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L2 DECAY OF WEAK SOLUTIONS FOR THE NAVIER-STOKES EQUATIONS
IN GENERAL DOMAINS
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ABSTRACT

Let u be a weak solution of the in-stationary Navier-Stokes equations in a completely general
domain in R3. Firstly, we prove that the time decay rates of the weak solution u in the L2-norm
like ones of the solutions for the homogeneous Stokes system taking the same initial value in
which the decay exponent is less than 34 . Secondly, we show that under some additive conditions
on the initial value, then u coincides with the solution of the homogeneous Stokes system when
time tends to infinity. Our proofs use the theory about the uniqueness arguments and time decay
rates of strong solutions for the Navier-Stokes equations in the general domain when the initial
value is small enough.
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DANG DPIEU TIEM CAN CUA NGHIEM YEU CHO HE PHUONG
TRINH NAVIER-STOKES TRONG MIEN TONG QUAT VOI CHUAN L2

Vii Thi Thuy Dwong'’, Pao Quang Khii’
YTvuong Pai hoc Cong nghiép Qudng Ninh - Viét Nam
2yién Todn hoc Viét Nam

TOM TAT

Gia sir u 1a mot nghiém yéu ciia hé phuong trinh Navier-Stokes khong ding trong mot mién tong
quat trong R3. Trudc hét, chiing t6i ching minh rang toc d6 hdi tu theo thoi gian cta nghiém yéu
u voi chuan L2 giéng téc d6 hoi tu theo thoi gian ciia nghiém trong hé Stokes thuan nhét véi cing
gia tri ban dau va sd6 mil hoi tu nho hon 34. Thir hai, chung toi chi ra réng véi mot sb didu kién
clia gia tri ban dau thi u tring véi nghiém cua hé Stokes thuan nhat khi thoi gian dan t6i vo cung.
Phan chimg minh céc két qua trong bai bao dua trén 1y thuyét vé tinh duy nhat va téc do hoi tu
theo thoi gian cia nghiém manh cho hé phuong trinh Navier-Stokes trong mién tong quét khi gia
tri ban du du nho.

T khoa: Hé phirong trinh Navier-Stokes, Ddng diéu tiém cdn, Nghiém yéu, Hé phwong trinh
Stokes, Tinh duy nhdt nghiém.
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1 Introduction and main re-
sult

We consider the in-stationary problem of the
Navier-Stokes system

up — Au+u-Vu+ Vp =0,
divu =0,

ulpo =0,

u(0, z) = ug,

(1)

in a general domain  C R3, i.e a non-empty
connected open subset of R3, not necessarily
bounded, with boundary 92 and a time interval
[0,7),0 < T < oo and with the initial value ug,
where u = (u1,uz2,u3); v - Vu = div(uu),uu =
(uiuj)i7j:1, if div u = 0.

In this paper we discuss the behavior as t — oo
of weak solutions of the Navier-Stokes equations
in space L?(Q2), which goes to zero with explicit
rates. The L?-decay problem for Navier-Stokes
system was first posed by Leray [1] in R3. The
first (affirmative) answer was given by Kato [2]
in case D = R™, n = 3,4, through his study of
strong solutions in general spaces LP, see also
[3, 4, 5]. The idea of Schonbek was then ap-
plied by [6, 7] to the case where D is a half-
space of R™, n > 2 or an exterior domain of
R™, n > 3. W. Borchers and T. Miyakawa [8]
developed the method in [3, 6, 7] for the case of
an arbitrary unbounded domain. They showed
that if [le=*Aug||2 = O(t~) for some a € (0, 3),
then [Ju(t)|l2 = O(t~*). Our purpose in this pa-
per is to improve and generalize the result of
[8]. Firstly, we obtain the same result as that
of them but under more general condition on «,
in which the condition o € (0, 3) is replaced by
a € (0, %) Secondly, we obtain the stronger re-
sult than theirs by assuming some additive con-
ditions on the initial value.

