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ABSTRACT 
The predictor-corrector methods take the upper hand in decreasing the number of function 

evaluations and of derivative evaluations as well comparing to the Runger-Kutta methods and 

various linear multistep methods. The stability however is a traditional disease of a high order 

method. This problem is also the case to the predictor-corrector method. The paper discusses on the 

matter of stability of the k-step Adams predictor-correct method and that of the predictor-corrector 

methods constructed on the basis of k-step Adams-Brashfort for the predictor and the k-step or 

(k+1)-step backward difference formula (BDF) for the corrector with low k, say 𝑘 ≤ 6. The reason 

to consider the BDF corrector is from the fact of having a large portion of the absolute stability 

region for those methods (with 𝑘 ≤ 6) competing to other Adams-Moulton correctors. Some 

awkward performances of the predictor-corrector to the stiffness are also discussed and a modified 

algorithm is also developed to treat the poor performance of the abovementioned methods. The main 

contribution of the paper is the strategy of depicting the absolute stability region of a predictor-

corrector method by constructing its stability polynomial on the basis of the recurrence equation 

obtain form the pair of difference equations describing the predictor and corrector. On that 

construction, we can be able to sketch the region by the boundary locus method. 

Keywords: linear multistep method; k-step Adams predictor-corrector; backward difference 

formula; stiffness; absolute stability region. 
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VỀ TÍNH ỔN ĐỊNH CỦA PHƯƠNG PHÁP DỰ BÁO - HIỆU CHỈNH  

HỌ ADAMS VÀ HỌ SAI PHÂN LÙI 
 

Đinh Văn Tiệp*, Phạm Thị Thu Hằng 
Trường Đại học Kỹ thuật Công nghiệp - ĐH Thái Nguyên 

 

TÓM TẮT 
Phương pháp dự báo - hiệu chỉnh có ưu điểm trong việc giảm đáng kể số lượng tính toán giá trị hàm 

số và đạo hàm so sánh với phương pháp đơn bước kiểu Runge-Kutta truyền thống cũng như so với 

nhiều phương pháp đa bước khác. Tính ổn định là một vấn đề truyền thống đối với các phương pháp 

khi xét ở bậc cao. Bài báo này đề cập đến tính ổn định, và so sánh chúng, của phương pháp với k-

bước dự báo kiểu Adams-Brashfort và (k+1)-bước hiệu chỉnh kiểu Adams-Moulton hay kiểu sai 

phân lùi (BDF) với 𝑘 ≤ 6. Lý do đề cập đến kiểu hiệu chỉnh BDF ở đây có nguồn gốc từ thực tế 

rằng một hiệu chỉnh BDF tạo ra một miền ổn định tuyệt đối lớn, với 𝑘 ≤ 6, so với hiệu chỉnh kiểu 

Adams-Moulton. Một số nhược điểm của các phương pháp dự báo - hiệu chỉnh này khi áp dụng cho 

các bài toán stiff cũng được đề cập trong bài báo cùng với một thuật toán cải tiến cho các phương 

pháp này được phát triển để khắc phục phần nào nhược điểm đó. Đóng góp lớn nhất của bài báo là 

phương pháp xây dựng đa thức ổn định dựa vào phương trình sai phân mô tả phương pháp dự đoán 

và phương pháp hiệu chỉnh. Dựa vào đa thức này, phương pháp tập hợp đường bao được áp dụng 

để mô tả trực quan miền ổn định của phương pháp. 

Từ khóa: phương pháp đa bước; k-bước Adams dự báo - hiệu chỉnh; công thức sai phân lùi; bài 

toán stiff; miền ổn định tuyệt đối. 
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1. Introduction 

Consider the initial-value problem 

𝑦′ = 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼.             (1) 

The numerical solution to the problem are 

derived in many approaches including the 

linear one step and the linear multistep method. 

