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ABSTRACT 

Let u be a weak solution of the in-stationary Navier-Stokes equations in a completely general 

domain in R3. Firstly, we prove that the time decay rates of the weak solution u in the L2-norm 

like ones of the solutions for the homogeneous Stokes system taking the same initial value in 

which the decay exponent is less than 34 . Secondly, we show that under some additive conditions 

on the initial value, then u coincides with the solution of the homogeneous Stokes system when 

time tends to infinity. Our proofs use the theory about the uniqueness arguments and time decay 

rates of strong solutions for the Navier-Stokes equations in the general domain when the initial 

value is small enough. 
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TÓM TẮT 
Giả sử u là một nghiệm yếu của hệ phương trình Navier-Stokes không dừng trong một miền tổng 

quát trong R3. Trước hết, chúng tôi chứng minh rằng tốc độ hội tụ theo thời gian của nghiệm yếu 

u với chuẩn L2 giống tốc độ hội tụ theo thời gian của nghiệm trong hệ Stokes thuần nhất với cùng 

giá trị ban đầu và số mũ hội tụ nhỏ hơn 34. Thứ hai, chúng tôi chỉ ra rằng với một số điều kiện 

của giá trị ban đầu thì u trùng với nghiệm của hệ Stokes thuần nhất khi thời gian dần tới vô cùng. 

Phần chứng minh các kết quả trong bài báo dựa trên lý thuyết về tính duy nhất và tốc độ hội tụ 

theo thời gian của nghiệm mạnh cho hệ phương trình Navier-Stokes trong miền tổng quát khi giá 

trị ban đầu đủ nhỏ. 

Từ khóa: Hệ phương trình Navier-Stokes, Dáng điệu tiệm cận, Nghiệm yếu, Hệ phương trình 

Stokes, Tính duy nhất nghiệm. 
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1 Introduction and main re-
sult

We consider the in-stationary problem of the
Navier-Stokes system

ut −∆u+ u · ∇u+∇p = 0,
div u = 0,
u|∂Ω = 0,
u(0, x) = u0,

(1)

in a general domain Ω ⊆ R3, i.e a non-empty
connected open subset of R3, not necessarily
bounded, with boundary ∂Ω and a time interval
[0, T ), 0 < T ≤ ∞ and with the initial value u0,
where u = (u1, u2, u3); u · ∇u = div(uu), uu =
(uiuj)i,j=1, if div u = 0.
In this paper we discuss the behavior as t → ∞
of weak solutions of the Navier-Stokes equations
in space L2(Ω), which goes to zero with explicit
rates. The L2-decay problem for Navier-Stokes
system was first posed by Leray [1] in R3. The
first (affirmative) answer was given by Kato [2]
in case D = Rn, n = 3, 4, through his study of
strong solutions in general spaces Lp, see also
[3, 4, 5]. The idea of Schonbek was then ap-
plied by [6, 7] to the case where D is a half-
space of Rn, n ≥ 2 or an exterior domain of
Rn, n ≥ 3. W. Borchers and T. Miyakawa [8]
developed the method in [3, 6, 7] for the case of
an arbitrary unbounded domain. They showed
that if ‖e−tAu0‖2 = O(t−α) for some α ∈ (0, 1

2 ),
then ‖u(t)‖2 = O(t−α). Our purpose in this pa-
per is to improve and generalize the result of
[8]. Firstly, we obtain the same result as that
of them but under more general condition on α,
in which the condition α ∈ (0, 1

2 ) is replaced by
α ∈ (0, 3

4 ). Secondly, we obtain the stronger re-
sult than theirs by assuming some additive con-
ditions on the initial value.
We recall some well-known function spaces, the
definitions of weak and strong solutions to (1)
and introduce some notations before describ-
ing the main results. Throughout the paper, we
sometimes use the notation A . B as an equiv-
alent to A ≤ CB with a uniform constant C.
The notation A ' B means that A . B and
B . A. The expression 〈·, ·〉Ω denotes the pairing
of functions, vector fields, etc. on Ω and 〈·, ·〉Ω,T
means the corresponding pairing on [0, T ) × Ω.
For 1 ≤ q ≤ ∞ we use the well-known Lebesgue

and Sobolev Lq(Ω), W k,p(Ω), with norms
∥∥ ·∥∥

Lq(Ω)
= ‖ · ‖q and

∥∥ · ∥∥
Wk,p(Ω)

