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ABSTRACT 
In this paper, we introduce a new proximal algorithm for monotone variational inequality 

problems in a general form in space Rn with cost mappings are monotone, L-Lipschitz continuous 

on the whole space Rn. The proposed algorithm involves only one proximal operator periteration 

and combines proximal operators with the Halpern iteration technique. The strong convergence 

result of the iterative sequence generated by the proposed algorithm is established, under mild 

conditions, in space Rn. 
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THUẬT TOÁN GẦN KỀ  

CHO BÀI TOÁN BẤT ĐẲNG THỨC BIẾN PHÂN ĐƠN ĐIỆU 

 
Trần Văn Thắng*, Nguyễn Minh Khoa, Phan Thị Tuyết 

Trường Đại học Điện lực 

 
TÓM TẮT 

Trong bài báo này, chúng tôi đưa ra thuật toán mới cho bài toán bất đẳng thức biến phân đơn điệu 

dưới dạng mở rộng trong không gian Rn với hàm giá là đơn điệu, liên tục L-Lipschitz trên toàn 

không gian Rn. Thuật toán mà chúng tôi đưa ra chỉ bao gồm một toán tử kề trong mỗi bước lặp và 

là sự kết hợp giữa toán tử kề với kỹ thuật lặp Halpern. Sự hội tụ mạnh của dãy lặp sinh bởi thuật 

toán được thiết lập với các giả thiết thông thường trong không gian Rn. 

Từ khóa: Bất đẳng thức biến phân; liên tục Lipschitz; đơn điệu; phép chiếu; toán tử kề 
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1. Introduction
Variational inequality problem in Hilbert
space H is formulated by:

Find x∗ ∈ C such that

〈f(x∗), x− x∗〉 ≥ 0 ∀x ∈ C, (1)

where C is a convex, closed, empty sub-
set in H and f : C → H is a oper-
ator. This is an important problem that
has a variety of theoretical and practi-
cal applications [1]. To solve this problem,
many algorithms have been proposed, such
as: single projection method, twice projec-
tion method [1], [2], modified projection
method [3], ... Until now, variational in-
equality problem has been increasingly ex-
tended in more extended forms: multival-
ued variational problem, problem of finding
a common solution of variational inequal-
ity problem and fix point problem, bielevel
variational inequality problem,... This pa-
per considers a problem of the variational
inequality in a general form

Find x∗ ∈ C such that (2)

〈f(x∗), x− x∗〉+ g(x)− g(x∗) ≥ 0 ∀x ∈ C,

where g : C → H is a proper, convex, con-
tinuous function. Recently, Y. Malitsky [4]
presented proximal extrapolated gradient
method for solving this problem. In this pa-
per, we introduce a new proximal algorithm
for solving problem (2). The proposeed al-
gorithm combines the proximal operators
with the Halpern iteration technique in pa-
per [2]. We have proved that the algorithm
is convergent under the assumption of the
monotonicity and Lipschitz continuity of
cost mappings.

2. Preliminaries
Throughout this paper, unless otherwise
mentioned, let H denote a Hilbert space
with inner product 〈., .〉 and the induced
norm ‖.‖.

Definition 1. Let C be a nonempty closed
convex subset in H. The metric projection
from H onto C is denoted by PC and

PC(x) = argmin{‖x− y‖ : y ∈ C} x ∈ H.

It is well known that the metric projection
PrC(·) has the following basic property:

〈x−PC(x), y−PC(x)〉 ≤ 0 ∀x ∈ H, y ∈ C.

Definition 2. A mapping f : H → 2H

is called to be

(i) monotone, if

〈f(x)− f(y), x− y〉 ≥ 0 ∀x, y ∈ H;

(ii) L- Lipschitz continuous, if

‖f(x)− f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ H,

Definition 3. Let g : C → R be
proper, convex and lower semicontinuous.
The proximal operator of g on C is formu-
lated as the follows:

proxg(y) = argmin
x∈C

{
g(x) +

1

2
‖y − x‖2

}
.

The following lemmas are useful in the se-
quel.

Lemma 1. For all x, y ∈ Rn, we have

(i) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2;

(ii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.
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Lemma 2. Let {ak} be a sequence of non-
negative real numbers satisfying the follow-
ing condition:

ak+1 ≤ (1− αk)ak + αkδk + βk ∀k ≥ 1,

where

(i) {αk} ⊂ [0, 1],
∑∞

k=0 αk = +∞;

(ii) lim sup δk ≤ 0;

(iii) βk ≥ 0,
∑∞

n=1 βk <∞.

