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ABSTRACT 
Nowadays, one individual or organization can easily get a drone with an affordable budget. With 

the ability of carrying explosive materials, cameras and illegal things, drones can become security 

threats to military and civilian organizations. The detection of drones appearing in unauthorized 

areas becomes an urgent problem. This paper conducts empirical studies on training the deep 

convolutional neural network Faster R-CNN so that Faster R-CNN after training can most 

accurately detect drones in images. The obtained Faster R-CNN after training can then be used in 

drone detection, warning and defense systems for sensitive areas. Faster R-CNN is trained using a 

dataset of images with drone labeled bounding boxes and different training options. With proper 

training options determined through experiments, Faster R-CNN after training can detect drones 

with the average precision up to 0.774, which is 83% higher than Fast R-CNN with the average 

precision of 0.420 on the same dataset. 

Keywords: Machine learning; computer vision; convolutional neural network; faster R-CNN; 

drone detection. 
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MỘT CÁCH TIẾP CẬN MỚI SỬ DỤNG THỊ GIÁC MÁY TÍNH  

CHO VIỆC PHÁT HIỆN MÁY BAY KHÔNG NGƯỜI LÁI 
 

Phạm Văn Việt 

Trường Đại học Kỹ thuật Lê Quý Đôn 

 

TÓM TẮT 
Ngày nay, một cá nhân hay tổ chức có thể dễ dàng có được một máy bay không người lái (drone) 

với mức ngân sách chấp nhận được. Với khả năng mang theo những vật liệu nổ, các camera và các 

vật phi pháp, các drone có thể trở thành các mối đe dọa về anh ninh đối với các tổ chức quân và 

dân sự. Phát hiện các drone xuất hiện trong các khu vực không được phép trở thành một bài toán 

cấp thiết. Bài báo này thực hiện các nghiên cứu thực nghiệm cho việc huấn luyện mạng nơ-ron tích 

chập nhiều tầng Faster R-CNN để Faster-CNN sau khi huấn luyện có thể phát hiện chính xác nhất 

các drone trong ảnh. Faster R-CNN sau khi huấn luyện có thể sử dụng trong các hệ thống phát 

hiện, cảnh báo và phòng thủ drone cho các khu vực nhạy cảm. Mạng Faster R-CNN được huấn 

luyện sử dụng tập dữ liệu ảnh với các hộp giới hạn gán nhãn drone và các lựa chọn huấn luyện 

khác nhau. Với các lựa chọn huấn luyện hợp lý được xác định thông qua các thực nghiệm, Faster 

R-CNN sau khi huấn luyện có thể phát hiện drone với độ chính xác trung bình lên tới 0,774, cao 

hơn 83% so với Fast R-CNN với độ chính xác trung bình là 0,420 trên cùng một tập dữ liệu. 

Từ khóa: Học máy; thị giác máy tính; mạng nơ-ron tích chập; Faster R-CNN; phát hiện máy bay 

không người lái. 
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1. Introduction 

Nowadays, one individual or organization can 

easily get a drone with an affordable budget. 

With the ability of carrying explosive 

materials, cameras and illegal things, drones 

can become security threats to military and 

civilian organizations. The detection of 

drones appearing in unauthorized areas 

becomes an urgent problem to alert, prevent 

and track the operation of these devices. 

In order to detect drones, many different types 

of sensors such as RADAR, LIDAR, acoustic 

and RF (Radio Frequency) sensors can be 

used as reviewed in [1]. However, RADAR 

has limitations in detecting drones that fly at 

low velocities and are small. LIDAR has 

problems with large data output and cloud 

sensitivity. An acoustic sensor has problems 

with long operational range and noisy 

environment. An RF sensor cannot work 

when drones fly without ground control. 

Detecting drones using computer vision is a 

good option with many advantages. The 

computer based system with modern cameras 

can detect small drones from distance. The 

system also can detect drones flying at low 

speeds and does not depend on whether 

drones are with or without ground control. 

Other advantages of the system include the 

abilities of visualization and interpretation. 

Therefore, cameras are now widely used to 

detect drones. Cameras become a part of 

modern drone detecting systems such as ND-

BU001 [2] and DroneSentry [3].  

