈ (4,
6

3− 2s
);

(f1) tf(x, t) ≥ 0 in Ω× R;

(f2) lim|t|→+∞
f(x, t)

t3
= +∞, uniformly in x ∈

Ω.

(f3) There exists γ∗ ≥ 1 and W ∈ L1(Ω) satisfy-
ing W (x) ≥ 0 for all x ∈ Ω, such that

G(x, s) ≤ γ∗G(x, t) +W (x) (1.4)

for all x ∈ Ω and 0 ≤ |s| ≤ |t|.

(f4) There is δ > 0 such that

F (x, t) ≤ ht2,

for every x ∈ Ω and t ∈ (−δ, δ), where h 6= 0 is
a real number.

Our result is given as follows:
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Theorem 2. Let Ω be a bounded domain in R3

with continuous boundary ∂Ω and s ∈ (
3

4
, 1).

Further, let K : R3 \ {0} → (0,+∞) be a func-
tion satisfying assumptions (1.2) and (1.3). Let
f ∈ C(Ω×R) satisfies the conditions (f0)− (f4)
and f(x,−t) = −f(x, t) for all (x, t) ∈ Ω × R.
Then, for any λ ∈ R, the problem (1.1) has in-
finitely many solutions uj ∈ X0, j ∈ N, whose
energy JK,λ(uj)→ +∞ as j → +∞.

In order to study problem (1.1), we consider
the Euler-Lagrange equation of energy functional
JK,λ : X0 → R defined as

JK,λ(u) :=
a

2
||u||2X0

+
b

4
||u||4X0

− λ

2

∫
Ω

|u(x)|2dx−
∫
Ω

F (x, u(x))dx. (1.5)

2 Some preliminary results

Now, we recall some basic results on the spaces
X and X0. In the sequel we set Q = R6 \ O,
where O = CΩ× CΩ ⊂ R6.

The space X is endowed with the norm defined
as

||g||X = ||g||L2(Ω)

+
(∫
Q

|g(x)− g(y)|2K(x− y)dxdy
)1/2

. (2.1)

It is easily seen that ||.||X is a norm on X (see,
for instance, [3] for a proof). Futhermore, X0 is
endowed with norm

||g||X0

=
( ∫
R3×R3

|g(x)− g(y)|2K(x− y)dxdy
)1/2

,

(2.2)

and (X0, ||.||X0
) is a Hilbert space (see [3],

Lemma 7), with scalar product

< u, v >X0
=

∫
R3×R3

(u(x)− u(y))

× (v(x)− v(y))K(x− y)dxdy. (2.3)

In the following we denote Hs(Ω) the usual frac-
tional Sobolev space endowed with norm (the so-
call Gagliardo norm)

||g||Hs(Ω) = ||g||L2(Ω)

+
( ∫

Ω×Ω

|g(x)− g(y)|2

|x− y|3+2s
dxdy

)1/2

. (2.4)

We recall that the space X0 is nonempty (see
Lemma 5.2 [1]). Finally, we recall that the eigen-
value problem driven by −LK , namely{

−LKu = λu in Ω,

u = 0 in R3 \ Ω.
(2.5)

We know that (2.5) [2] possesses a divergent se-
quence of positive eigenvalues

λ1 < λ2 < · · · ≤ λk ≤ λk+1 ≤ . . . ,

whose corresponding eigenfunctions will be de-
noted by ek, each eigenvalue λk has finite mul-
tiplicity. By Proposition 9 in [2], we know that
{ek}k∈N can be choosen in such a way that this
sequence provides an orthonormal basis in L2(Ω)
and an orthogonal basis in X0.

The following result due to Servadei-Valdioci
which give the characteristic for embedding from

X0 into Lν(R3), ν ∈ [1, 2∗s], 2
∗
s =

6

3− 2s
:

Lemma 1. [4] Let K : Rn \ {0} → (0,+∞) be
a function satisfying (1.2)- (1.3). Then, the fol-
lowing assertions hold true:
a) if Ω is a bounded domain with continuous
boundary, then embedding X0 ↪→ Lν(R3) is com-
pact for any ν ∈ [1, 2∗s);
b) the embedding X0 ↪→ Lν(R3) is continuous for
all ν ∈ [1, 2∗s].