We recall some well-known function spaces, the
definitions of weak and strong solutions to (1)
and introduce some notations before describ-
ing the main results. Throughout the paper, we
sometimes use the notation A < B as an equiv-
alent to A < CB with a uniform constant C.
The notation A ~ B means that A < B and
B < A. The expression (-, -), denotes the pairing
of functions, vector fields, etc. on Q and (-, ~)Q’T
means the corresponding pairing on [0,7) x €.
For 1 < ¢ < 0o we use the well-known Lebesgue

and Sobolev L9(2), W"?(), with norms || -

HLq(Q) =|- Hq and H : Hwk,p(g) = ”km' Fur-
ther, we use the Bochner spaces L* (O7 T, LP(Q)),
1 < s,p < oo with the norm

T 1/s
I e (0,757 () = </0 11 dT) - H'Hp,&T'

To deal with solenoidal vector fields we intro-
duce the spaces of divergence - free smooth com-
pactly supported functions CF%,(R2) = {u €
Cs°(Q),div(u) = 0}, and the spaces L2(Q) =
7083;(9)".“27 W()1’2(Q) _ 70(%)Q(Q)H.HW1,27 and

W) = Co @),

Let P: L?(Q) — L2(f2) be the Helmholtz pro-
jection. Let the Stokes operator

A=-PA: D(A) — L2(Q)

with the domain of definition
D(4) = {u € Wi2(),3f € L2(9)
(Vu, Vi) = (. 000, V9 € W3 ()}

be defined as

Au = —PAu = f,u € D(A).
As in [9], we define the fractional powers

A” :D(A%) — L2(Q), -1 <a < 1.

We have D(A) C D(A%) C L2(Q) for o € (0,1].
It is known that for any domain Q C R? the op-
erator A is self-adjoint and generates a bounded
analytic semigroup e *4,¢ > 0 on L2(Q).

The following embedding properties play a basic
role in the theory of the Navier-Stokes system

(2)
where % <pB< %, 1= % + . Furthermore, we

mention the Stokes semigroup estimates

1A= Pulls < Cllull,, u € LL(Q)

1
| A% Aulla <t ull2, (3)

with u € L2(Q),0 < o < 1. Now we recall the
definitions of weak and strong solutions to (1).

Definition 1.1. (See [9].) Let ug € L2(2).
1. A vector field

we L0, T; L2(Q)NLE.([0,T); We 2(Q)) (4)



is called a weak solution in the sense of Leray-
Hopf of the Navier-Stokes system (1) with the
initial value w(0, z) = ug if the relation

- <7.L, wt>Q,T + (Vu, vw>Q,T - <uu’ vw>Q,T

= (uo, w)q (5)
is satisfied  for  all  test  functions
w e C3°([0,T);C§5%(2)), and additionally the
energy inequality

1 ¢ 1
§IIU(75)||§+/O [Vu(r)||3dT < 5\|Uo|l§ (6)

is satisfied for allt € [0,T).

A weak solution u is called a strong solution of
the Navier-Stokes equation (1) if additionally lo-
cal Serrin’s condition

u € Li ([0, T); L(2)) (7)

is satisfied with 2 < s < 00, 3 < q < co where

2 3
-+-<1L
s q

As is well known, in the case the domain €2 is
bounded, it is not difficult to prove the existence

of a weak solution u as in Definition 1.1 which
additionally satisfies the strong energy inequality

Sl + [ Ivutnlier < 3@} @

for almost all ' € [0,T) and all t € [t/,T), see
[9], p. 340. For further results in this context for
unbounded domains we refer to [10].

Now we can state our main results.

Theorem 1.1. Let Q@ C R? be a gen-
eral domain, uy € L2() and u is a weak
solution of the Navier-Stokes system (1) satis-
fying strong energy inequality (8). Then

(a) If [|e~*uglla = O(t=®) for some 0 < a < =,
then ||u(t)]|2 = O(t~) as t = oo.

=~ w

3
(b) If |le M ugll2 = o(t~%) for some 0 < a < T
then ||u(t)||2 = o(t™%) as t — co.
Theorem 1.2. Let Q@ C R3? be a gen-

eral domain, ug € L2(Q) and u is a weak
solution of the Navier-Stokes system (1) satisfy-
ing strong energy inequality (8). If ug € L1(2)N
L2(Q), 1 < q <2, then

lu(t)]|2 = 0( 7%(%7%)) as t — oo.