The predictor-corrector methods are interested 

subject among various multistep methods. In 

fact, these are center of the linear multistep 

kind as the reason originated for a multi-step 

method in taking full advantage of function 

evaluation. The awkward issue, especially in 

dialing with the stiffness, of the Adam 

predictor-corrector family lies in the size of 

their absolute stability region. Estimating how 

large these regions are can be expected as an 

explanation for this.    

In this circumstance, the hope is not ended by 

taking a replacement of a BDF corrector to the 

Adams-Moulton corrector in expecting a 

considerable enlargement of the absolute 

stability reason. This is not unreasonable 

prospect. (See [1]-[5])  

For purposes of comparison, we need to 

estimate the absolute stability region for a k-

step Adams-Brashfort predictor with a 𝑘′-step 

Adams-Moulton corrector (denoted by ABk-

AM𝑘′) and a k-step Adams-Brashfort 

predictor with a 𝑘′-step BDF corrector 

(denoted by ABk-BDF𝑘′). Two considerations 

of 𝑘′ taken into account are 𝑘′ = k and 𝑘′ = k 

+ 1. The following results can be found in 

some texts (e.g. [6], [7]).   

Theorem 1. For the k-step Adams-Brashfort 

predictor 

𝑤𝑖+1
∗ = 𝑤𝑖 + ℎ ∑ 𝑎𝑘−𝑗−1𝑓(𝑡𝑖−𝑗, 𝑤𝑖−𝑗)𝑘−1

𝑗=0   

and the implicit linear (𝑘′ − 1)-step corrector 

𝑤𝑖+1 = ∑ 𝑏𝑘′−𝑗−1𝑤𝑖−𝑗
𝑘′−1
𝑗=0 +

𝑎̃𝑘′−1ℎ𝑓(𝑡𝑖+1, 𝑤𝑖+1
∗ ) +

ℎ ∑ 𝑎̃𝑘′−𝑗−2𝑓(𝑡𝑖−𝑗, 𝑤𝑖−𝑗)𝑘′−2
𝑗=0   

with the local truncation error are 

𝜏𝑖+1
∗ (ℎ), 𝜏𝑖+1(ℎ), respectively. Then the local 

truncation error of the Adams predictor-

corrector is 

𝜎𝑖+1 = 𝜏𝑖+1 + ℎ𝜏𝑖+1
∗ 𝑎̃𝑘′−1𝑓𝑦(𝑡𝑖+1, 𝜉𝑖+1), (2) 

for some 𝜉𝑖+1 between 0 and ℎ𝜏𝑖+1
∗ (ℎ). Here, 

we infer the terms 𝜎𝑖+1, 𝜏𝑖+1, 𝜏𝑖+1
∗  as functions 

of the step-size ℎ. The approximated values 

𝑤𝑖
′𝑠 produced by the method of 𝑦(𝑡𝑖) are 

obtained after some conventional one-step 

methods to generate the first 𝑘 − 1 or 𝑘′ − 1 

initial values such as Runge-Kutta method of 

the same order. The implicit linear method 

here is in the general form. 

2. Derivation of the absolute stability region 

to the pece ABk-AM𝒌′ and ABk-BDF𝒌′ 

predictor-corrector  

We first construct the scheme by which the 

local error presents and processes for some 

interested predictor-correct method in PECE 

mode. The 4-step Adams-Brashfort predictor 

of these methods is 

 𝑤𝑖+1
∗ = 𝑤𝑖 +

ℎ

24
[55𝑓(𝑡𝑖 , 𝑤𝑖) −

59𝑓(𝑡𝑖−1, 𝑤𝑖−1) + 37𝑓(𝑡𝑖−2, 𝑤𝑖−2) −
9𝑓(𝑡𝑖−3, 𝑤𝑖−3)],                                            (5)  

with 𝜏𝑖+1
∗ (ℎ) =

251

720
ℎ4𝑦(5)(𝜉). 