From Lemma 1, we have embedding X0 ↪→
Lν(R3) is continuous for all ν ∈ [1, 2∗s]. Then
there exists the best constant

Sν = inf
v∈X0,v 6=0

∫∫
R3×R3

|v(x)− v(y)|2

|x− y|3+2s
dxdy( ∫

R3

|v(x)|νdx
)2/ν

. (2.6)
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We have

< J
′

K,λ(u), ϕ >= (a+ b||u||2X0
)×∫

R3×R3

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dxdy

−
∫
Ω

f(x, u(x))ϕ(x)dx− λ
∫
Ω

u(x)ϕ(x)dx.

Certainly, solutions of problems (1.1) is critical
point of the energy function JK,λ.

3 Proof of Theorem 2

In [5, 6], Cerami introduced the so-called Cerami
condition, as a weak version of the Palais-Smale
assumption. With our notation, it can be written
as follows:

Cerami condition. The function JK,λ satis-
fies the Cerami compactness condition at level
c ∈ R if any sequence {uj}j∈N in X0 such that
JK,λ(uj) → c and (1 + ||uj ||X0

) sup||ϕ||X0
=1 | <

J ′K,λ(uj), ϕ > | → 0, admits a strongly conver-
gent subsequence in X0.

We show that JK,λ satisfies the Cerami condi-
tion.

Lemma 2. Let f : Ω×R→ R be a function ver-
ifying conditions (f0)− (f4). Then JK,λ satisfies
the Cerami condition at level c ∈ R.

Proof. Let c ∈ R and {uj}j∈N be a Cerami se-
quence in X0, that is {uj}j∈N satisfying

JK,λ(uj) =
a

2
||uj ||2X0

+
b

4
||uj ||4X0

− λ

2

∫
Ω

|u(x)|2dx−
∫
Ω

F (x, uj(x))dx→ c,

(3.1)

(1 + ||uj ||X0
) sup
||ϕ||X0

=1

{| < J ′K,λ,0(uj), ϕ > |} → 0

(3.2)

as j →∞. Hence

c = JK,λ(uj) + o(1). (3.3)

From (3.2) and (3.3), we see

sup
||ϕ||X0

=1

{| < J ′K,λ(uj), ϕ > |} → 0, (3.4)

and

||uj ||X0
sup

||ϕ||X0
=1

{| < J ′K,λ(uj), ϕ > |} → 0

(3.5)

as j → +∞. Since

| < J ′K,λ(uj), uj > |
≤ ||uj ||X0 sup

||ϕ||X0
=1

{| < J ′K,λ(uj), ϕ > |},

we also have that

< J ′K,λ(uj), uj >= o(1), (3.6)

where o(1)→ 0, as j →∞. We have

4JK,λ(uj)− < J ′K,λ(uj), uj > (3.7)

= a||uj ||2X0
− λ

∫
Ω

|uj(x)|2dx

+

∫
Ω

(
f(x, uj(x))uj(x)− 4F (x, uj(x))

)
dx.

First, we show that the sequence {uj}j∈N is
bounded in X0. Conversly, if {uj}j∈N is un-
bounded in X0, that is, suppose that, up to a
subsequence, still denoted by {uj}j∈N,

||uj ||X0
→ +∞. (3.8)

For any j ∈ N, we take

vj =
uj

||uj ||X0

. (3.9)

Therefore ||vj || = 1, so {vj}j∈N is bounded. By
Lemma 1, up to a subsequence, there exists v∞
such that

vj → v∞ in L2(R3), (3.10)

vj → v∞ in Lq(R3), (3.11)

vj → v∞ in R3 (3.12)

as j →∞. Futhermore, by Lemma A.1 [7], there
exists l ∈ Lq(R3) such that

{|v∞(x)|, |vj(x)|} ≤ l(x) in R3 (3.13)

for all j ∈ N. Next, we consider two cases when
v∞ ≡ 0 and v∞ 6≡ 0.
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Case 1. Suppose that

v∞ ≡ 0. (3.14)