= ‖ · ‖k,p. Fur-
ther, we use the Bochner spaces Ls

(
0, T ;Lp(Ω)

)
,

1 ≤ s, p ≤ ∞ with the norm

∥∥·∥∥
Ls
(

0,T ;Lp(Ω)
) :=

(∫ T

0

‖·‖sp dτ

)1/s

=
∥∥·∥∥

p,s,T
.

To deal with solenoidal vector fields we intro-
duce the spaces of divergence - free smooth com-
pactly supported functions C∞0,σ(Ω) = {u ∈
C∞0 (Ω),div(u) = 0}, and the spaces L2

σ(Ω) =

C∞0,σ(Ω)
‖·‖2 , W 1,2

0 (Ω) = C∞0 (Ω)
‖·‖W1,2

, and

W 1,2
0,σ (Ω) = C∞0,σ(Ω)

‖·‖W1,2(Ω) .

Let P : L2(Ω) −→ L2
σ(Ω) be the Helmholtz pro-

jection. Let the Stokes operator

A = −P∆ : D(A) −→ L2
σ(Ω)

with the domain of definition

D(A) = {u ∈W 1,2
0,σ (Ω),∃f ∈ L2

σ(Ω) :

〈∇u,∇ϕ〉Ω = 〈f, ϕ〉Ω, ∀ ϕ ∈W
1,2
0,σ (Ω)}

be defined as

Au = −P∆u = f, u ∈ D(A).

As in [9], we define the fractional powers

Aα : D(Aα) −→ L2
σ(Ω), −1 ≤ α ≤ 1.

We have D(A) ⊂ D(Aα) ⊂ L2
σ(Ω) for α ∈ (0, 1].

It is known that for any domain Ω ⊆ R3 the op-
erator A is self-adjoint and generates a bounded
analytic semigroup e−tA, t ≥ 0 on L2

σ(Ω).

The following embedding properties play a basic
role in the theory of the Navier-Stokes system

‖A−
β
2 Pu‖2 ≤ C‖u‖q, u ∈ Lqσ(Ω) (2)

where 1
2 ≤ β < 3

2 ,
1
q = 1

2 + β. Furthermore, we
mention the Stokes semigroup estimates

‖Aαe−tAu‖2 ≤ t−α‖u‖2, (3)

with u ∈ L2
σ(Ω), 0 ≤ α ≤ 1. Now we recall the

definitions of weak and strong solutions to (1).

Definition 1.1. (See [9].) Let u0 ∈ L2
σ(Ω).

1. A vector field

u ∈ L∞
(
0, T ;L2

σ(Ω))∩L2
loc([0, T );W 1,2

0,σ (Ω)
)
(4)
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is called a weak solution in the sense of Leray-
Hopf of the Navier-Stokes system (1) with the
initial value u(0, x) = u0 if the relation

−〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T
= 〈u0, w〉Ω (5)

is satisfied for all test functions
w ∈ C∞0

(
[0, T );C∞0,σ(Ω)

)
, and additionally the

energy inequality

1

2
‖u(t)‖22 +

∫ t

0

‖∇u(τ)‖22dτ ≤ 1

2
‖u0‖22 (6)

is satisfied for all t ∈ [0, T ).
A weak solution u is called a strong solution of
the Navier-Stokes equation (1) if additionally lo-
cal Serrin’s condition

u ∈ Lsloc

(
[0, T );Lq(Ω)

)
(7)

is satisfied with 2 < s < ∞, 3 < q < ∞ where
2

s
+

3

q
≤ 1.

As is well known, in the case the domain Ω is
bounded, it is not difficult to prove the existence
of a weak solution u as in Definition 1.1 which
additionally satisfies the strong energy inequality

1

2
‖u(t)‖22 +

∫ t

t′
‖∇u(τ)‖22dτ ≤ 1

2
‖u(t′)‖22 (8)

for almost all t′ ∈ [0, T ) and all t ∈ [t′, T ), see
[9], p. 340. For further results in this context for
unbounded domains we refer to [10].
Now we can state our main results.