Then, limk→∞ ak = 0.

3. Proximal Algorithm
In this paper, we consider the problem (2)
with H = Rn, the function g : Rn →
(−∞,+∞] is a proper, convex, continuous
on Rn and f : Rn → Rn satisfies following
conditions:

(A1) f is monotone and L-Lipschitz con-
tinuous on Rn;

(A2) the solution set of Problem (2) (
Sol(C, f)) is nonempty.

Algorithm: Choose x0 ∈ Rn, sequences
{αk} and {λk} such that
{αk} ⊂ (0, 1), limk→∞ αk = 0,∑∞

k=0 αk = +∞,
{λk} ⊂ [a, b] ⊂ (0, 1

L) ⊂ (0,∞).

(3)

Step 1. (k = 0, 1, ...) Find yk ∈ C:

yk = Proxλkg(x
k − λkf(xk)).

If xk − yk = 0 then stop.

Step 2. Calculate xk+1 = αkx
0 + (1 −

αk)(x
k − ρkd

k), where dk := xk − yk −
λk(f(xk)− f(yk)) and {ρk} is defined by

ρk =

{ 〈xk−yk,dk〉
‖dk‖2 if dk 6= 0

0 if dk = 0.

Step 3. Set k := k + 1, and go to Step 1.

Lemma 3. Let x∗ ∈ Sol(C, f). Then,

‖wk − x∗‖2 ≤ ‖xk − x∗‖2 − ‖wk − xk‖2,

trong �â wk := xk − ρkdk.

Proof. From definition of yk in Step 1
and Theorem 2.1.3 in [1], there exists pk ∈
∂g(yk) such that

xk − yk − λkf(xk)− λkpk ∈ NC(yk).

It is equivalent to

〈xk−λkf(xk)−yk, x−yk〉 ≤ λk〈pk, x−yk〉,

for all x in C. Single pk ∈ ∂g(yk), we have

〈xk−λkf(xk)−yk, x−yk〉 ≤ λk[g(x)−g(yk)],

for all x in C. Replacing x with x∗, we get

〈yk−x∗, xk−yk−λkf(xk)〉 ≥ λk[g(yk)−g(x∗)].
(4)

Combining x∗ ∈ Sol(C, f) with yk ∈ C and
the monotony of f , we have

λk〈f(yk), yk − x∗〉 ≥ −λk[g(yk)− g(x∗)].
(5)

From (4) and (5), it follows that

0 ≤ 〈yk − x∗, dk〉.

Then, by definition of wk we have

‖wk − x∗‖2

=‖xk − ρkdk − x∗‖2

=‖xk − x∗‖2 − 2ρk〈xk − x∗, dk〉+ ρ2
k‖dk‖2

≤‖xk − x∗‖2 − 2ρk〈xk − yk, dk〉+ ρ2
k‖dk‖2

=‖xk − x∗‖2 − ρk〈xk − yk, dk〉,

and

ρk〈xk − yk, dk〉 = ‖ρkdk‖2 = ‖wk − xk‖2.

It follows that

‖wk − x∗‖2 ≤‖xk − x∗‖2 − ρk〈xk − yk, dk〉
=‖xk − x∗‖2 − ‖wk − xk‖2

≤‖xk − x∗‖2 − ‖wk − xk‖2.

2
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Lemma 4. Sequences {xk} and {wk} are
bounded.

Proof. Let x∗ ∈ Sol(C, f). By Lemma 3,
we have

‖xk+1 − x∗‖
=‖αkx0 + (1− αk)wk − x∗‖
≤αk‖x0 − x∗‖+ (1− αk)‖wk − x∗‖
≤αk‖x0 − x∗‖+ (1− αk)‖xk − x∗‖

≤max
{
‖x0 − x∗‖, ‖xk − x∗‖

}
...

≤‖x0 − x∗‖ < +∞,

implies that {xk} is bounded. So {wk} is
bounded by Lemma 3. 2

Lemma 5. Let x∗ ∈ Sol(C, f). Put ak =
‖xk−x∗‖2, bk = 2〈x0−x∗, xk+1−x∗〉. Then,

(i) ak+1 ≤ (1− αk)ak + αkbk;

(ii) −1 ≤ lim supk→∞ bk <∞.

