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ABSTRACT

In this paper, we introduce a new proximal algorithm for monotone variational inequality
problems in a general form in space R" with cost mappings are monotone, L-Lipschitz continuous
on the whole space R". The proposed algorithm involves only one proximal operator periteration
and combines proximal operators with the Halpern iteration technique. The strong convergence
result of the iterative sequence generated by the proposed algorithm is established, under mild
conditions, in space R".
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TOM TAT
Trong bai bao nay, ching t6i dua ra thuat todn méi cho bai toan bat dang thic bién phan don diéu
dudi dang mé rong trong khong gian R" v4i ham gia 1a don diéu, lién tuc L-Lipschitz trén toan
khong gian R". Thuét toan ma chiing toi dua ra chi bao gdm mat toan tir ké trong mdi budc lap va
1a su két hop gitta toan ti ké voi k¥ thuat lap Halpern. Sy hoi tu manh cua day 1dp sinh béi thuat
toan dugc thiét 1ap véi cac gia thiét thong thuong trong khong gian R”.
Tir khéa: Bdt ding thirc bién phan; lién tuc Lipschitz; don diéu; phép chiéu; todn tir ké
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1. Introduction

Variational inequality problem in Hilbert
space H is formulated by:

Find 2* € C such that
(f(z*),z—a") >0 Yz eC, (1)

where C' is a convex, closed, empty sub-
set in H and f : C — H is a oper-
ator. This is an important problem that
has a variety of theoretical and practi-
cal applications [1]. To solve this problem,
many algorithms have been proposed, such
as: single projection method, twice projec-
tion method [1], [2], modified projection
method [3], ... Until now, variational in-
equality problem has been increasingly ex-
tended in more extended forms: multival-
ued variational problem, problem of finding
a common solution of variational inequal-
ity problem and fix point problem, bielevel
variational inequality problem,... This pa-
per considers a problem of the variational
inequality in a general form

Find 2" € C such that (2)
(f(a"),z —2") + g(x) —g(z") 2 0 Ve €C,

where g : C' — H is a proper, convex, con-
tinuous function. Recently, Y. Malitsky [4]
presented proximal extrapolated gradient
method for solving this problem. In this pa-
per, we introduce a new proximal algorithm
for solving problem (2). The proposeed al-
gorithm combines the proximal operators
with the Halpern iteration technique in pa-
per [2]. We have proved that the algorithm
is convergent under the assumption of the
monotonicity and Lipschitz continuity of
cost mappings.

2. Preliminaries

Throughout this paper, unless otherwise
mentioned, let 4 denote a Hilbert space
with inner product (.,.) and the induced
norm ||.[.

Definition 1. Let C be a nonempty closed
convex subset in H. The metric projection
from H onto C is denoted by Po and

Po(x) = argmin{||z —y|| : y € C} v € H.
It is well known that the metric projection
Pre(+) has the following basic property:

<$—Pc(l'),y—Pc($)> <0VzeH,yeC.

Definition 2.
is called to be

A mapping f : H — 2%

(i) monotone, if
(f@) = fy),z—y) 20 Yo,y € H;
(ii) L- Lipschitz continuous, if

If (@) = fFW)ll < Lllz -yl Yo,y € H,

Definition 3. Let g C — R be
proper, convex and lower semicontinuous.
The proximal operator of g on C' is formu-
lated as the follows:

. 1
pros,(u) = axguin { () + 3lly ol |
zeC

The following lemmas are useful in the se-
quel.

Lemma 1. For all z, y € R", we have

@ Nz +yl? = ll2l* + 2(z, y) + y]*:

(i) [lz+yl* < ll=l* + 2(y, = + y).
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Lemma 2. Let {a;} be a sequence of non-
negative real numbers satisfying the follow-
ing condition:

akp+1 < (1 — ak)ak + apdp + B Vk > 1,

where

(i) {ax} C[0,1], 32720 an = +o0;
(ii) limsup dg < 0;

(iil) Bk >0, 207, Br < oo

Then, limkﬁxoo ap = 0.

3. Proximal Algorithm

In this paper, we consider the problem (2)
with H = R"”, the function g : R" —
(—00,400] is a proper, convex, continuous
on R” and f: R™ — R” satisfies following
conditions:

(A1) f is monotone and L-Lipschitz con-
tinuous on R";

(Az) the solution set of Problem (2) (
Sol(C, f)) is nonempty.

Algorithm: Choose z°

{ar} and {A\;} such that

€ R"™, sequences

{Ozk} C (0, 1), limkﬁoo o = 0,
> ko Ok = +00, (3)
{M} C [a,b] C (0,7) C (0,00).
Step 1. (k=0,1,...) Find y* € C:
yk = Prox)\kg(xk — )\kf(xk))
If 2% — % = 0 then stop.

