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ON EXISTENCE OF INFINITELY MANY WEEK SOLUTIONS
TO A FRACTIONAL KIRCHHOFF PROBLEM
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ABSTRACT
In this paper, we consider the following nonlocal problem:

—(a+bllulli,)Lru = fz,u) + I in Q,
u =0 in R3\ ,

where 1 is a real parameter and Q is an open bounded subset of R3 with Lipschitz
boundary 0Q, s € (3/4, 1), and the term f is a continuous function satisfying some
suitable conditions. Using Fountain Theorem and variational method in fractional Sobolev
space, we prove that there exist infinitely many weak solutions with unbounded energy
to above problem.
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TOM TAT
Trong bai bao bay, chiing t6i nghién ctru sy ton tai vo han nghiém yéu cia bai toan Kirchhoff chta
toan tir vi tich phan:

{(a +bl[ull},)Lxu = f(x,u)+ Auin €,

u =0 in R3\
trong d6 A 1a tham s6 thyc va Q 1 mot mién mé bi chin trong R3 vai bién 6Q Lipschitz, s € (3/4,
1), f 1a ham lién tuc théa man mot sé diéu kién thich hop. St dung Pinh 1y Fountain va phuong
phép bién phén trong khong gian Sobolev thir, chiing t6i chimg minh sy ton tai v6 han nghiém yéu
v6i nang lugng khong bi chan cua bai toan trén.
Tir khéa: Todn tir Laplace thir, dinh Iy Fountain; bai todn kiéu Kirchhoff: diéu kién Cerami.
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1 Introduction and main re-
sult

In this paper, we consider the following nonlocal
problem:
—(a+bllull%k,) Lrxu= f(z,u)+IuinQ,
u =0 in R3\ Q,

where A is a real parameter, and 2 is an open
bounded subset of R® with Lipschitz boundary
0, s € (3/4,1), and the term f is a continuous
function verifying the conditions stated in the
sequel. Moreover, a,b denote two positive real
constants and

ul %, = / () — u(y) 2K (z — y)dady.
R6

The Lk is the integrodifferential operator which
is defined as following;:

Lru(x):= /(u(m +y) +u(z —y)
RB

—2u(2))K (y)dy, =€ R?, (1.1)

where the kernel K : R?\ {0} — (0, +00) is such
that

mK € L'(R?), where m(z) = min{|z|?, 1},
(1.2)

and there exists 6 > 0 such that

K(z) > flz|~G+29) (1.3)
for any z € R\ {0}. A model for K is given
by the singular kernel K (z) = |z|~(*2%) which
gives rise to the fractional Laplace operator
—(—=A)*, that may defined (up to a normalizing
constant) by the Riesz potential as follows:

= (=4)%u(z)

_ [ ule+y) +ule—y) - ()
-/ Miae dy

R3

for any x € R3.

Definition 1. We say that v € X is a weak
solution of problem (1.1) if

/ (u() — u(y))
R3 xXRR3
(r) — o(y)) K (z — y)drdy

x (¢
:/f(x,u(m))go(x)dw+)\/U($)90($)d$
)

Q

(a+blullk,)

for any ¢ € Xj. Here, the space X is defined by
Xo:={geX:g=0inz cR*\Q},

where the functional space X denotes by the lin-
ear space of Lebesgue measurable functions from
R3 to R such that the restriction of any function
g in X to Q belong to L?(£2) and the map

(z,y) = (9(=) — 9(y)) vV K(z —y)

is in L2((R? x R3?) \ (CQ x CQ),dxdy), CQ :
RS\ Q.

¢
We denote F(xz,t) := [ f(z,7)dr and G(z,t) =
0
f(z,t)t —4F (z,t), for all (z,t) € Q@ x R.

We assume that f € C(Q x R) satisfies following
conditions hold:

(fo) There exists a positive constant C' such that

)] < O+ 1971), ¥(a,t) € QxR

3— 23);
(f1) tf(x,t) > 0in Q x R;

f(z,1)
3

for some g € (4,

(f2) limy— 400 = +oo, uniformly in z €

Q.