Theorem 1.1. Let Ω ⊆ R3 be a gen-
eral domain, u0 ∈ L2

σ(Ω) and u is a weak
solution of the Navier-Stokes system (1) satis-
fying strong energy inequality (8). Then

(a) If ‖e−tAu0‖2 = O(t−α) for some 0 ≤ α < 3

4
,

then ‖u(t)‖2 = O(t−α) as t→∞.

(b) If ‖e−tAu0‖2 = o(t−α) for some 0 ≤ α <
3

4
,

then ‖u(t)‖2 = o(t−α) as t→∞.

Theorem 1.2. Let Ω ⊆ R3 be a gen-
eral domain, u0 ∈ L2

σ(Ω) and u is a weak
solution of the Navier-Stokes system (1) satisfy-
ing strong energy inequality (8). If u0 ∈ Lq(Ω)∩
L2
σ(Ω), 1 < q ≤ 2, then

‖u(t)‖2 = o
(
t−

1
2

(
1
q−

1
2

))
as t→∞.

Theorem 1.3. Let Ω ⊆ R3 be a gen-
eral domain, u0 ∈ L2

σ(Ω) and u is a weak
solution of the Navier-Stokes system (1) satis-
fying strong energy inequality (8). If there exist
positive constants t0, C1, and C2 such that

C1t
−α1 ≤ ‖e−tAu0‖2 ≤ C2t

−α2 for t ≥ t0,

where α1, and α2 are constants satisfying

0 ≤ α2 <
1

2
and α2 ≤ α1 < α2 +

1

4
,

then u coincides with the solution of the homo-
geneous Stokes system with the initial value u0

when time tends to infinity in the sense that

lim
t→∞

∥∥u(t)− e−tAu0

∥∥
2

‖u(t)‖2
= 0. (9)

2 Proof of main theorems

Let us construct a weak solution of the following
integral equation

u(t) = e−tAu0−
∫ t

0

A
1
2 e−(t−τ)AA−

1
2P(u ·∇u)dτ.

(10)
We know that

u ∈ L∞
(
0, T ;L2

σ(Ω)) ∩ L2
loc([0, T );W 1,2

0,σ (Ω)
)

is a weak solution of the Navier-Stokes system
(1) iff u satisfies the integral equation (10), see
[9]. In order to prove the main theorems, we need
the following lemmas.

Lemma 2.1. Let γ, θ ∈ R and t > 0, then
(a) If θ < 1, then∫ t

2

0

(t− τ)−γτ−θdτ = K1t
1−γ−θ

where K1 =
∫ 1

2

0
(1− τ)−γτ−θdτ <∞.

(b) If γ < 1, then∫ t

t
2

(t− τ)−γτ−θdτ = K2t
1−γ−θ

where K2 =
∫ 1

1
2
(1− τ)−γτ−θdτ <∞.
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The proof of this lemma is elementary and may
be omitted.

Lemma 2.2. Let u ∈ L2(Ω) and ∇u ∈ L2(Ω).
Then∥∥∥e−tAP(u · ∇u)

∥∥∥
2
. t−

β
2 ‖u‖β−

1
2

2 ‖∇u‖
5
2−β
2

where β is positive constant such that
1

2
≤ β < 3

2
.

Proof. Applying inequalities (6), (3), Holder in-
equality, interpolation inequality, and Lemma
2.1, we obtain∥∥∥e−tAP(u · ∇u)

∥∥∥
2

=
∥∥∥A β

2 e−tAA−
β
2 P(u · ∇u)

∥∥∥
2

≤ t−
β
2

∥∥∥A− β2 P(u · ∇u)
∥∥∥

2
. t−

β
2

∥∥∥u · ∇u∥∥∥
q

. t−
β
2 ‖u‖ 3

β
‖∇u‖2

. t−
β
2 ‖u‖β−

1
2

2 ‖∇u‖
3
2−β
2 ‖∇u‖2

. t−
β
2 ‖u‖β−

1
2

2 ‖∇u‖
5
2−β
2 .