Step 2. Calculate "1 = 20 + (1 —

ap)(z® — ppd®), where d¥ = zF — ¢F —

Me(f(2F) = f(y*)) and {p;.} is defined by

Step 3. Set k:=k + 1, and go to Step 1.
Lemma 3. Let x* € Sol(C, f). Then,

lw* = 2*|? < fla® —2*|? = fJw® — 2%,
trong dé w* := ¥ — prd*.
Proof. From definition of y* in Step 1

and Theorem 2.1.3 in [1], there exists p* €
dg(y*) such that

o =y = N f(2") = Mp € Ne(yb).
It is equivalent to
(@ =N f (%) =y 2 =) < M F =),
for all x in C. Single p* € dg(y*), we have
(@ =N f (") =* 2 —=y*) < Melg(a)—g(y")],
for all z in C. Replacing z with =*, we get
(yF =", ab =" =\ f(a")) > Azc[g(y'“)—g(z’*)]-
Combining z* € Sol(C, f) with y* € C a(n()i
the monotony of f, we have

Ml (), = 2%) = =Aelg(y") — g(w*)(]-)
)
From (4) and (5), it follows that

0 < (y* — %, db).
Then, by definition of w* we have
[ — 2*||?

=a* — prd® — 2|

=la® = 2*||* = 2pp(a® — 2*, d¥) + pi || d"|?
<[lz* — 2*||* = 2p1(a” — ¢, d*) + pi 1"
=la* = 2*|* = prfa® — y*, dv),
and

prla® =y, d%) = [lppd"|* = [lw* — 2*|?.
It follows that

ok — |2 <ok — 2| — pila® — o, db)

=[|2* — a*|* — flw” — 2"||?

(zh—y*d*) e ok <||z* — z*||? = [|w® — 2|2
e T <lla* —a*|? ~ fluk — ¥
0 if d* = 0. m
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Lemma 4. Sequences {z*} and {w*} are
bounded.

Proof. Let z* € Sol(C, f). By Lemma 3,

we have
||1’k+1 _ 33*”
:Hakxo +(1— ak)wk —z*|
<agllz® — 2% + (1 — o) Jw* — ¥
<apla® — 2*|| + (1 — og)|l2® — 2|

<max {[l2* - ", l2* ~ *|| |

§Hx0 — || < 400,

implies that {z*} is bounded. So {w*} is
bounded by Lemma 3. O

Lemma 5. Let z* € Sol(C, f). Put a =
|2k —z*||?, by = 2(z"—2*, 2FT1—2*). Then,
(’L) Af+1 < (1 — ak)ak + Ckkbk;

(i) —1 <limsup,_, ., bx < 00.

Proof. Using Lemma 1 (ii), we have
k41— a2 =

o (20 — 2%) + (1 — o) (w* — 2%)||? <

(1 — o) |w® — 2%)|? + 20 (2° — 2%, 2P — 2¥).

This together with oy € (0,1) and Lemma
3 implies that (7).

Single {z*} is bounded, we have
b < 2l2° — a*||** — 2*|| < oo,

and so limsup,_,. br < o0o0. Assume by
contradiction that limsup,_,. br < —1.
There exists kg € N such that b, < —1
for all k > ko. It follows from (i) that, for
all k > ko,

ap+1 <(1 — ag)ay + agby
<ap — Q.

Consequently
k
apy1 < gy — Z a; Yk > k.
i=ko

Taking the limit superior of both sides, we
have

“+oo “+00
limsup ap < ag, — Z o; + Z B; = —o0.

k—oo i=ko i=ko

This contradicts the fact that ap > 0 for
all k& € N. Therefore, limsup;,_, . bx, > —1.
O

Lemma 6. Let ||zF—y*|| — 0, and a subse-
quence {x*¥} of {x*F} converge to p. Then,
p € Sol(C, f).

Proof. From (4), one has

(@M — A, f(&™) =y 2 — ™)
<A lg(z) — g(¥")] Vz € C.

It is equivalent to

(@t —yP o =y + O f2R), M — o)
< (N f(2), m — %) + A, [9(2) — 9(y" )],

forall x € C. Since {z*} is bounded and
lim; o || 2% —y¥|| = 0, {y*} is also bounded
and y* — p. By (A1), f(2%) — f(p). Let-
ting ¢ — oo in the last inequality, we get

0 <{f(p),z—p) +g(=)—gp).
Hence, p € Sol(C, f). O

Theorem 1. Let f : R" — R"™ be a
mapping satisfying the assumptions (Ay) —
(Ag). Then, the sequence {x*} generated
by the algorithm converges to a solution

2 = Psqc,p)(@")-
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Proof. Putting a := ||2* — z||?, In order
to prove the strong convergence of the al-
gorithm, we consider two following cases.