(f3) There exists v, > 1 and W € L1(Q) satisfy-
ing W(z) > 0 for all z € Q, such that

for all x € Q and 0 < |s] < [¢].

(1.4)

(f4) There is § > 0 such that
F(z,t) < ht?,

for every x € Q and t € (—0,0), where h # 0 is
a real number.

Our result is given as follows:
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Theorem 2. Let Q be a bounded domain in R®

with continuous boundary 0 and s € (1,1).
Further, let K : R®\ {0} — (0,+00) be a func-
tion satisfying assumptions (1.2) and (1.3). Let
[ € C(QxR) satisfies the conditions (fo) — (f1)
and f(x,—t) = —f(x,t) for all (z,t) € @ x R.
Then, for any A\ € R, the problem (1.1) has in-
finitely many solutions u; € Xo,j € N, whose

energy Jra(u;) = 400 as j — +00.

In order to study problem (1.1), we consider
the Euler-Lagrange equation of energy functional
Jk .+ Xo — R defined as

a
Tra(u) = 5”““%(0 + 1”“”31(0

—%/|u(x)|2dz—/F(x,u(x))da:. (1.5)
Q Q

2 Some preliminary results

Now, we recall some basic results on the spaces
X and Xp. In the sequel we set Q@ = RS\ O,
where O = CQ x CQ C RS.

The space X is endowed with the norm defined
as

gllx = llgllz2(o
/\9

It is easily seen that ||.||x is a norm on X (see,
for instance, [3] for a proof). Futhermore, Xy is
endowed with norm

V2K (z - )dxdy)l/ *(@2)

In the following we denote H®(2) the usual frac-
tional Sobolev space endowed with norm (the so-
call Gagliardo norm)

HgHHs(m = Hg||L2(Q)

lg(x) — g(y)|? 1/2
+ ( 7@ EpWERER d:cdy) .
QxQ

(2.4)

We recall that the space X is nonempty (see
Lemma 5.2 [1]). Finally, we recall that the eigen-
value problem driven by —Lg, namely

—/.:Ku
u

We know that (2.5) [2] possesses a divergent se-
quence of positive eigenvalues

= Au in €,

=0 inR3\Q. (2:5)

A <A< <A< A1 £

whose corresponding eigenfunctions will be de-
noted by eg, each eigenvalue A\; has finite mul-
tiplicity. By Proposition 9 in [2], we know that
{ex }ren can be choosen in such a way that this
sequence provides an orthonormal basis in L?(€2)
and an orthogonal basis in Xj.

The following result due to Servadei-Valdioci
which give the characteristic for embedding from

6
Xo into L¥(R3),v € [1,27],2 = o5

Lemma 1. [{] Let K : R™ \ {0} — (0,400) be
a function satisfying (1.2)- (1.3). Then, the fol-
lowing assertions hold true:

a) if Q is a bounded domain with continuous
boundary, then embedding Xo — L"(R3) is com-
pact for any v € [1,2%);

lgllx, 12 b) the embedding Xo — L”(R3) is continuous for
= ([ o) - g@PK (e —yydady) T, allv € [L2].
R3 xR3
(2.2) From Lemma 1, we have embedding X, —
) i L¥(R3) is continuous for all v € [1,2]. Then
and (XO’H'H.Xo) is a Hilbert space (see [3], there exists the best constant
Lemma 7), with scalar product
[v(z) —v(y)?
7d d
<uvsx= [ () ) itk g
R3 YRS Sl/ == ’Ue)l(nf:u#o 20 . (26)
" ([ (@)l
X (v(z) —v(y) K(z —y)dedy.  (2.3) RS
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We have
< Trea (), 0 >= (a+bl|ul[%,)x

/‘wu»—waﬂw—w@»Km—

R3 xR3
/f (x,u(x

Certainly, solutions of problems (1.1) is critical
point of the energy function Jk x.

y)dxdy

(x)dx — A/u(m)ap(x)dac.