The proof of Lemma 2.2 is complete.

Lemma 2.3. There exists a positive constant
δ such that if u0 ∈ D(A

1
4 ) and ‖A 1

4u0‖2 ≤
δ, then the Navier-Stokes system (1) has a
strong solution with the initial value u0 satisfying
‖∇u(t)‖2 . t−

1
2 for all t ≥ 0.

Proof. See [11].

Lemma 2.4. Let u be a weak solution of the
Navier-Stokes system (1) with the initial value
u0 ∈ L2

σ(Ω). Then there exists the positive value
t0 large enough such that ‖∇u(t)‖2 . t−

1
2 for all

t ≥ t0.

Proof. Applying Holder inequality, we have∥∥∥A 1
4u
∥∥∥2

2
=

∫ ∞
0

λ
1
2 d‖Eλu‖22

≤ (

∫ ∞
0

λ d‖Eλu‖22)
1
2 (

∫ ∞
0

d‖Eλu‖22)
1
2

= ‖A 1
2u‖2‖u‖2.

(11)

Consider the weak solution of the Navier-Stokes
system (1) satisfying the energy inequality

1

2
‖u(t)‖22 +

∫ t

t0

‖∇u(τ)‖22dτ ≤ 1

2
‖u(t0)‖22 (12)

for all t ∈ [0,∞) \N with N is a null set.
Let δ be a positive constant in Lemma 2.3.
Since (11) and (12), it follows that there ex-
ists the large enough t0 ∈ [0,∞) \ N such that
‖u(t0)‖

D(A
1
4 )
≤ δ.

Combining Lemma 2.3, inequality (12), and Ser-
rin’s uniqueness criterion [9, 12], we obtain

‖∇u(t)‖22 . t−
1
2 for all t ≥ t0.

The proof of Lemma 2.4 is complete.

Proof of Theorem 1.1

(a) Consider the weak solution of the Navier-
Stokes system (1), then u holds the integral equa-
tion

u(t) = e−tAu0 −
∫ t

0

e−(t−s)A P
(
u · ∇u

)
ds. (13)

From Lemma 2.2, we have

‖u(t)‖2 .
∥∥e−tAu0

∥∥
2

+

∫ t

0

(t− s)−
β
2 ‖u(s)‖β−

1
2

2 ‖∇u(s)‖
5
2−β
2 ds

for all
1

2
≤ β <

3

2
. We divide the above integral

into two different parts as follow

I =

∫ t

0

(t− s)−
β
2 ‖u(s)‖β−

1
2

2 ‖∇u(s)‖
5
2−β
2 ds

=

∫ t
2

0

(t− s)−
β
2 ‖u(s)‖β−

1
2

2 ‖∇u(s)‖
5
2−β
2 ds

+

∫ t

t
2

(t− s)−
β
2 ‖u(s)‖β−

1
2

2 ‖∇u(s)‖
5
2−β
2 ds

= I1 + I2.

We consider the following three cases:

0 ≤ α ≤ 1

4
,

1

4
≤ α < 1

2
, and

1

2
≤ α < 3

4
.
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Case 1: 0 ≤ α ≤ 1

4
.

Applying the energy inequality and Holder in-
equality, we obtain

I1 . ‖u0‖
β− 1

2
2 t−

β
2

∫ t
2

0

‖∇u(s)‖
5
2−β
2 ds

. ‖u0‖
β− 1

2
2 t−

β
2 (

∫ t
2

0

ds)
2β−1

4 (

∫ t
2

0

‖∇u(s)‖22 ds)
5−2β

4

. ‖u0‖
β− 1

2
2 t−

β
2

( t
2

) 2β−1
4 ‖u0‖

5−2β
4

2 = O(t−
1
4 ).