For any j ∈ N, there exists tj ∈ [0, 1] such that

JK,λ(tjuj) = max
t∈[0,1]

JK,λ(tuj). (3.15)

From (3.8), for any m ∈ N, we choose rm =

4

√
8m

b
such that

rm||uj ||−1
X0
∈ (0, 1), (3.16)

provided j is large enough, say j > j, with
j = j(m). From (3.10) and (3.14), we have∫

Ω

|rmvj(x)|2dx→ 0. (3.17)

By the continuity of the function F, we get that

F (x, rmvj(x))→ F (x, rmv∞(x)) on Ω (3.18)

as j → ∞, for any m ∈ N. By (f0) and (3.13),
using Hölder inequality, we have

|F (x, rmvj(x))| ≤ C(|rmvj(x)|+ |rmvj(x)|q)
≤ C(|rml(x)|+ |rml(x)|q) ∈ L1(Ω),

(3.19)

for any m, j ∈ N. Therefore, from (3.18), (3.19)
and the Dominated Convergence Theorem lead
to that

F (., rmvj(.))→ F (., rmv∞(.)) in L1(Ω) (3.20)

as j → ∞, for any m ∈ N. Because F (x, 0) = 0
for all x ∈ Ω, from (3.14) and (3.20), we have∫

Ω

F (x, rmvj(x))dx→ 0 (3.21)

as j → ∞, for any m ∈ N. Denote vj,m = rmvj ,

we have ||vj,m||2X0
=
∣∣∣∣∣∣ 4

√
8m

b
wj

∣∣∣∣∣∣2
X0

=

√
8m

b
,

as well as ||vj,m||4X0
=

8m

b
. Hence, from (3.16)-

(3.18) and (3.21), we get

JK,λ(tjuj) ≥ JK,λ(rm||uj ||−1
X0
uj)

=
a

2
||rmvj ||2X0

+
b

4
||rmvj ||4X0

− λ

2

∫
Ω

|rmvj(x)|2dx

−
∫
Ω

F (x, rmvj(x))dx ≥ 2m− λ

2

∫
Ω

|rmvj(x)|2dx

−
∫
Ω

F (x, rmvj(x))dx ≥ m,

for all j large enough and for any m ∈ N. Thus,
we deduce that

JK,λ(tjuj)→ +∞ (3.22)

as j → +∞.We note that JK,λ(0) = 0 and (3.1)
holds, combining with (3.22), we see that there
exists tj ∈ (0, 1) and so by (3.15), we obtain

d

dt

∣∣∣
t=tj
JK,λ(tuj) = 0

for any j ∈ N. We have

< J ′K,λ(tjuj), tjuj >= tj
d

dt

∣∣∣
t=tj
JK,λ(tuj) = 0.

(3.23)

We show that

lim sup
j→∞

JK,λ(tjuj) ≤ κ (3.24)

for a suitable positive constant. From (3.23), we
get

4

γ∗
JK,λ(tjuj)

=
1

γ∗
(4JK,λ(tjuj)− < J ′K,λ(tjuj), tjuj >)

=
1

γ∗
(a||tjuj ||2X0

− λ
∫
Ω

|tjuj(x)|2dx)

+
1

γ∗

(∫
Ω

(f(x, tjuj(x))tjuj(x)− 4F (x, tjuj(x)))dx
)

=
1

γ∗
(a||tjuj ||2X0

− λ
∫
Ω

|tjuj(x)|2dx)

+
1

γ∗

∫
Ω

G(x, tjuj(x))dx.
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By (f3), we have

4

γ∗
JK,λ(tjuj)

≤ 1

γ∗
(a||tjuj ||2X0

− λ
∫
Ω

|tjuj(x)|2dx)

+

∫
Ω

G(x, uj(x))dx+

∫
Ω

W (x)dx

=
1

γ∗
(a||tjuj ||2X0

− λ
∫
Ω

|tjuj(x)|2dx)

+

∫
Ω

(
uj(x)f(x, uj(x))− 4F (x, uj(x))

)
dx

+

∫
Ω

W (x)dx.