Proof. Using Lemma 1 (ii), we have

‖xk+1 − x∗‖2 =

‖αk(x0 − x∗) + (1− αk)(wk − x∗)‖2 ≤
(1− αk)‖wk − x∗‖2 + 2αk〈x0 − x∗, xk+1 − x∗〉.

This together with αk ∈ (0, 1) and Lemma
3 implies that (i).

Single {xk} is bounded, we have

bk ≤ 2‖x0 − x∗‖‖xk+1 − x∗‖ <∞,

and so lim supk→∞ bk < ∞. Assume by
contradiction that lim supk→∞ bk < −1.
There exists k0 ∈ N such that bk < −1
for all k ≥ k0. It follows from (i) that, for
all k ≥ k0,

ak+1 ≤(1− αk)ak + αkbk

≤ak − αk.

Consequently

ak+1 ≤ ak0 −
k∑

i=k0

αi ∀k ≥ k0.

Taking the limit superior of both sides, we
have

lim sup
k→∞

ak ≤ ak0 −
+∞∑
i=k0

αi +
+∞∑
i=k0

βi = −∞.

This contradicts the fact that ak ≥ 0 for
all k ∈ N . Therefore, lim supk→∞ bk ≥ −1.
2

Lemma 6. Let ‖xk−yk‖ → 0, and a subse-
quence {xki} of {xk} converge to p. Then,
p ∈ Sol(C, f).

Proof. From (4), one has

〈xki − λkif(xki)− yki , x− yki〉
≤λki [g(x)− g(yki)] ∀x ∈ C.

It is equivalent to

〈xki − yki , x− yki〉+ 〈λkif(xki), yki − xki〉
≤ 〈λkif(xki), x− xki〉+ λki [g(x)− g(yki)],

forall x ∈ C. Since {xk} is bounded and
limi→∞ ‖xk−yk‖ = 0, {yk} is also bounded
and yki → p. By (A1), f(xki)→ f(p). Let-
ting i→∞ in the last inequality, we get

0 ≤ 〈f(p), x− p〉+ g(x)− g(p).

Hence, p ∈ Sol(C, f). 2

Theorem 1. Let f : Rn → Rn be a
mapping satisfying the assumptions (A1)−
(A2). Then, the sequence {xk} generated
by the algorithm converges to a solution
z = PSol(C,f)(x

0).
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Proof. Putting ak := ‖xk − z‖2, In order
to prove the strong convergence of the al-
gorithm, we consider two following cases.

Case A. Assume ak+1 ≤ ak for every
k ≥ k0, k0 ∈ N. Then, one has

lim
k→∞

ak ∈ [0,∞).

From Step 3, Lemma 3 and Lemma 1 (ii),
it follows that

‖xk+1 − z‖2

=‖(1− αk)(wk − z) + αk(x
0 − z)‖2

≤‖wk − z‖2 + 2αk〈x0 − z, xk+1 − z〉
≤‖wk − z‖2 + 2αk〈x0 − z, xk+1 − z〉
≤‖xk − z‖2 − ‖wk − xk‖2 + αkΓ0,

where Γ0 := sup{2〈x0 − z, xk+1 − z〉 : k =
0, 1, ...} <∞. This implies that

ak+1−ak+‖wk−xk‖2 ≤ αkΓ0 ∀k ≥ 0. (6)

Letting k →∞ in the above inequality, we
obtain limk→∞ ‖wk − xk‖ = 0.

By (A1), we have

〈xk − yk, dk〉
= ‖xk − yk‖2 − λk〈xk − yk, f(xk)− f(yk)〉
≥ ‖xk − yk‖2 − λk‖xk − yk‖‖f(xk)− f(yk)‖
≥ (1− bL̄)‖xk − yk‖2. (7)

On the other hand,

‖dk‖ = ‖xk − yk − λk(f(xk)− f(yk))‖
≤ ‖xk − yk‖+ λk‖f(xk)− f(yk)‖
≤ (1 + λkL̄)‖xk − yk‖
≤ (1 + bL̄)‖xk − yk‖. (8)

By (7) and (8), one has

〈xk − yk, dk〉 ≥ 1− bL̄
(1 + bL̄)2

‖dk‖2.

