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EXISTENCE AND UNIQUENESS OF SOLUTION FOR GENERALIZATION
OF FRACTIONAL BESSEL TYPE PROCESS

Vu Thi Huong
University of Transport and Communications - Ha Noi - Vietnam

ABSTRACT

The real financial models such as the short term interest rates, the log-volatility in Heston model
are very well modeled by a fractional Brownian motion. This fact raises a question of developing a
fractional generalization of the classical processes such as Cox - Ingersoll - Ross process, Bessel
process. In this paper, we are interested in the fractional Bessel process (Mishura, Yurchenko-
Tytarenko, 2018). More precisely, we consider a generalization of the fractional Bessel type
process. We prove that the equation has a unique positive solution. Moreover, we study the
supremum norm of the solution.

Keywords: Fractional stochastic differential equation; Fractional Brownian motion; Fractional
Bessel process; Fractional Cox- Ingersoll- Ross process; Supremum norm.

Received: 13/10/2019; Revised: 18/02/2020; Published: 26/02/2020

SU TON TAI VA DUY NHAT NGHIEM CUA QUA TRINH DANG BESSEL
PHAN THU TONG QUAT

Vii Thi Hwong
Truong Pai hoc Giao théng Van tdi - Ha Nogi - Viét Nam

TOM TAT

Céc md hinh tai chinh thyc t& nhu ty 18 13i suat ngén han, log- d6 bién dong trong md hinh Heston
dugc md hinh hoa rét tot boi chuyén dong Brown phan thir. Didu nay dat ra cau hoi vé viée phat
trién dang phan thir tong quit cho cic qua trinh c6 dién nhu qué trinh Cox- Ingersoll- Ross, quéa
trinh Bessel. Trong bai bdo nay ching t6i quan tim tGi qua trinh Bessel phan tha (Mishura,
Yurchenko-Tytarenko, 2018). Cu thé hon, chiing t6i xét dang tong quét cua qué trinh Bessel phan
thir. Chiing t6i chimg minh sy ton tai va duy nhat nghiém dwong ciia phuong trinh. Hon nita,
ching toi dua ra danh gia cho chuan supremum ctia nghiém.

T khéa: Phucong trinh vi phdn ngdu nhién phan thie, Chuyén déng Brown phdn thir, Qud trinh
Bessel phdn thir, Qud trinh Cox- Ingersoll- Ross phdn thit, Chudn Supremum.
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1 Introduction
The Cox- Ingersoll- Ross (CIR) process

r(t) = r(0)+ /O (k—ar(s))ds+ /O o\/r(s) AW,

r(0),k,a,0 > 0, W is a Brownian motion,
was introduced and studied by Cox, Ingersoll,
Ross in [1]-[3] to model the short term interest
rates. This process is also used in mathemat-
ical finance to study the log-volatility in He-
ston model [4]. But the real financial models
are often characterized by the so-called “mem-
ory phenomenon” [5]- [7] , while the standard
Cox—Ingersoll- Ross process does not satisfy
it. It is reasonable to develop a fractional gen-
eralization of the classical CIR process. In [8],
Mishura and Yurchenko-Tytarenko introduced
a fractional Bessel type process

1
- ay(t))dt + §UdBfI, yo > 0,
(1.1)

where BH is a fractional Brownian motion
with Hurst parameter H > %, and then showed
that x(t) = y?(t) satisfied the SDEs

dz(t) = (k — ax(t))dt + o/z(t) o dBE

where the integral with respect to fractional
Brownian motion is considered as the path-
wise Stratonovic integral.

t>0,

In this paper, we study a generalization of the
Bessel type process y given by (1.1). More pre-
cisely, we consider a process Y = (Y (t))o<t<T
satisfying the following SDEs,
k H
dY (t) = | === +0b(t,Y(t)) ) dt + odB" (t),
Y(t)
(1.2)

where 0 <t < T, Y(0) > 0 and BY is a frac-
tional Brownian motion with the Hurst param-
eter H > % defined in a complete probability
space (2, F,P) with a filtration {F,t € [0, T}
satisfying the usual condition.

We first show that, the equation (1.2) has a
unique positive solution. Moreover, we esti-
mate the supremum norm of the solution.

2 The existence and unique-

ness of the solution

Fix T' > 0 and we consider equation (1.2) on
the interval [0, 7]. We suppose that k£ > 0 and
the coefficient b = b(t,z) : [0,400) x R — R
are mesurable functions and globally Lipschitz
continuous with respect to z, linearly growth
with respect to x. It means that there exists
positive constants L, C such that the following
conditions hold:

(i) |b(t,x) —b(t,y)| = L|x — y|, for all z,y €
R and ¢ € [0,T;

(i) |b(t,z)| < C(1 + |z|), for all z € R and
tel0,T7];

Denote aVb = max{a, b} and aAb = min{a, b}.
For each n € N and x € R,

(s ) = Ll +b(s,z) V —.