The 3-step and 4-step Adames-Moulton 

correctors respectively are 

𝑤𝑖+1 = 𝑤𝑖 +
ℎ

24
[9𝑓(𝑡𝑖+1, 𝑤𝑖+1

∗ ) +

19𝑓(𝑡𝑖, 𝑤𝑖) − 5𝑓(𝑡𝑖−1, 𝑤𝑖−1) +
𝑓(𝑡𝑖−2, 𝑤𝑖−2)],                                               (6)  

with 𝜏𝑖+1(ℎ) =
−9

720
ℎ4𝑦(5)(𝜉), and  

𝑤𝑖+1 = 𝑤𝑖 +
ℎ

720
[251𝑓(𝑡𝑖+1, 𝑤𝑖+1

∗ ) +

646𝑓(𝑡𝑖 , 𝑤𝑖) − 264𝑓(𝑡𝑖−1, 𝑤𝑖−1) +
106𝑓(𝑡𝑖−2, 𝑤𝑖−2) − 19𝑓(𝑡𝑖−3, 𝑤𝑖−3)],      (7)  

with 𝜏𝑖+1(ℎ) =
−3

160
ℎ5𝑦(6)(𝜉). 

The 3-step and 4-step BDF correctors 

respectively are 

𝑤𝑖+1 =
18

11
𝑤𝑖 −

9

11
𝑤𝑖−1 +

2

11
𝑤𝑖−2 +

6ℎ

11
𝑓(𝑡𝑖+1, 𝑤𝑖+1

∗ )                                              (8)  

with 𝜏𝑖+1(ℎ) =
3

22
ℎ3𝑦(4)(𝜉), and  
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𝑤𝑖+1 =
48

25
𝑤𝑖 −

36

25
𝑤𝑖−1 +

16

25
𝑤𝑖−2 −

3

25
𝑤𝑖−3 +

12ℎ

25
𝑓(𝑡𝑖+1, 𝑤𝑖+1

∗ )                         (9)  

with 𝜏𝑖+1(ℎ) =
12

125
ℎ4𝑦(5)(𝜉). 

From (5) to (9), the intermediate point 𝜉 are 

between the smallest and the largest mesh 

point appeared in the corresponding formula. 

To conduct the stability characteristic 

polynomials of these methods, we apply the 

predictor-corrector scheme to the test equation 

𝑦′ = 𝜆𝑦, 𝑦(𝑎) = 𝛼, 𝑎 ≤ 𝑡 ≤ 𝑏.            (10) 

Let do this for AB4-BDF4 first and follow the 

same pattern for various other. 

The equation (10) with the predictor (5) and 

the assumption that the previous four 

approximations are exact gives 

𝑤𝑖+1
∗ = 𝑤𝑖 +

𝜆ℎ

24
(55𝑤𝑖 − 59𝑤𝑖−1 + 37𝑤𝑖−2

− 9𝑓𝑤𝑖−3).                     (11)    

With the same assumption, the corrector (9) 

applied to (10) delivers  

𝑤𝑖+1 =
48

25
𝑤𝑖 −

36

25
𝑤𝑖−1 +

16

25
𝑤𝑖−2  

−
3

25
𝑤𝑖−3 +

12𝜆ℎ

25
𝑤𝑖+1

∗ .             (12)  

Substitute (11) into (12) and set 𝑧 = 𝜆ℎ and 

check the difference equation for 𝑤𝑖 = 𝛾𝑖 to 

obtain 

𝛾4 −
1

50
(96 + 24𝑧 + 55𝑧2)𝛾3 +

1

50
(72 +

59𝑧2)𝛾2 −
1

50
(32 + 37𝑧2)𝛾 +

1

50
(6 +

9𝑧2) = 0.                                                       (13)  

The left-hand side, 𝑃(𝛾, 𝑧) = 𝜌(𝛾) +

𝑧𝜎1(𝛾) + 𝑧2𝜎2(𝛾), of (13) is defined as the 

stability polynomial for the method, [2], [3]. 