This together with (7) and Step 2 implies
that

‖xk − yk‖2 ≤ 1

(1− bL̄)
〈xk − yk, dk〉

=
1

(1− bL̄)ρk
‖wk − xk‖2

≤(1 + bL̄)2

(1− bL̄)2
‖wk − xk‖2.

From the last inequality and limk→∞ ‖wk−
xk‖ = 0, it follows that limk→∞ ‖xk−yk‖ =
0 and

‖wk − yk‖ ≤ ‖wk − xk‖+ ‖xk − yk‖ → 0

as k →∞. Using Step 2 and Lemma 4, We
obtain

‖xk+1 − wk‖ = αk‖x0 − wk‖ ≤ αkΓ1 → 0

as k → ∞, where Γ1 = sup{‖x0 − wk‖ :
k = 0, 1, ...} < +∞. It follows that

‖xk+1−xk‖ ≤ ‖xk+1−wk‖+‖wk−xk‖ → 0

as k →∞. Since {xk} is bounded, there ex-
ists subsequence {xki+1} of {xk} such that
xki+1 → p as i→∞ and

lim sup
k→∞

〈x0 − z, xk+1 − z〉

= lim
i→∞
〈x0 − z, xki+1 − z〉.

From limk→∞ ‖xk−yk‖ = 0 and Lemma 6,
it follows that p ∈ Sol(C, f). Consequently,

lim sup
k→∞

bk = 2 lim sup
k→∞

〈x0 − z, xk+1 − z〉

= 2 lim
i→∞
〈x0 − z, xki+1 − z〉

= 2〈x0 − z, p− z〉 ≤ 0. (9)

This together with Lemma 2 and Lemma 5
(i) implies that

lim
k→∞

ak = lim
k→∞

‖xk − z‖2 = 0.

Case B. Assume that there doesnt exists
k̄ ∈ N such that {ak}∞k=k̄

is monotonically
decreasing. By Remark 4.4 in [5], there is a
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subsequence {aτ(k)} of {ak} and a integer
number k0 such that τ(k)↗ +∞,

0 ≤ ak ≤ aτ(k)+1, aτ(k) ≤ aτ(k)+1 ∀k ≥ k0,

where

τ(k) = max {i ∈ N : k0 ≤ i ≤ k, ai ≤ ai+1} .

From aτ(k) ≤ aτ(k)+1, ∀k ≥ k0 and (6), it
follows that

0 ≤ ‖wτ(k) − xτ(k)‖
≤ aτ(k)+1 − aτ(k) + ‖wτ(k) − xτ(k)‖
≤ ατ(k)Γ0

→ 0 as k →∞,

and so limk→∞ ‖wτ(k) − xτ(k)‖ = 0. By ar-
guments similar to the Case A, we can show
that

lim
n→∞

‖xτ(k)+1 − xτ(k)‖ = lim
n→∞

‖xτ(k) − yτ(k)‖

= lim
n→∞

‖wτ(k) − yτ(k)‖ = 0.

Since {xτ(k)} is bounded, there exists a sub-
sequence of {xτ(k)} convergeing to p ∈ Rn,
without lost general, we still denote by
{xτ(k)}. By 6, we have p ∈ Sol(C, f). By
arguments similar to the Case A, we can
prove that

lim sup
k→∞

bτ(k) ≤ 0. (10)

Using 5 (i) and aτ(k) ≤ aτ(k)+1, ∀k ≥ k0,
one obtains

aτ(k) ≤ bτ(k).

This together with Lemma 5 and (10) im-
plies that

lim sup
k→∞

aτ(k) ≤ lim sup
k→∞

bτ(k) ≤ 0.

It follows that limk→∞ aτ(k) = 0. This to-
gether with the inequality√
aτ(k)+1 =‖xτ(k)+1 − z‖

≤‖xτ(k)+1 − xτ(k)‖+ ‖xτ(k) − z‖,

implies that limk→∞
√
aτ(k)+1 = 0. Conse-

quently,
lim
k→∞

aτ(k)+1 = 0.

Since 0 ≤ ak ≤ aτ(k)+1 for every k ≥ k0, we
have limn→∞ ak = 0, and so {xk} converges
to z. 2

4. Conclusions
In this paper, by using proximal operators
and Halpern iteration technique, we intro-
duced a new algorithm for solving varia-
tional inequality problem in a general form
and proved the algorithm convergents un-
der standard assumptions imposed on cost
mappings.
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