Drone detection using computer vision is to 

determine if a drone is in an input image and 

where the drone is in the image. The location 

of a drone is represented by the smallest 

rectangle surrounding the drone. A research 

trend is using feature descriptors such as SIFT 

(Scale Invariant Feature Transform), SURF 

(Speeded-Up Robust Features), HOG 

(Histogram of Oriented Gradients) for drone 

representation. These descriptors extract 

feature vectors from a set of training images 

with labels. A classifier such as SVM 

(Support Vector Machine) is trained on the 

extracted vectors. The classifier is then used 

to detect drones on sliding windows in an 

input image. This method has two 

disadvantages. The first one is that features 

have to be extracted skillfully to capture 

important information. The second one is that 

the sliding window technique causes 

computationally costly exhaustive search. In 

[4], Haar feature (feature achieved by Harr-

like transformation), HOG feature and LBP 

(Local Binary Pattern) feature are used with 

CBC (Cascades of Boosted Classifiers) for 

drone detection. CBC has successive 

classifiers in order of their complexities. In 

order to reduce training time, a successive 

classifier is trained only on samples passing 

its previous classifiers.  

The study in [5] uses a preprocessing 

approach with morphological operations on 

gray image to highlight potential drones and a 

temporal filtering approach to detect drones 

appearing in a long enough duration. 

Morphological operations are dilation and 

erosion. Dilation adds pixels into the 

boundaries of drones, while erosion removes 

pixels from the boundaries. After these 

operations, the temporal filtering approach 

using hidden Markov models is used to detect 

and track drones. 

The method in [6] uses sliding window 

technique to divide the video into slices. 

Each slice has N frames. These slices 

overlap each other. The larger overlapping 

duration, the higher the accuracy. Then this 

method creates spatio-temporal cubes (st-

cubes) with different scales. Each st-cube is 

represented by the parameters of width, 

height, and time duration. Motion 

compensation algorithm is used for frames in 

a st-cube to create a st-cube with drones at 

the center of the frames. Each st-cube is then 

classified as containing of a drone or not by 
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using boosted trees or convolutional neural 

network. If there are multiple detected 

drones at a position, the detected drone with 

the highest score is retained. 

Another research trend is using deep neural 

networks. Studies in [7], [8], [1] propose to 

use beginning-to-end drone detection models 

based on convolutional neural networks 

YOLOv2 [9] and YOLOv3 [10]. The lower 

layers of YOLO are trained to extract high-

level features. Then the features from the 

layers at the two highest levels are combined 

to get the final feature map of an input image. 

The feature map is divided by a grid. The first 

task associated with a grid cell is to predict 

bounding boxes and confidences that these 

boxes contain a drone. The second task of a 

grid cell is calculating conditional probability 

an object belonging to a class when the 

probability a bounding box containing an 

object is known. 

 

Figure 1. Faster R-CNN [11] 

In this paper, we propose to use the deep 

convolutional neural network Faster R-CNN 

to detect drones (flycams in particular). In 

[11] and [12], Faster R-CNN and Fast R-CNN 

are applied to detect aeroplanes, but not to 

detect drones that are different from 

aeroplanes in sizes and shapes. In [13], Fast 

R-CNN is applied to detect drones, but the 

method’s average precision is low (0.42). The 

drone detection in this paper is stated as a 

machine learning problem as follows. The 

problem is given with the input of a set of 

images that may contain drones or may not, 

where drones in an image are localized by 

bounding rectangles. The task of the problem 

is constructing a machine learning model to 

determine if drones exist in an image and 

where drones are. 

The following sections include: Section 2 

gives a summary of Faster R-CNN, section 3 

presents experiments to determine options for 

Faster R-CNN to most accurately detect 

drones in images, and the last section is about 

conclusion and future work. 

2. The convolutional neural network Faster 

R-CNN 

This study uses the convolutional neural 

network Faster R-CNN to detect drones in 

images. This section presents the summary of 

Faster R-CNN for drone detection, (for more 

detailed see [11]). Faster R-CNN is the union 

of the region proposal network RPN and the 

object detection network Fast R-CNN [12]. 