The stability polynomials of AB4-BDF3, 

AB4-AM3, AB4-AM4 are derived 

respectively as 

𝛾4 −
1

44
(72 + 24𝑧 + 55𝑧2)𝛾3 +

1

44
(36 +

59𝑧2)𝛾2 −
1

44
(8 + 37𝑧2)𝛾 +

9

44
𝑧2,         (14)  

𝛾4 −
1

192
(192 + 224𝑧 + 165𝑧2)𝛾3 +

1

192
(40𝑧 +

177𝑧2)𝛾2 −
1

192
(8𝑧 + 111𝑧2)𝛾 +

9

64
𝑧2,                                          (15)  

𝛾4 − (1 +
299

240
𝑧 +

2761

3456
𝑧2) 𝛾3 + (

11

30
𝑧 +

14809

17280
𝑧2) 𝛾2 − (

53

360
𝑧 +

9287

17280
𝑧2) 𝛾 +

19

720
𝑧 +

251

1920
𝑧2,                                                          (16)  

 
Figure 1. The absolute stability region of the AB4-BDF4 

 

Figure 2. The absolute stability region of the AB4-BDF3 

 
Figure 3. The absolute stability region of the AB3-AM3 

 

Figure 4. The absolute stability region of the AB4-AM4 

For depicting the absolute stability region, the 

Root Condition will be invoked [1], [6]. The 

boundary locus method will be applied to these 
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stability polynomials [8]. Figures 1-4 

describes the absolute stability regions to the 

methods 13-16 respectively in (z, γ)-plane. 

These regions are marked in green. So that, 

according to the Root Condition, for any z 

inside theses domain, the corresponding 

stability polynomial has all (complex) roots γ 

with the magnitude does not exceed one, and 

for whose the magnitude one is simple root.  

We also see that, the expectation of having a 

large absolute stability region as we possess 

for the BDF now comes to an end when 

replacing the Adams-Moulton correctors by 

the BDF correctors. Inversely, such regions 

have been contracted by a little with this 

replacement however. 

The result in Theorem 1 enables us to estimate 

the local truncation error of these method. 

Theoretically, the AB4-AM4 ranks the first in 

the highest order of accuracy (with local 

truncation error of order 𝑂(ℎ5)), then it is 

followed by the AB4-BDF4 and AB4-AM3 (of 

which the order are 𝑂(ℎ4)) and the last in the 

rank is AB4-BDF3 (whose the order is 𝑂(ℎ3)). 

The AB4-AM4 has the optimal order 

following the result in [9], Theorem 3.2.    

The BDF correctors even probably provide 

larger absolute stability regions which maybe 

accounts for their applicability in dialing with 

a larger class of the stiff equations can show 

the less effective, or less accurate comparing to 

the Adams correctors. Even the AB4-AM3 and 

AB4-BDF4 are of the same order, the 

experimental results indicates the favor of the 

Adams corrector. 

For the consistency and zero-stability of these 

methods, it is straightforward from the first 

characteristic polynomials 𝜌(𝛾) of such 

methods are so. For example, for AB4-AM4, 

the consistency is the case since.  

∑ 𝑏3−𝑗 =

3

𝑗=0

1, 

and the zero-stability is inferred from the fact 

that the first characteristic polynomial 

𝜌(𝛾) = 𝛾4 −
48

25
𝛾3 +

36

25
𝛾2 −

16

25
𝛾 +

3

25
 

has four (complex) roots with modulus less 

than 1 except for the root 1. That is, this 

polynomial fulfills the Root Condition. 

Therefore, it is stable. (See [1], [6], [8]) From 

this fact, the following theorem is 

straightforward. 

Theorem 2. The ABk-AM𝑘′ and ABk-BDF𝑘′ 

are convergent. 

Indeed, we have known that (see, for example, 

[1], [2]) the zero-stability and the convergent 

are equivalent under the condition of the 

consistency. The above methods are both zero-

stable and consistent, they are convergent 

anyway.  