Q

3 Proof of Theorem 2

In [5, 6], Cerami introduced the so-called Cerami
condition, as a weak version of the Palais-Smale
assumption. With our notation, it can be written
as follows:

Cerami condition. The function Jg ) satis-
fies the Cerami compactness condition at level
¢ € R if any sequence {u;} en in Xo such that
T a(u;) = ¢ and (1 + [Jujl[x,) sup ) =1 <
Tk a(uj), ¢ > | = 0, admits a strongly conver-
gent subsequence in Xj.

We show that Jk,» satisfies the Cerami condi-
tion.

Lemma 2. Let f : QxR — R be a function ver-
ifying conditions (fo) — (f4). Then Jk x satisfies
the Cerami condition at level ¢ € R.

Proof. Let ¢ € R and {u;};en be a Cerami se-
quence in X, that is {u;};en satisfying

T a(ug) = HUJHXO il
77/|u 2d:z:f/ (x,uj(z))dz — c,
(3.1)
(1“"Huj||Xo)H Sup_ A< Tieolug) o> 1} =0
Pllxg=

(3.2)
as j — oo. Hence

¢ = Jr(u;) + o(1). (3.3)

From (3.2) and (3.3), we see
sup {] < Tga(u;), 0> 1} =0, (3.4)
el x=1
and
[lujllx, sup {| < Tk alug), o> 1} =0

lellxo=

(3.5)
as j — +o00. Since
| < Tgea(ug),ug > |

sup {‘ < JII(,A(UJ')ND > |}7
[lellxq=1

< lwjllxo

we also have that

< Tk alug),uy >=o(1), (3.6)
where o(1) — 0, as j — oo. We have
ATk A (ug)— < Tge a(ug),uy > (3.7)

:ammzfA/wmm%z
Q

+/<f($,’LLj(l'))Uj((E)—4F(x,uj(l-))>dx.

Q

First, we show that the sequence {u;}jen is
bounded in X,. Conversly, if {u;}jen is un-
bounded in Xy, that is, suppose that, up to a
subsequence, still denoted by {u;};en,

|| x5 = +o0. (3.8)
For any j € N, we take
uj
v = ——. 3.9
' il (39
Therefore ||v;|| = 1, so {v;};en is bounded. By

Lemma 1, up to a subsequence, there exists v
such that

v; — Voo in L*(R?), (3.10)
v; — Vs in LI(R?), (3.11)
vj — Voo in R? (3.12)

as j — oo. Futhermore, by Lemma A.1 [7], there
exists [ € L(R3) such that

{lvse (@)1, [vj(z)|} < I(x) in R?

for all j € N. Next, we consider two cases when
Uso = 0 and vy, Z 0.

(3.13)
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Case 1. Suppose that
Voo = 0. (3.14)
For any j € N, there exists t; € [0,1] such that

Tra(tjuy) = trél[g}f] T (tuy). (3.15)

)

From (3.8), for any m € N, we choose r,, =

\/ STm such that

rmlus]|xh € (0,1), (3.16)

provided j is large enough, say j > j, with
j = j(m). From (3.10) and (3.14), we have

/\rmvj(z)|2dx 0. (3.17)
Q

By the continuity of the function F, we get that
F(z,rmvj(z)) = F(z, rmus(x)) on @ (3.18)

as j — oo, for any m € N. By (fp) and (3.13),
using Holder inequality, we have

|F (2, rmoj (2))] < C(|rmvj(@)] + [rmo;(2)|)
|

< Clrml(@)] + [rml(2)|7) € L(9),

(3.19)

for any m,j € N. Therefore, from (3.18), (3.19)
and the Dominated Convergence Theorem lead
to that

F(,rmvi(.)) = F(,rmvse(.)) in LH(Q) (3.20)

as j — oo, for any m € N. Because F(z,0) =0
for all x € Q, from (3.14) and (3.20), we have

/F(a:7 rmvj(z))dz — 0 (3.21)