Case A. Assume ap11 < aj for every
k > ko, ko € N. Then, one has

lim ay € [0, 00).
k—o00

From Step 3, Lemma 3 and Lemma 1 (ii),
it follows that

||56k+1 —Z||2
=[I(1 — ap)(w* — 2) + ag(a’ - 2)|?
<|lwk = 2|> 4 204, (2° — 2, 2T — 2)
<|lwk = 2|? 4 204, (a° — z, 2 — 2)

<[lz* = z[* = [w* — 2*|* + axTo,

where I'g := sup{2(2® — z, 21 — 2) 1 k =
0,1,...} < oo. This implies that

a1 —ap+ || wP =22 < ai Lo VE > 0. (6)
Letting k£ — oo in the above inequality, we
obtain limy_, |[w® — 2| = 0.

By (A;), we have
<‘rk - yka dk>
= [la® = y*I1P = A (a® = o, f (@) = Fy7)

> [|l2® =y [? = Axllz® = yF 1S (@) = FP)]
> (1= bL)[l" — *||*. (7)

On the other hand,

[l 2 —y* = (") = FM))I
2 = ¥+ Al f(2%) = F(O)
(1+ ML)l — ||

(1 +0L)l|z" —y*|l. (8)

ININ TN

By (7) and (8), one has

1—0bL

k k gk
— ary > ————

Ild* 1%

This together with (7) and Step 2 implies
that

[l Sm@k —y*, d"
1
14 bL)?
S( _)2” k:_kaQ'
(1—0bL)

From the last inequality and limy,_,, [Jw" —
2¥|| = 0, it follows that limg_,o [|2* —4"|| =
0 and

lw® — || < flw® = 2®|| + [l2* = ¥ — 0

as k — oo. Using Step 2 and Lemma 4, We
obtain

2Pt — wk|| = a]|2® — W] < oy — 0
as k — oo, where I'y = sup{[|2® — w¥|| :
kE=0,1,..} <+4oo. It follows that

2 —aF| < " =¥ 4w —2F] = 0

as k — 0o. Since {x*} is bounded, there ex-
ists subsequence {z**1} of {z¥} such that
zFitl — pas i — oo and

limsup(a® — z, 281 — 2)
k—o0
= lim (2% — 2z, 2Pt — 2).
1—r 00
From limy_; ||2* — ¥*|| = 0 and Lemma 6,

it follows that p € Sol(C, f). Consequently,

limsupb, = 2limsup(z® —z 2F! —2)
k—o00 k—o00
= 21lim (20 — z, 2% — 2)
1— 00

= 22" —z2,p—2)<0. (9)

This together with Lemma 2 and Lemma 5
(1) implies that

lim ap = lim ||z* — z|*> = 0.
k—oo k—oo
Case B. Assume that there doesnt exists

k € N such that {a;}?° . is monotonically
decreasing. By Remark 4.4 in [5], there is a

http://jst.tnu.edu.vn; Email: jst@tnu.edu.vn

71



Tran Van Thang et al.

TNU Journal of Science and Technology

225(13): 67 - 72

subsequence {a,()} of {ax} and a integer
number kg such that 7(k) 7 400,

0 < ap < arpys1s ark) < Grpy+1 vk 2> ko,
where
T(k) =max{i e N: kg <i<k,a; <aq1}.

From a,) < ar(g)41, VA > ko and (6), it
follows that

0 < uw™™® — 27"
< Gy — oy + [0 — 27
< azrylo

— 0 as k — oo,

and so limp_soo HwT(k) — xT(k)]] = 0. By ar-
guments similar to the Case A, we can show
that

lim ||$T(k)+1 - $T(k)|
n—o0

= lim [lw™® =y =0.

Since {27(")} is bounded, there exists a sub-

sequence of {z7(®)} convergeing to p € R",
without lost general, we still denote by
{z7®)}. By 6, we have p € Sol(C, f). By
arguments similar to the Case A, we can
prove that

lim sup by 1) < 0. (10)

k—o0

Using 5 (i) and ar(z) < ar(py41, Yk > ko,
one obtains

This together with Lemma 5 and (10) im-
plies that

limsup a;(xy < limsup b(x) < 0.
k—o0 k—o0

It follows that limy oo arry = 0. This to-
gether with the inequality

v/ Gr(k)+1 :Hl’T(k)H — 2|

<JaT®H — 2T 4 )j2™® — 2],

| = lim a7 — 7|

implies that limg o |/@r (k)11 = 0. Conse-
quently,

lim a =0.
k—o00 7(k)+1
Since 0 < ay < ar(x)4; for every k > ko, we

have lim,, ;o0 ay, = 0, and so {z*} converges
to z. O

4. Conclusions

In this paper, by using proximal operators
and Halpern iteration technique, we intro-
duced a new algorithm for solving varia-
tional inequality problem in a general form
and proved the algorithm convergents un-
der standard assumptions imposed on cost
mappings.
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