3. The modified 𝐏(𝐄𝐂)𝐦𝐄 algorithm  

The abovementioned methods can be 

improved their accuracy with m iterations to 

get a 𝑃(𝐸𝐶)𝑚𝐸 mode. The following 

algorithm is introduced with m iterations to 

generate the approximated value 𝑤𝑖+1 = 𝑤𝑖+1
(𝑚)

 

for 𝑦(𝑡𝑖+1) by applying the corrector 

difference equation m times. However, we 

control the number of iteration by the 

maximum iteration M. This even a little 

change in the scheme could lead to a fairly 

good improvement and an avoidance of out of 

control repetition. Here, we only construct the 

algorithm for the 3-step Adams-Moulton 

corrector, we call it the 3-step ABM modified 

method, denoted by 𝑃(𝐸𝐶)𝑀𝐸. The other 

algorithms can be conducted similarly. This 

algorithm is presented in Matlab code. The 

convergence of this mode is undoubted. 

However, the barrier for its accuracy is 

inevitable since the iterated values converge in 

fact to the solution of the difference equation 

used to iterate the corrector values rather than 

to 𝑦(𝑡𝑖+1). (See Theorem 3.2, [9]) An 

unreasonable increment in the number of 
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iterations m or decrement could lead the error 

to increase.  

INPUT the function 𝑓(𝑡, 𝑦), the interval [𝑎, 𝑏], 

the initial value 𝑦(𝑎) = 𝛼, the tolerance 𝑡𝑜𝑙 >

0 desired for the error estimate obtained from 

the iterations, the number of iterations M. 

OUTPUT the approximation 𝑤𝑖 to the 

solution 𝑦(𝑡𝑖), ∀𝑖 = 0,1, . . , 𝑛. 

Algorithm 

Function 

out=ABM_Modification(f,a,b,alpha, 

N,tol,M) 

% N is the number of mesh points 

% alpha is the initial value 

% tol is the tolerance used to 

control the iteration 

% M is the desired maximum number 

of iterations 

syms z(s); 

format long; 

%-------------STEP 1-------------- 

h=(b-a)/N; 

t0=a; 

w0=alpha; 

t=[t0]; 

w=[w0]; 

%---------------STEP 2------------

% Generate the starting values by 

Runge-Kutta method 

for i=1:3 

k1=h*f(t0,w0); 

k2=h*f(t0+0.5*h,w0+0.5*k1); 

k3=h*f(t0+0.5*h,w0+0.5*k2); 

k4=h*f(t0+h,w0+k3); 

w0=w0+(k1+2*k2+2*k3+k4)/6; 

t0=t0+h; 

t=[t,t0]; 

w=[w,w0]; 

end 

%---------------STEP 3------------ 

for i=4:N 

    t0=t0+h; 

    wp=w(i)+h*(55*f(t(i),w(i))-

59*f(t(i-1),w(i-1))+37*f(t(i-

2),w(i-2))-9*f(t(i-3),w(i-3)))/24; 

    FLAG=0;  

    count=1; 

    while (FLAG==0)&(count<M)    

w0=w(i)+h*(9*f(t0,wp)+19*f(t(i),w(

i))-5*f(t(i-1),w(i-1))+f(t(i-

2),w(i-2)))/24; 

        if abs(w0-wp)<tol 

            FLAG=1; 

            break 

        else wp=w0; 

            count=count+1; 

        end 

    end 

    t=[t,t0]; 

    w=[w,w0]; 

end 

eqn=diff(z,s)==f(s,z); 

inc=z(a)==alpha; 

as=dsolve(eqn,inc); 

out=[t',w',double(subs(as,s,a:h:b)

)',abs(w-

double(subs(as,s,a:h:b)))']; 

end 

%---------------END--------------- 

4. Comparison through numerical examples 

The efficiency of the above techniques is 

performed to see the conclusion about their 

stability. 