Q
as j — oo, for any m € N. Denote v, = 7,05,

./ 8m 2 8m
o

8
as well as [[vjm|%, = Tm Hence, from (3.16)-

we have ||Uj,m”%(o = x o
0

(3.18) and (3.21), we get
jK’/\(tjU]) > jK,A(rmHujH;(iuj

)
a b A
= Sl + Fllrmusliy, = 5 [ lrmvs(a)Pda
Q
- /F(sr:,rmvj(a:))dx >2m — %/|vaj(x)|2dx
Q Q
- /F(m,rmvj(x))dx > m,
Q

for all j large enough and for any m € N. Thus,
we deduce that

Tra(tjuj) = +oo (3.22)
as j — +o00. We note that Jx »(0) = 0 and (3.1)
holds, combining with (3.22), we see that there
exists ¢t; € (0,1) and so by (3.15), we obtain

d

% jK7)\(t’UJj):O

t=t;

for any j € N. We have

d
< T a(tjug) tju; >= tj%‘t,t.jfﬂ(t“j) =0.
(3.23)

‘We show that

limsup Tk (tjuj) < K (3.24)

j—o0
for a suitable positive constant. From (3.23), we

get

4
—Tr(tjuy)

*

1
= —(4Tx A(tjus)— < Tgex(tjug), tju; >)

*

7ia‘u'2* wi(x)|?dx

= —(alltyll, AQ/uj 1 (@)[?da)
1

+ %(Q/(f(x,tjuj(x))tjuj(x) — 4F(:L'7tju](x)))d1-)

1
= el = A [ 1) )

Q
1
+ V/G(x,tjuj(x))dm.
"
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By (f3), we have
4
— T a(tju;
~Taltyw)

1
< —lalltyus B, =) [ tgus()Pdo)
Q

+/G(x7uj(sc))dx+/W(x)dm
) o)

1
= ~alltiuglf, = [ ltjus(o)Pd)
Q

*

+ (@) f (2 u () — 4F(ir,uj(x))>d:z:

+ [ W(x)dx

SR

Using above inequality and (3.7), we get
4
—Tra(tjug)

1
< laltyus B, =) [ tgus(a)Pdo)
Q

~ g, = [ us(e)de)
Q

ATk () < Ther (), u; > +/W(x)da¢.

Q

Note that

1
~—(alltyus e, = A [ Ity (o))
Q

—wwm&b—A/mxmﬁm>
Q

Ya
+2
< (73 _
Y

*

:@ifnmwmafA/mmm%m
Q

1) B xollusllk, <0,

where (see [2], Lemma 16)

Hence we have
4
ajK,A(tjuj)
< 4Tk A (uj)—

+ /W(x)da: —dc+ / W(z)dr = Kk < +00

< jI/ﬂA(uj)vuj >

as j — oo, thanks to (3.1) and (3.4). This con-
tradicts with (3.22). Therefore, we get that the
sequence {u;};en is bounded in Xj.

Case 2. Suppose that
Voo Z 0.

Then the set Q' = {z € Q :
positive Lebesgue measure and

(3.25)
Voo(x) # 0} has

[wj ()] = [v; (@)|lu;][x, = +000n Q" (3.26)

as j — oo, thanks to (3.8), (3.9), (3.12) and
(3.25). By (f2) and (3.26), we have

i 0 @)

j—oo u?(m)

— +00

in Q. Hence, by Fatou’s Lemma, we get

rm/fmwg”u<wmﬁ+m

(3.27)
as j — +o00. On the other hand, taking into ac-
count that f is a continuous function, it is easy
to see that

/ f(w’uj(x))|v](z)|4d:c > _

2\ &,
uj(z) | g\l4

Q\Q/
(3.28)

where By > 0 is a constant. Therefore, from
(3.28) and (3.27), we obtain

facuj u; ()

dr = +oo.
IIWH

lim
j~>oo

(3.29)

By (3.8) and (3.6), we have

;]
0. This implies
‘ A0 () () 0
A A z, uj(z 4
_ ; -~ +b— dr =
Bia={ 973 lm<a;A1 nm% mm% ;1%
a — A, < —< )\k+1~ (330)
k+1 a
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as j — oo. From (3.29) and (3.30), we get a con-
tradiction. Thus, the sequence {u;} is bounded
in Xo.