Theorem 1.3. Let @ C R3? be a gen-
eral domain, ug € L2(Q) and u is a weak
solution of the Navier-Stokes system (1) satis-
fying strong energy inequality (8). If there exist
positive constants tog, Cq, and Cy such that

Cit= < |le gl < Cot™22 for t > to,

where aq, and ag are constants satisfying

1
and oy <o < ag + —,

1
0<as < =
e B 1

then u coincides with the solution of the homo-
geneous Stokes system with the initial value ug
when time tends to infinity in the sense that

lu®) — e ull,

lim
llu(t)|l2

t—o0

= 0. (9)

2 Proof of main theorems

Let us construct a weak solution of the following
integral equation

t
u(t) = e_tAuo—/ A%e_(t_T)AA_%IP(u-Vu)dT.
0
(10)
We know that
w e L(0,T; L2 () N Liy ([0, T); Wy 2 (2))

is a weak solution of the Navier-Stokes system
(1) iff u satisfies the integral equation (10), see
[9]. In order to prove the main theorems, we need
the following lemmas.

Lemma 2.1. Letv,0 € R andt > 0, then
(a) If 0 < 1, then

/2 (t— T)_VT_GdT = Kytt=¢
0

where K1 = foé(l -
(b) If v < 1, then

)77 < 0.

t
/ (t —7) 777 0dr = Kot!=7?

2

where Ko = fll(l — 1) 7707 < 0.
2



The proof of this lemma is elementary and may
be omitted. O

Lemma 2.2. Let u € L?(Q) and Vu € L*(Q).
Then

_1 5_
e AP Vu)|| St ully |Vl

where [ is positive constant such that
1

—<B<-.

2~ p 2

Proof. Applying inequalities (6), (3), Holder in-
equality, interpolation inequality, and Lemma
2.1, we obtain

He_tAIP’(u . Vu)H2 = HAge_tAA_glP’(u . Vu)H2

_B
t7 2

IN

u-Vu

A‘glP’(u-Vu)HQ <t %

q

@

St ulls [Vl

N

- ~3 3-8
= flully Va3 I Vullz

B
2

S
St

B-1 $-p
l[ully = [1Vull3

The proof of Lemma 2.2 is complete. O

Lemma 2.3. There exists a positive constant
§ such that if ug € D(AT) and |[Aiugly <
d, then the Navier-Stokes system (1) has a
strong solution with the initial value ug satisfying
[Vu(®)|2 St~z for all t > 0.

Proof. See [11]. O
Lemma 2.4. Let u be a weak solution of the
Navier-Stokes system (1) with the initial value
up € L2(Q). Then there exists the positive value

to large enough such that | Vu(t)|2 <t~ 2 for all
t > to.

Proof. Applying Holder inequality, we have
2 oo

— [ adlEp
2 0

<[ AdiBap(f ama?

1
= [[A2u]l2[|u]l2.

1

Consider the weak solution of the Navier-Stokes
system (1) satisfying the energy inequality

1 ¢ 1
5HU(t)H§+/t IVu(r)||5d7 < §IIU(to)H§ (12)

for all t € [0,00) \ N with N is a null set.

Let 0 be a positive constant in Lemma 2.3.
Since (11) and (12), it follows that there ex-
ists the large enough ty € [0,00) \ N such that

Jufto)ly ) <

Combining Lemma 2.3, inequality (12), and Ser-
rin’s uniqueness criterion [9, 12], we obtain

IVu(t)|2 <t72 forall t > to.

The proof of Lemma 2.4 is complete. O
Proof of Theorem 1.1

(a) Consider the weak solution of the Navier-
Stokes system (1), then u holds the integral equa-
tion

¢
u(t) = e g —/ e~ (=94 P(u-Vu)ds. (13)
0

From Lemma 2.2, we have
[u(®)ll2 < [le™ A uoll,

t
_B —% g_
+ / (t— ) Flu(s) |2 F [ Vu(s)|E P as

1 3
for all 3 <pg< 3 We divide the above integral

into two different parts as follow

t
- —3 3-8
I= / (t— )~ Fu()2H [Vu(s)lE as

t
/2
0

t
s p-1 3-8
+[(t—5) 2lu(s)lly 2[[Vu(s)]l3 “ds

2

8 (s [P 3-8
(t=s)" 2 uls)lls *[Vuls)l3 ~ds

=1 + L.

We consider the following three cases:

0<a<

=W

<a<

DN | =

, and

N | =

<a<

g

)

=



1
Case 1: 0 < a < —.

Applying the energy inequality and Holder in-
equality, we obtain

< P A2 [ 3-5
I S fluolly #2772 ||VU(S)H2 ds

< lluollg 4 /ds -
s/t
Shuolf Hed ()

From Lemma 2.4 and Lemma 2.1(b), we have

5— Qﬁ
||u0||2

= O(t™%).