Using above inequality and (3.7), we get

4

γ∗
JK,λ(tjuj)

≤ 1

γ∗
(a||tjuj ||2X0

− λ
∫
Ω

|tjuj(x)|2dx)

− (a||uj ||2X0
− λ

∫
Ω

|uj(x)|2dx)

+ 4JK,λ(uj)− < J ′K,λ(uj), uj > +

∫
Ω

W (x)dx.

Note that

1

γ∗
(a||tjuj ||2X0

− λ
∫
Ω

|tjuj(x)|2dx)

− (a||uj ||2X0
− λ

∫
Ω

|uj(x)|2dx)

= (
t2j
γ∗
− 1)(a||uj ||2X0

− λ
∫
Ω

|uj(x)|2dx)

≤ (
t2j
γ∗
− 1)BK,λ,0||uj ||2X0

≤ 0,

where (see [2], Lemma 16)

BK,λ =


a if λ ≤ 0

a− λ

λ1
if 0 <

λ

a
< λ1

a− λ

λk+1
if λk ≤

λ

a
< λk+1.

Hence we have
4

γ∗
JK,λ(tjuj)

≤ 4JK,λ(uj)− < J ′K,λ(uj), uj >

+

∫
Ω

W (x)dx→ 4c+

∫
Ω

W (x)dx = κ < +∞

as j → ∞, thanks to (3.1) and (3.4). This con-
tradicts with (3.22). Therefore, we get that the
sequence {uj}j∈N is bounded in X0.

Case 2. Suppose that

v∞ 6≡ 0. (3.25)

Then the set Ω′ = {x ∈ Ω : v∞(x) 6= 0} has
positive Lebesgue measure and

|uj(x)| = |vj(x)||uj ||X0 → +∞ on Ω′ (3.26)

as j → ∞, thanks to (3.8), (3.9), (3.12) and
(3.25). By (f2) and (3.26), we have

lim
j→∞

f(x, uj(x))

u3
j (x)

→ +∞

in Ω′. Hence, by Fatou’s Lemma, we get

lim
j→∞

∫
Ω′

f(x, uj(x))

u3
j (x)

|vj(x)|4dx→ +∞ (3.27)

as j → +∞. On the other hand, taking into ac-
count that f is a continuous function, it is easy
to see that∫
Ω\Ω′

f(x, uj(x))

u3
j (x)

|vj(x)|4dx ≥ − B2

||uj ||4X0

|Ω \ Ω′|,

(3.28)

where B2 > 0 is a constant. Therefore, from
(3.28) and (3.27), we obtain

lim
j→∞

∫
Ω

f(x, uj(x))uj(x)

||uj ||4X0

dx = +∞. (3.29)

By (3.8) and (3.6), we have
< J ′K,λ(uj), uj >

||uj ||4X0

→

0. This implies

a

||uj ||2X0

+ b−
∫
Ω

f(x, uj(x))uj(x)

||uj ||4X0

dx =
o(1)

||uj ||4X0

(3.30)
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as j →∞. From (3.29) and (3.30), we get a con-
tradiction. Thus, the sequence {uj} is bounded
in X0.

Step 2. The property Cerami compactness con-
dition of {uj}. Since {uj}j∈N is bounded inX0 by
Step 1 and X0 is a reflexive space (being Hilbert
space, by Lemma 7 in [3]), up to a subsequence,
still denote by {uj}j∈N, there exist u∞ ∈ X0 such
that∫
R6