The two networks share convolutional layers 

as shown in Figure 1. Fast R-CNN uses 

regions proposed by RPN network to detect 

objects. Section 2.1 introduces the design and 

properties of RPN network. Section 2.2 

presents the algorithm for training the two 

networks with shared features. 

2.1. Region Proposal Network (RPN) 

The region proposal network RPN has the 

input of an image in any size and has the 

output of rectangular shape object proposals. 

Each proposal has a score that measures the 

membership belonging to a class (drone class 
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or background class). RPN network shares a 

set of convolutional layers with Fast R-CNN 

network. The output of the shared 

convolutional layers is a feature map as 

shown in Figure 2. 

In order to generate region proposals, a small 

network with fully connected convolutional 

layers slides over the feature map. The small 

network is presented as a point in Figure 2. 

The small network has the input of a spatial 

window on the feature map. Each sliding 

window is mapped to a lower-dimensional 

feature (256-d as shown in Figure 2). This 

feature is then taken as the input for the two 

sibling fully connected layers for regression 

and classification respectively. 

At each sliding window position, multiple 

region proposals are predicted, where the 

maximum number of proposals for each 

position is denoted as k. The regression layer 

(reg layer) outputs the 4k encoded coordinates 

of k  bounding boxes. The classification layer 

(cls layer) outputs 2k scores estimating 

probability that a proposal contains an object 

or not. The k proposals are represented as k 

boxes which are called anchors. 

 
Figure 2. Region Proposal Network (RPN) [11] 

In order to train RPN network, a binary class 

label (of being an object or not) is assigned to 

each anchor. A positive label is assigned to an 

anchor if the anchor has the highest IoU 

(Intersection-over-Union) with a ground-truth 

box or the IoU with a ground-truth box is in a 

specified range. If there are multiple anchors 

or no anchors satisfying the second condition, 

the first condition is applied. Negative labels 

are assigned to anchors that are not assigned 

positive labels if their IoU with all the 

ground-truth boxes are in a specified range. 

Anchors that are not assigned positive or 

negative labels have no meaning to the 

training objective. 

An objective function of losses from 

classification and regression is minimized. 

RPN can be trained through back propagation 

and SGD (Stochastic Gradient Descent). SGD 

searches for the minimal point of the loss 

function through a number of epochs. At each 

epoch, multiple iterations are performed over 

the entire training set. At each iteration, the 

gradient descent algorithm takes a step 

proportional to the negative of the gradient 

(or approximate gradient) of the loss function 

at the current point using a mini-batch. A 

mini-batch can be obtained from a number of 

images containing positive and negative 

anchors. Positive and negative anchors are 

sampled with the rate up to 1:1. The gradient 

of the loss function is estimated using a 

mini-batch, instead of using a large set of 

anchors from all the images of the training 

set. This estimation speeds up the search for 

minimum loss. 

All new layers are initialized by weights 

taken from Gauss distribution with mean of 0 

and standard deviation of 0.01. The shared 

convolutional layers are initialized through a 

pre-trained model/network for ImageNet 

classification [14]. 

2.2. Sharing Features for RPN and Fast R-CNN 

Both individually trained RPN and Fast R-

CNN will correct their convolutional layers in 

different ways. This requires a technique that 

allows sharing convolutional layers between 

the two networks, rather than learning these 

networks individually. One of the techniques 

is the four-step alternating training algorithm. 

As a first step, RPN network is trained as 

described in section 2.1. This network is 

initialized through a pre-trained model for 

ImageNet classification and refined from 
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beginning to end for region proposal. In step 

two, the detection network Fast R-CNN is 

independently trained using the proposals 

generated by RPN from step one. This 

detection network is also initiated by the pre-

trained model on ImageNet. At this moment, 

these two networks do not share 

convolutional layers. In step three, the 

detection network is used to initiate RPN 

training, but the shared convolutional layers 

are fixed and only the RPN’s own layers are 

refined. Now, these two networks share 

convolutional layers. Finally, fixing the 

convolutional layers, Fast R-CNN’s own 

layers are refined. Both networks share the 

same convolutional layers and make up a 

unified network.  

3. Experiments and results 

In this section, dataset for training and testing 

Faster R-CNN network for drone detection is 

first described. Fixed parameters for 

experimenting with Faster R-CNN training 

are then presented. Experiments to identify 

options for Faster R-CNN training to most 

accurately detect drones are lastly presented. 