From Lemma 2.4 and Lemma 2.1(b), we have

I2 . ‖u0‖
β− 1

2
2

∫ t

t
2

(t− s)−
β
2 s−

1
2

(
5
2−β
)
ds

= O(t−
1
4 ) for t ≥ 2t0

where t0 is the constant in Lemma 2.4. It follows
that

‖u(t)‖2 .
∥∥e−tAu0

∥∥
2

+ I ≤ O(t−α) +O(t−
1
4 )

= O(t−α) as t→∞.

Case 2:
1

4
≤ α < 1

2
.

Applying the above inequality for α = −1

4
and

Holder inequality, we obtain

I1 . t−
β
2

∫ t
2

0

(s−
1
4 )β−

1
2 ‖∇u(s)‖

5
2−β
2 ds

. t−
β
2 (

∫ t
2

0

s−
1
2 ds)

2β−1
4

(∫ t
2

0

‖∇u(s)‖22 ds
) 5−2β

4

. t−
β
2

(
t

1
2

) 2β−1
4 = O(t−

β
4−

1
8 ).

On the other hand, from Lemma 2.4 and Lemma
2.1(b), we have

I2 .
∫ t

t
2

(t− s)−
β
2

(
s−

1
4

)β− 1
2
(
s−

1
2

) 5
2−βds

.
∫ t

t
2

(t− s)−
β
2 s

1
8−

β
4 s

β
2−

5
4 ds

= O(t−
β
4−

1
8 ) for t ≥ 2t0.

So, we have

‖u(t)‖2 .
∥∥e−tAu0

∥∥
2

+ I

≤ O(t−α) +O(t−
β
4−

1
8 ) for t ≥ 2t0.

It is not difficult to show that there exists a num-
ber β such that

β

4
+

1

8
≥ α and

1

2
≤ β < 3

2
.

Therefore, choose one of such β, it follows that

‖u(t)‖2 = O(t−α) as t→∞.

Case 3:
1

2
≤ α < 3

4
.

Applying Case 2 of part (a), we have

‖u(t)‖2 . t−γ for t ≥ 0, (14)

where γ is a constant such that 0 ≤ γ <
1

2
. Ap-

plying inequality (14) and Holder inequality, we
obtain

I1 . t−
β
2

∫ t
2

0

(s−γ)β−
1
2 ‖∇u(s)‖

5
2−β
2 ds

. t−
β
2

(∫ t
2

0

s−2γds
) 2β−1

4
(∫ t

2

0

‖∇u(s)‖22 ds
) 5−2β

4

. t−
β
2

(
t−2γ+1

) 2β−1
4 = O(t

γ
2−γβ−

1
4 ).

Moreover, from Lemma 2.4 and Lemma 2.1(b),
we have

I2 .
∫ t

t
2

(t− s)−
β
2

(
s−γ

)β− 1
2
(
s−

1
2

) 5
2−βds

. t−
β
2−γ(β− 1

2 )− 1
2 ( 5

2−β)+1

∫ t

t
2

(1− s)−
β
2 s−γ(β− 1

2 )ds

= O(t
γ
2−γβ−

1
4 ) for t ≥ 2t0.

It follows that

‖u(t)‖2 .
∥∥e−tAu0

∥∥
2
+I ≤ O(t−α)+O(t

γ
2−γβ−

1
4 )

for t ≥ 2t0. Similar to the above case, it is not
difficult to show that there exist γ and β such
that
γ

2
− γβ − 1

4
≤ −α, 1

2
≤ β < 3

2
, and 0 ≤ γ < 1

2
.

Choose ones of such γ and β, we conclude that
‖u(t)‖2 = O(t−α) as t→∞.
(b) This is deduced from the proof of part (a).
The proof of Theorem is complete.

Corollary 2.1. Let Ω ⊆ R3 be a general do-
main. Given u0 and u as in Theorem 1.1. If
‖u(t)‖2 = o(t−γ) for some γ ∈ [0, 1

2 ), then
‖u(t)− e−tAu0‖2 = o(t−(γ+θ)) for all θ ∈ [0, 1

4 ).
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Proof. The proof is derived directly from the
proof of Case 3 of Theorem 1.1.

Proof of Theorem 1.2

Theorem 1.2 is an immediate consequence of
Theorem 1.1(b) and the following lemma.