(uj(x)− uj(y))(ϕ(x)− ϕ(y))K(x− y)dxdy →

∫
R6

(u∞(x)− u∞(y))(ϕ(x)− ϕ(y))K(x− y)dxdy

(3.31)

for any ϕ ∈ X0 as j →∞. Moreover, by Lemma
1, up to a subsequence, we have

uj → u∞ in Lq(R3) (3.32)

uj → u∞ in R3

as j → +∞ and apply to Lemma A.1 in [7], there
exists l ∈ Lq(R3) such that

{|u∞(x)|, |uj(x)|} ≤ l(x) (3.33)

for all x ∈ R3 and for any j ∈ N. By (f0) con-
dition, (3.32)-(3.33), the fact that t 7→ f(., t) is
continuous in t ∈ R and the Dominated Conver-
gence Theorem, we get∫

Ω

f(x, uj(x))(uj(x)− u∞(x))dx (3.34)

+ λ

∫
Ω

uj(x)(uj(x)− u∞(x))dx→ 0. (3.35)

We see {uj − u∞} is bounded sequence in X0,
then we have

< J
′

K,λ(uj), uj − u∞ >→ 0. (3.36)

Therefore

0←< J ′K,λ(uj), uj − u∞ >

=< a(uj), uj − u∞ >

−
∫
Ω

f(x, uj(x))(uj(x)− u∞(x))dx

− λ
∫
Ω

uj(x)(uj(x)− u∞(x))dx, (3.37)

where

< a(uj), uj − u∞ > (3.38)

:=
(∫
R6

|uj(x)− uj(y)|2K(x− y)dxdy

−
∫
R6

(uj(x)− uj(y))(u∞(x)− u∞(y))K(x− y)dxdy
)

×
(
a+ b

∫
R6

|uj(x)− uj(y)|2K(x− y)dxdy
)
.

(3.39)

Note that a > 0, combining (3.36)-(3.38) and
(3.31), we have

lim
j→∞

∫
R6

|uj(x)− uj(y)|2K(x− y)dxdy

= lim
j→∞

∫
R6

(uj(x)− uj(y))(u∞(x)− u∞(y))K(x− y)dxdy

=

∫
R6

|u∞(x)− u∞(y)|2K(x− y)dxdy.

Then we obtain

||uj ||X0
→ ||u∞||X0

(3.40)

as j →∞. Finally, from (3.40) and property con-
tinuous of scalar product < ., . > in X0×X0, we
have

||uj − u∞||2X0
=< uj − u∞, uj − u∞ >

= ||uj ||2X0
+ ||u∞||2X0

− 2 < uj , u∞ >

→ 2||u∞||2X0

− 2

∫
R3×R3

|u∞(x)− u∞(y)|2K(x− y)dxdy = 0

as j → ∞. This implies uj → u0 strongly con-
vergent in X0.

Following the notation used by Bartsch [8] (see
Theorem 2.5), in the sequel for any k ∈ N, we
put

Yk := span{e1, . . . , ek} and Zk := span{ek, ek+1, . . . }.
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Since Yk is finite-dimensional, all norms on Yk
are equivalent. Therefore, there exist two posi-
tive constants Ck,q and C̃k,q, depending on k, q,
such that for any u ∈ Yk

Ck,q||u||X0
≤ ||u||Lq(Ω) ≤ C̃k,q||u||X0

(3.41)

for all q ∈ [1, 2∗s].

The Fountain Theorem provides the existence of
an unbounded sequence of critical value for a
smooth functional, under suitable compactness
condition and geometry assumption on it, which,
in our framework, read as follows:

(i) ak := max
{
JK,λ(u) : u ∈ Yk, ||u||X0 =

rk

}
≤ 0,

(ii) bk := inf
{
JK,λ(u) : u ∈ Zk, ||u||X0

=

αk

}
→∞ as k →∞.

Now, we prove the Theorem 2. The idea consists
in applying the Fountain Theorem. By Lemma 2,
we see that JK,λ satisfies the Palais-Smale con-
dition and condition f(x,−t) = −f(x, t) for all
(x, t) ∈ Ω × R implies JK,λ(−u) = JK,λ(u) for
any u ∈ X0. Then, it remains to show the ge-
ometry condition for the function JK,λ. To this
purpose, let us proceed by steps.

Step 1. For any k ∈ N, there exists rk > 0 such
that

ak := max{JK,λ(u) : u ∈ Yk, ||u||X0 = rk} ≤ 0.