Step 2. The property Cerami compactness con-
dition of {u;}. Since {u; };en is bounded in X by
Step 1 and X is a reflexive space (being Hilbert
space, by Lemma 7 in [3]), up to a subsequence,

still denote by {u; } jen, there exist us € Xo such
that

/(Uj(x) —u; () (p(2) — p(Y)) K (x — y)dedy —

R6

/ (t100() — 100(1) (9(2) — 9(u)) K (& — y)ddly
“ (3.31)

for any ¢ € Xy as j — oo. Moreover, by Lemma
1, up to a subsequence, we have

Uj — Uso in LI(R?)

3
Uj = Us N R

(3.32)

as j — +o0o and apply to Lemma A.1 in [7], there
exists [ € L4(R?) such that

{luce(@)], [uj(2)[} < i(x)

for all x € R3 and for any j € N. By (fy) con-
dition, (3.32)-(3.33), the fact that ¢ — f(.,t) is
continuous in ¢t € R and the Dominated Conver-
gence Theorem, we get

/ £ (15 (2)) 145 (%) — oo ()
Q

(3.33)

(3.34)

+ /\/uj(x)(uj () — uoo(x))dz — 0. (3.35)
Q

We see {u; — ux} is bounded sequence in X,
then we have

< jf/(,k(uj)a Uj — Uoo > 0. (336)
Therefore
0++< jll(,k(uj)auj — Uoo >

=< a(u;), uj — Uo >

- / £ (2)) (115 () — t1oo ()t

Q
2 / wy (2) (5 (2) — oo (2))ds (3.37)
Q

where
< a(u;),u; — Uso > (3.38)
= ([ 10560) ~ w PR @ - y)dady
&
— [0) ~ 15 0) @) — e (0) K (@ )y
4

x (a+ b/ i () = s () 2K (@ — y)dady).

. (3.39)

Note that a > 0, combining (3.36)-(3.38) and
(3.31), we have

Jj—o00

lim / luj(z) — u, (y)|2K(x — y)dzdy
RG

= tim [ (u5(2) — 13(0)) (c() — e (0)) K (& — )iy
RG
- / 1o (2) — t1oe (9) 2K (2 — ) dzdy.
RG

Then we obtain

[lujllxo = [too|lx (3.40)

as j — co. Finally, from (3.40) and property con-
tinuous of scalar product < .,. > in Xy x Xg, we
have

[|u; —Uoo||%<0 =< Uj — Uso, Uj — Uoo >
= lu| %, + ool — 2 <, o >
— 2| |uoo|[%,

-2

R3 xR3

|thoo (%) — oo (y)|* K (z — y)dady = 0

as j — oo. This implies u; — ug strongly con-
vergent in Xj. O

Following the notation used by Bartsch [8] (see
Theorem 2.5), in the sequel for any k € N, we
put

Y := span{ey, ..

http://jst.tnu.edu.vn; Email: jst@tnu.edu.vn

139

.,er} and Zy := span{eg, €xy1,. .. }-



Pham Thi Thuy et al.

TNU Journal of Science and Technology

225(13): 133 - 141

Since Y} is finite-dimensional, all norms on Yj
are equivalent. Therefore, there exist two posi-
tive constants Cy 4 and Cy 4, depending on £, g,
such that for any u € Yy

Chr.qllullx, < lullLa@) < Crgllullx,  (3.41)

for all ¢ € [1,27%].

The Fountain Theorem provides the existence of
an unbounded sequence of critical value for a
smooth functional, under suitable compactness
condition and geometry assumption on it, which,
in our framework, read as follows:

(i) ap = max{JK,A(u) Cu € Yillullx, =
Tk} <0,
(i) by = inf {Tka(w) + u € Zpllullx, =

ozk}—>ooask—>oo.