Example: Consider the equations 

𝑦′ = 𝑦 − 𝑡2 + 1, 𝑦(0) =
1

2
, 0 ≤ 𝑡 ≤ 2, (17)  

{
𝑦′ = 5𝑒5𝑡(𝑦 − 𝑡)2 + 1

𝑦(0) = −1, 𝑡 ∈ [0,1]
                     (18) 

{
𝑦′ = −20𝑦 + 20 cos 𝑡 − sin 𝑡

𝑦(0) = 0, 𝑡 ∈ [0,2]
              (19) 

{
𝑦′ = −20(𝑦 − 𝑡2) + 2𝑡

𝑦(0) = 1/3, 𝑡 ∈ [0,1]
                    (20) 
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Table 1. The absolute errors produced  

by AB4-AM3, AB4-AM4, AB4-BDF3, AB4-BDF4, 𝑃(𝐸𝐶)𝑀𝐸 modification 

Equation AB4-AM3 AB4-AM4 AB4-BDF3 AB4-BDF4 ABM_Modified 

(17) 

N=6,10, 15 

4.9× 10−4, 

1.0× 10−4, 

2.85× 10−5 

9.2× 10−5,  

3.9× 10−5, 
8.2× 10−6 

1.5× 10−2, 
6.3× 10−3, 
2.5× 10−3 

2.5× 10−3, 
7.25× 10−4, 
2.1× 10−4 

1.51× 10−3, 

1.01× 10−4, 

2.86× 10−5 

(18) 

N=6, 10, 20 

21.845, 

4.74× 10−5, 

4.12× 10−6 

7.628, 

6× 10−5, 

2.6× 10−6 

394.675, 

4.1× 10−4, 

6.36 × 10−5 

594.29, 

5.1× 10−3, 

3.62 × 10−5 

8.6× 10−4, 

1.35× 10−4, 

4.12× 10−6 

(19) 

N=8, 30, 50, 

100 

2.1× 109, 

0.57, 

2.27 × 10−8, 

6.94× 10−10 

1.1× 109, 

0.0105, 

1.63 × 10−8, 
4.23× 10−10 

5.08× 1010, 

106, 

1.16 × 10−6, 
5.86× 10−8 

2.8× 1010, 

1.05 × 106, 

2.7 × 10−7, 
4.26× 10−9 

3.38× 1020, 

1.05× 10−4, 

2.27× 10−8 

6.94× 10−10 

(20) 

N= 10, 15, 

20, 100 

0.27, 0.0257, 

1.47 × 10−4, 
1.53×  10−12 

0.204, 

0.00372, 

7.5 × 10−6, 

6.45× 10−13 

3.58× 102, 

43.53, 

0.0409, 

4.13× 10−11 

2.8× 102, 

53.54,  

0.08, 

1.05× 10−11 

3.98× 10−4, 

1.65× 10−4, 

1.15× 10−5 

1.53× 10−12 
      

With N is the number of mesh points, so the 

step-size ℎ = (𝑏 − 𝑎)/𝑁. Since the above 

techniques are convergent, the error decreases 

as N increase. The poor performance for 

insufficient small step-sizes when applied to 

the stiff equation (18)-(20) show the aukward 

of these methods for the stiffness, especially 

when the transient in (19) and (20) are 

stronger. Table 1 shows this point. The 

experimental results also show that the Adams 

correctors are superior to the BDF ones. This 

is identical to the size of the absolute stability 

regions for the corresponding method as 

shown in Figures 1-4. These results also show 

that for a fairly small step-size, the 𝑃(𝐸𝐶)𝑀𝐸 

modified produces a supperior results for both 

stiff and non-stiff problems [5]. 

5. Conclusion 

Using the above strategy of analyzing the 

stability of a predictor-corrector method, we 

can be able to figure out the applicability and 

the efficiency of the method intended to use for 

a particular problem keeping in mind that there 

is no best scheme for solving all initial value 

problem numerically, but the best one depends 

on each problem. 

The modification we make here for these 

predictor-corrector methods even improves the 

approximation, its speed of convergence is not 

so high as expected comparing to that of a 

conventional corrector when the step-size is 

very small. The reason for this probably comes 

from the round-off error produced when the 

repetitions of the corrector are performs. 
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