3.1. Training and testing dataset 

The dataset for training and testing Faster R-

CNN network for drone detection consists of 

a total of 498 images of the quadcopter DJI 

Phantom 3 from Google image search tool, 

and screenshots from videos from YouTube 

[13]. Of these 350 images are used for 

training and 148 images are used for testing. 

In addition, data augmentation is used to 

improve the accuracy of the network through 

random modification of an original image 

during training. Data augmentation makes the 

training data more diverse without having to 

increase the number of labeled training 

samples. The modification is done by 

randomly flipping an image and the bounding 

boxes horizontally at each iteration of a 

training epoch. The testing data is not 

augmented. Testing is only done with original 

data so that evaluation is not biased. Figure 3 

illustrates image creation by horizontal flip. 

The left image is an original image, the right 

image is the image created by flipping the 

original one. 

 
Figure 3. Data augmentation 

3.2. Fixed parameters 

In experiments to determine options for Faster 

R-CNN training to detect drones accurately, 

we fix parameters presented in Table 1. The 

learning rate and the momentum coefficient 

are set to 0.001 and 0.09. The two coefficients 

affect the speed and accuracy of SGD 

(Stochastic Gradient Descent) method. The 

learning rate determines the length of each 

jump in finding the minimal point by SGD 

method. The smaller the learning rate, the 

more accurate the search. The momentum 

coefficient relates the determination of a 

current jump to previous jumps. This 

coefficient is chosen from 0 to 1. The larger 

this coefficient, the more the effect of 

previous jumps. This coefficient of zero 

means that a current jump has nothing to do 

with previous jumps. If this coefficient 

receives a value other than zero, the search is 

performed faster. The maximum number of 

training epochs is set to 30. The IoU range to 

determine an anchor box negative is [0 0.3] 

and the range to determine an anchor box 

positive is [0.6 1]. These ranges are 

commonly used ones [11, 15]. 

Table 1. Fixed parameters 

Parameter Value 

Learning rate 0.001 

Momentum co-efficient 0.09 

Maximum number of epochs 30 

IoU range for negative anchors [0 0.3] 

IoU range for positive anchors [0.6 1] 
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3.3. Experiments to identify options for 

Faster R-CNN training to most accurately 

detect drones 

In this experimental section, we look for 

options for Faster R-CNN training to most 

accurately detect drones. Options include the 

number of images taken from the training set 

to determine a mini-batch at an iteration of a 

training epoch to estimate the gradient of the 

loss function, the number of anchor boxes at 

each sliding window position, and the pre-

trained model/network for initializing RPN and 

Fast R-CNN networks. We also compare the 

training using augmented data and not using. 

Finally we compare the achieved accuracy of 

Faster R-CNN to that of Fast R-CNN. 

The evaluation of Faster R-CNN’s training 

options is based on the average precision 

(AP) of the predictions on the set of all the 

test images. AP is a commonly used 

measurement for evaluating convolutional 

neural networks [9], [11]. To calculate AP, 

the set of all the predictions on the test images 

are arranged in descending order of the 

predictions’ confidences. Suppose the set of 

all the predictions has N predictions. N sub-

sets of predictions are extracted from the set 

of all the predictions. The kth sub-set consists 

of predictions from 1 to k. Precisions and 

recalls are calculated on N subset of 

predictions. The average precision is 

approximately equal to the area under the 

polyline formed by points (Recallk 

Precisionk),  where k is from 0 to N. In the 

formulas (1), Precisionk and Recallk  are the 

precision and recall of the kth sub-set and AP 

is the average precision, where k is from 1 to 

N. TPk, FPk and FNk are the numbers of true 

positives, false positives, and false negatives 

of the kth sub-set of predictions respectively. 

Precision0 and Recall0 are set to 1 and 0, 

which are the precision and recall for the sub-

set with no predictions. 

  (1) 

 
  

We first experiment with the number of 

images to sample boxes containing drones or 

not for mini-batches. In this experiment, we 

fix the number of anchor boxes at each sliding 

window position being 2 and the pre-trained 

network being resnet50 [16]. The results of 

the experiment are presented in Table 2. The 

results show that the number of images of 1 is 

the best, where the Faster R-CNN’s average 

precision is 0.741. This means that sampling 

drone boxes on a few of ground-truth boxes 

containing drones (only ground-truth boxes 

on one image) gives more accurate detectors. 