By (f2), for any r > 0, there exists δr > 0 such
that

f(x, t) ≥ 4r|t|3 (3.42)

for any x ∈ Ω, |t| > δr. For t > δr, we have

F (x, t) =

t∫
0

f(x, τ)dτ ≥ r|t|4

for all x ∈ Ω. For t < −δr, we have −t > δr, and
F (x,−t) = F (x, t) since f(x,−t) = −f(x, t),
then we get

F (x, t) ≥ r|t|4

for all x ∈ Ω and |t| > δr. By the Weierstrass
Theorem, we see that

F (x, t) ≥ mr := min
x∈Ω,|t|≤δr

F (x, t) (3.43)

for all |t| ≤ δr. Note thatmr ≤ 0, since F (x, 0) =
0 for any x ∈ Ω. Thus, from (3.42) and (3.43),
we have

F (x, t) ≥ r|t|4 −Br

for any (x, t) ∈ Ω× R, for suitable positive con-
stant Br ≥ rδ4

r −mr. Hence, for any u ∈ Yk, we
have

JK,λ(u) ≤ a

2
||u||2X0

− λ

2
||u||2L2(Ω) +

b

4
||u||4X0

− r||u||4L4(Ω) +Br|Ω|

≤ Dk,λ||u||2X0
+
b

4
||u||4X0

− r||u||4L4(Ω) +Br|Ω|

≤ Dk,λ||u||2X0
+ (

b

4
− rCk,4)||u||4X0

+Br|Ω|,

where Dk,λ is a constant depending on k, λ. We

choose r large enough such that
b

4
− rCk,4 < 0,

we get that for any u ∈ Yk with ||u||X0
= rk,

JK,λ(u) ≤ 0

for rk large enough, where rk depends on r.

Step 2.[9, 10] Let 1 ≤ q < 2∗ and, for any k ∈ N,
let

βk := sup{||u||Lq(Ω) : u ∈ Zk, ||u||X0
= 1}.

Then βk → 0 as k →∞.

Step 3. There exists αk > 0 such that

bk := inf{JK,λ(u) : u ∈ Zk, ||u||X0
= αk} → +∞

as k → +∞. We have

JK,λ(u) =
a

2
||u||2X0

+
b

4
||u||4X0

− λ

2

∫
Ω

|u(x)|2dx−
∫
Ω

F (x, u(x))

≥ a

2
||u||2X0

+
b

4
||u||4X0

− λ

2

∫
Ω

|u(x)|2dx

− h
∫
Ω

|u(x)|2dx− C2

∫
Ω

|u(x)|qdx.
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Then

JK,λ(u) (3.44)

≥ C∗K,λ||u||2X0
+
b

4
||u||4X0

− C2

∫
Ω

|u(x)|qdx

≥ C∗K,λ||u||2X0
− C2||u||qLq(Ω)

= C∗K,λ||u||2X0
− C2||

u

||u||X0

||qLq(Ω)||u||
q
X0
.

Hence, we get

JK,λ(u) ≥ C∗K,λ||u||2X0
− C2βk

q||u||qX0
, (3.45)

where βk is defined in Step 2. We define αk as

αk =
(2C∗K,λ
qC2β

q
k

)1/(q−2)

.

Therefore αk → +∞ as k →∞. Note that q > 2,
then for any ||u||X0

= αk, we have

JK,λ(u) ≥ ||u||2X0
(C∗K,λ − C2βk

q||u||q−2
X0

)

= (1− 2

q
)C∗K,λα

2
k → +∞

as k → ∞. Hence, all the geometric features of
the Fountain Theorem are satisfied, then JK,λ
has an unbounded sequence of critical values
which are solutions of problems (1.1).

Conclusion. In this paper, we prove the exis-
tence of weak solution to a Kirchhoff problem
involving fractional Laplace. Our nonlinear func-
tion does not satisfy the Ambrosetti-Rabinowitz
condition. In order to prove our result, we use
the Fountain Theorem and the technique of vari-
ational method in fractional Sobolev space.
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