Lemma 2.5. Let u0 ∈ L2
σ(Ω). Then

(a) ‖e−tAu0‖2 → 0 as t→∞.
(b) If u0 ∈ L2

σ(Ω) ∩ Lq(Ω) for some 1 < q ≤ 2,
then∥∥e−tAu0

∥∥
2

= o
(
t−

1
2

(
1
q−

1
2

))
as t→∞. (15)

Proof. (a) See Lemma 1.5.1 in [9], p. 204.
(b) Applying inequality (3), we obtain∥∥e−tAu0

∥∥
2

=
∥∥e−tA2 e

−tA
2 u0

∥∥
2

=
∥∥∥A 1

2

(
1
q−

1
2

)
e
−tA

2 e
−tA

2 A−
1
2

(
1
q−

1
2

)
u0

∥∥∥
2

. t−
1
2

(
1
q−

1
2

)∥∥e−tA2 A−
1
2

(
1
q−

1
2

)
u0

∥∥
2
.

(16)
On the other hand, using inequality (2), we get

A−
1
2

(
1
q−

1
2

)
u0 ∈ L2

σ(Ω) (17)

Property 15 is deduced from Lemma 2.5(a), (16),
and (17).

Proof of Theorem 1.3

Proof. Applying Corollary 2.1 for γ = α2, θ =
α1 − α2

2
+

1

8
, there exists a positive constantM1

such that∥∥u(t)− e−tAu0

∥∥
2
≤M1t

−(α2+
α1−α2

2 + 1
8 )

= M1t
−(

α1+α2
2 + 1

8 ) for t ≥ t0.

It follows from the above inequality that

‖u(t)‖2 ≥ ‖u(t)‖2 −
∥∥u(t)− e−tAu0

∥∥
2

≥ C1t
−α1 −M1t

−(
α1+α2

2 + 1
8 )

≥
(
C1 −M1t

−(
α2−α1

2 + 1
8 )
)
t−α1

≥ C1

2
t−α1 for t ≥ t1,

where

t1 = max
{
t0,
(2M1

C1

) 8
4(α2−α1)+1

}
.

From the above two estimates, we obtain that∥∥u(t)− e−tAu0

∥∥
2

‖u(t)‖2
≤ M1t

−(
α1+α2

2 + 1
8 )

C1

2 t
−α1

=
2M1

C1
t−
(
α2−α1

2 + 1
8

)
→ 0 as t→∞.

The proof of Theorem is complete.

References

[1]. J. Leray, "Sur le mouvement d’un liquide
visqueux emplissant l’espace", Acta Math,
vol. 63, pp. 193-248, 1934.

[2]. T. Kato, "Strong Lp solutions of the
Navier-Stokes equation in Rm, with appli-
cations to weak solutions", Math. Z., vol.
187, pp. 471-480, 1984.

[3]. R. Kajikiya, T. Miyakawa, "On L2 decay
of weak solutions of the Navier-Stokes equa-
tions in Rn", Math. Z., vol. 192, pp. 135-
148, 1986.

[4]. M. E. Schonbek, "Large time behaviour of
solutions to the Navier-Stokes equations",
Commun. In Partial Diff. Eq., vol. 11, pp.
733-763, 1986.

[5]. M. Wiegner, "Decay results for weak solu-
tions of the Navier-Stokes equations in Rn",
J. London Math. Soc., vol. 35, pp. 303-313,
1987.

[6]. W. Borchers, T. Miyakawa, " L2-Decay
for the Navier-Stokes flows in halfspaces",
Math. Ann., vol. 282, pp. 139-155, 1988.

[7]. W. Borchers, T. Miyakawa, "Algebraic L2

- decay for Navier-Stokes flows in exterior
domains", Acta Math, vol. 165, pp. 189-227,
1990.

[8]. W. Borchers, T. Miyakawa, " L2-Decay
for Navier-Stokes flows in unbounded do-
mains with application to Exterior Station-
ary Flows", Arch. Rational Mech. Anal.,
vol. 118, pp. 273-295, 1992.

7



[9]. H. Sohr, The Navier-Stokes Equations. An
Elementary Functional Analytic Approach,
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