Now, we prove the Theorem 2. The idea consists
in applying the Fountain Theorem. By Lemma 2,
we see that Jk x satisfies the Palais-Smale con-
dition and condition f(x,—t) = —f(x,t) for all
(z,t) € Q x R implies Jx (—u) = Tk a(u) for
any u € Xo. Then, it remains to show the ge-
ometry condition for the function Jk . To this
purpose, let us proceed by steps.

Step 1. For any k € N, there exists r; > 0 such
that

ag = max{Jx r(u) : u € Yy, ||ul|x, =k} < 0.

By (f2), for any r > 0, there exists §,, > 0 such
that

[ t) > drft? (3.42)

for any z € Q, |t| > §,.. For t > §,., we have
t
F(z,t) = /f(w,T)dT > rlt)*
0

for all x € Q. For t < —4,., we have —t > §,, and
F(z,—t) = F(z,t) since f(z,—t) = —f(z,t),
then we get

F(z,t) > rlt|*

for all z € Q and |t| > §,. By the Weierstrass
Theorem, we see that

F(z,t) > my,:= min F(z,t) (3.43)
z€Q,[t| <6,

for all [t| < 4. Note that m,. <0, since F'(x,0) =
0 for any = € Q. Thus, from (3.42) and (3.43),

we have
F(z,t) > rlt|* - B,
for any (z,t) € Q x R, for suitable positive con-

stant B, > rd* — m,.. Hence, for any u € Yz, we
have

a A b
Trealu) < Sllullk, — SllulBagm + 7llullk,
— rl|ul[f1 0y + B9

b
< Dallulli, + 7 llullx, = rllullzs @) + B9

b
< Diallull%, + (71— rCr,)lull, + B, 10,

where Dy, » is a constant depending on k, \. We

b
choose r large enough such that — —rCj 4 < 0,

we get that for any v € Yy, with ||u||x, = 7,
Trea(u) <0

for ry large enough, where r; depends on r.

Step 2.[9, 10] Let 1 < ¢ < 2* and, for any k € N,
let

B := sup{||ullLo(q) - u € Zg, [[ul|x, = 1}.

Then f, — 0 as k — oo.

Step 3. There exists ay > 0 such that
b == Inf{Tx r(u) : u € Zy,||ul|x, = ar} — +00

as k — +o00. We have

a b
Trea(w) = G llull%, + il

_ %/|u(a:)|2dx—/F($7u(m))
o Q

a 2 b 4 A 2
> Sllully, + 3k, = 5 [ futz) Pz
Q

—h/\u(x)|2dx—02/|u(x)|qczx.
Q Q
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Then
Trea(u)

. b
> Cicallulf, + ik, = Co [ lu(w)lvde
Q

(3.44)

> Cieallul%, — Callull?, 0
U
= Ci o ||ull%. — Col|——|¢ ul|% .
K,AH HXO ZHHuHXUHLq(Q)H ||X0
Hence, we get
Tra(u) > Cx s ull%, — Cof?l[ull%,, (3.45)
where §; is defined in Step 2. We define oy, as

B (20}‘(7)\)1/@—2)
ap = —-=%3 )
qc25k

Therefore a, — +00 as k — oo. Note that ¢ > 2,
then for any ||u||x, = ak, we have

* —2
Trea(w) > [|ul %, (Cren — C2Br?ull%,”)
2
= (1—>)Cxpai = 40
PR

as k — oo. Hence, all the geometric features of
the Fountain Theorem are satisfied, then Jgx
has an unbounded sequence of critical values
which are solutions of problems (1.1).

Conclusion. In this paper, we prove the exis-
tence of weak solution to a Kirchhoff problem
involving fractional Laplace. Our nonlinear func-
tion does not satisfy the Ambrosetti-Rabinowitz
condition. In order to prove our result, we use
the Fountain Theorem and the technique of vari-
ational method in fractional Sobolev space.
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