This can be explained by the fact that a 

ground-truth box is used to sample multiple 

drone boxes at multiple different views, so the 

network after training can detect drones at 

various views (the network is highly robust to 

testing data). The number of images for 

sampling mini-batches of 1 is chosen for 

further experiments. 

Table 2. Average precisions by different numbers 

of images for sampling mini-batches 

Number of images to 

sample mini-batches 
Average precision 

1 0.741 

2 0.700 

3 0.672 

4 0.695 

5 0.692 

We then experiment with different numbers 

of anchor boxes at each sliding window 

position. In this experiment, the number of 

images for sampling mini-batches is chosen to 

be 1 and the pre-trained network is resnet50. 

The results of the experiment are in Table 3. 

We can see that the number of anchor boxes 

does not affect much the average precision of 

Faster R-CNN after training. To carry out the 

next experiments, we chose the number of 

anchor boxes to be 10, corresponding to the 

highest average precision of 0.744. 
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Table 3. Average precisions by different numbers 

of anchors 

Number of 

anchors 

Average precision 

2 0.741 
4 0.707 
6 0.713 

8 0.723 
10 0.744 

We also compare the uses of different pre-

trained networks including resnet50 [16], 

alexnet [17], googlenet [18], mobilenetv2 

[19], vgg19 [20]. In this experiment, the 

number of images for sampling min-batches 

is 1 and the number of different anchor boxes 

at each sliding window position is 10. The 

experimental results in Table 4 show that 

vgg19 network achieves Faster R-CNN with 

the highest average precision of 0.774, 

followed by resnet50, mobilenetv2. The pre-

trained networks giving Faster R-CNNs with 

much lower average precisions are googlenet 

and alexnet. 

Table 4. Average precisions by different pre-

trained networks 

Pre-trained network Average precision 

resnet50 0.744 

alexnet 0.502 

googlenet 0.643 

mobilenetv2 0.727 

vgg19 0.774 

In addition, we compare the use of the 

original data to the use of augmented data for 

training on the same best pre-trained  network 

vgg16 and experimental parameters selected 

above. The results of this experiment show 

that using augmented data for training can 

increase the average precision by 5%. The 

average precision when using data 

argumentation is 0.774, while that when not 

using is 0.735. 

In comparison with Fast R-CNN, the average 

precision of the detection method using Faster 

R-CNN network in this study is also 

significantly higher than the detection method 

using Fast R-CNN network performed by 

Reiser [13]. In Reiser’s experiments on the 

same drone dataset, the average precision is 

0.420. Thus, the average precision of Faster 

R-CNN in this study is 83% higher than that 

of Fast R-CNN (0.774 compared to 0.420). 

4. Conclusion 

In this paper, we conducts empirical studies 

on training the deep convolutional neural 

network Faster R-CNN to most accurately 

detect drones (flycams in particular). Through 

experiments, we found that the number of 

images to sample a mini-batch for each 

training iteration being 1 is the best for 

training Faster R-CNN. This means that a 

ground-truth box containing a drone sampled 

multiple times from different views will make 

the detector obtained after training more 

adaptable. The number of anchor boxes at 

each sliding window position does not affect 

much the Faster R-CNN’s average precision 

for drone detection. The best pre-trained 

network for training Faster R-CNN to 

accurately detect drones is vgg19, followed 

by resnet50, and mobilenetv2. The pre-trained 

networks giving Faster R-CNNs with much 

lower average precisions are googlenet and 

alexnet. Training data augmentation increases 

the average precision of Faster R-CNN by 

about 5%. With the best training options 

determined through experiments, Faster R-

CNN can detect drones with the average 

precision up to 0.774, which is 83% higher 

than Fast R-CNN with the average precision 

of 0.420. 

Our next research direction is to research and 

improve the time of training Faster R-CNN and 

detecting drones. We also plan to study and 

develop datasets to make drone detection more 

accurate. The obtained drone detector will be 

then integrated into drone detection, warning 

and defense systems in sensitive areas. 
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