(g_ﬁ)ds

N

t
_1
B Sl [ -9 Es
%
=0t %) for t> 2t
where tg is the constant in Lemma 2.4. It follows
that
lu(®)]l2 S [Je  uol|, + T < O(t™) + Ot %)
=0(t™) as t — oo.

1 1
2: - < —.
Case 1S < 5 1
Applying the above inequality for o = —1 and

Holder inequality, we obtain

nsed [T Ve s

0
% % 5—28
28—1
sed([Tstan e / [Vu(s)l3 ds)
0 0
8 28-1 B
2

On the other hand, from Lemma 2.4 and Lemma
2.1(b), we have

So, we have

[u®)]l2 <

le™" uoll, + 1

1

<Ot )+ O(t*ré) for t > 2t.

It is not difficult to show that there exists a num-
ber 8 such that

é+82a and7<6<g

Therefore, choose one of such 3, it follows that
|lu(t)]|]2 = O(t™) as t — oo.

1 3
Case3:§§oz<7.

28

/ IVu(s)[2 ds)*

Applying Case 2 of part (a), we have

lu(®)]|l2 St for t >0, (14)

1
where 7y is a constant such that 0 < v < 2 Ap-

plying inequality (14) and Holder inequality, we
obtain

t

Ilgt’§/2
0
o
s~ ds / Vu(s)||2 ds
([ sas) ([ 19tz as)
—1

IO

_ _1 2-B
(s 72| Vu(s)|l3"ds

5—283

[Nljey

N

—

StT

Moreover, from Lemma 2.4 and Lemma 2.1(b),
we have

t 5
e A R G Rt

2

=02 8% for t > 2.
It follows that
lu@®)ll2 < |le™ A uol|,+1 < O(t™*)+O(t27787%)

for t > 2ty. Similar to the above case, it is not
difficult to show that there exist v and [ such

that
v 1 1 3 1

LA _ < < — < —
2 VB 1S 2_5<2,3ur1d0 7 <3
Choose ones of such v and 3, we conclude that
lu(®)|lz2 = O(t=*) as t — oo.

(b) This is deduced from the proof of part (a).

The proof of Theorem is complete.

—Q,

Corollary 2.1. Let Q C R3? be a general do-
main. Given ug and u as in Theorem 1.1. If
lu®)2 = o(t™Y) for some v € [0,1), then
u(t) — e~ Augllz = o(t=FD) for all § € [0, 1).



Proof. The proof is derived directly from the
proof of Case 3 of Theorem 1.1. O

Proof of Theorem 1.2

Theorem 1.2 is an immediate consequence of
Theorem 1.1(b) and the following lemma.

Lemma 2.5. Let ug € L2(2). Then

(a) |le"*ugllz — 0 as t — occ.

(b) If ug € L2(Q) N LY(Q) for some 1 < q < 2,
then

He*mu(JHz = 0( 7%(%7%)) as t — oo. (15)

Proof. (a) See Lemma 1.5.1 in [9], p. 204.
(b) Applying inequality (3), we obtain

_ —tA —tA
le™ ol = [|e7" e ™ uoll,

1 —tA —tA 1

= HA§(%_%)6 2 e 2 A_5(E_§)uOH

< 3-8 e a3(-8)

“0||2'
(16)
On the other hand, using inequality (2), we get
A 2G8)y e 12(0) (17)

Property 15 is deduced from Lemma 2.5(a), (16),
and (17). O

Proof of Theorem 1.3

Proof. Applying Corollary 2.1 for v = ag, 6 =

Q] — o 1
! 24 —, there exists a positive constant M,

such that

Q] —x2

[ut) = e ul|, < Myt=(2275

+)

a1+

= Mt~ (=8 for t > t.

It follows from the above inequality that

lu(®)ll2 = u()]|2 = [lu(t) — e~ uol,
> Oyt — Myt (D

+§))t—0¢1

Q2 —a]

> (01 — My

C
> 7%—“1 for ¢ > tq,

where

2M;
Ch

8
) I(ag—ap)+1 }

From the above two estimates, we obtain that

t] = max{to, (

HU(t) - e_tAUOHz M1t*(01;02+%)
[[u(®)ll2 -
= 2M1t7(a2;a1+%) — 0 as t — oo.

Ch
The proof of Theorem is complete.
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