We consider the following fractional SDE

Y™ (1) = Y(0) + / t F™ (s, Y™ (s))ds + odBH (s),
0
(2.1)

where ¢ € [0,7], Y(0) > 0. Using the es-
timate |a V¢ —bV ¢ < |a—b| we can prove
that the coefficients of equation (2.1) satisfies
the assumption of Theorem 2.1 in [9]. So equa-
tion (2.1) has a unique solution on the interval
[0,T7.

Now, we set

1
7o = inf{t € [0,T]: [YM(#)| < =} AT.
n
In order to prove that equation (1.2) has a

unique solution on [0,7] we need the follow-
ing lemma.



The
decreasing, and for almost all w € Q, 7,(w) =
T for n large enough.

Lemma 2.1. sequence T, 1S TNON-

Proof. We will use the contradiction method
as in Theorem 2 in [8]. It follows the result
on the modulus of continuity of trajectories of
fractional Brownian motion (see [10]) that for
any € € (0, H— 1), there exists a finite random
variable 7. 7 and an event ). r € F which do
not depend on n, such that P(2. ) =1, and

o(B7 (t.0) — B (s,0))| < ner(@)lt — /"~

(2.2)
for any w € Qe and 0 < s <t < T. Assume
that for some wy € Qe r, T(wo) < T for all
n € N. Denote

Fon (o) = sup{t € [0, 7n(wo)] : Y (¢, wp) > %}

In order to simplify our notation, we will omit
wq in brackets in further formulas. We have

Y (1) =Y (k) = —

1
_ / ") (5, Y0 (8))ds+o (B (7)) — B ().
This implies

lo(B™(7,,) — B" (k)| =

1 ™
= +/ % + (s, Y (5)) v —=

From the definition of 7,, k, we have

1 2
< Y(")(t) <z, for all t € [:‘in,Tn]-
n n

Then for all n > ng = it follows from

(2.3) that

2
Y (0)’

lo(BY (1) — B (1n))] > ~ + 2

_ 1
776,T|7—n - ’{n|H > E + (24)

1
n

This fact together with (2.2) implies that
kn

T(Tn - Kﬂ)?

for all n > ng. Using the similar arguments in
the proof of Theorem 2 in [8] we see that the
inequality 2.4 fails for n large enough. There-
fore 7,(wp) = T for n large enough.

Lemma 2.2. If (Y (t))o<t<r s a solution of
equation (1.2) then Y (t) > 0 for all t € [0,T)
almost surely.

Proof. In order to prove this Lemma we will

also use the contradiction method. Assume

that for some wy € ©Q, inf Y(¢,wp) = 0. De-
te[0,T

note M = sup;¢jo. 1Y (t,wo)| and 7 = inf{t :
Y (t,wp) = 0}. For each n > 1, we denote
vn = sup{t < 7 : Y(t,wp) = 1}. Since Y has
continuous sample paths, 0 < v, <7 < T and
Y (t,wp) € (0,2) for all t € (v, 7). We have

1

- = Y(r)=Y(v,) =

/T (Y](“s) + b(s, Y(s))) ds + o(B" (1) — B (1,)).
If n > 20(1k+M) then |b(s, Y (s,wo))| < C(1 +

Y (s,w0)]) < C(1+ M) < &, and

‘O'(BH(T, wp) — BH(un,wo))| > % + %n(T — Up).

(2.5)

Using the same argument as in the proof of

Theorem 2 in [8] again, we see that the in-

equality (2.5) fails for all n large enough. This
tradiction completes the lemma.

Theorem 2.3. For each T > 0 equation (1.2)
has a unique solution on [0,T].

Proof. We first show the existence of a posi-
tive solution. From Lemma 2.1, there exists a
finite random variable ng such that Y (™ (t) >

1
— > 0 almost surely for any ¢ € [0,7] and
ng

i=1,...,d. Since |z V =E2| < |z| and b(t, z) is
linearly growth with respect to z, for all n > ng
we have

Y (@) < [Y () +noTk +|o| sup |B(s)|+
s€[0,T

0/01t (1+ 1Y (s))) ds.



Applying Gronwall’s inequality, we get

|Y(n) (t)] < C1e“T, forany te [0, T,

where

C1 = |Y(0)| +noTk + |o| sup |BH(s)|+ CT.
s€[0,T7]
Note that C is a finite random variable which
does not depend on n. So
sup [b(t, Y " ()| < C(1+ sup [Y (1))
0<t<T 0<t<T

< C(1+ CeT).

4C(1 + C1eCT)
k Y
inf b(t Y™ (t)) > _—lm Therefore the pro-
0<t< 4
cess Y(”)( t) converges almost surely to a posi-
tive limit, called Y (¢) when n tends to infinity,
and Y'(t) satisfies equation (1.2).

Then for any n > ng V

Next, we show that equation (1.2) has a unique
solution in path-wise sense. Let Y (¢) and Y (¢)
be two solutions of equation (1.2) on [0, T]. We
have

Y (t,w)|
k k

Y(s,w)  Y(s,w

Y (tw) -

</
0

+ /Ot [b(s, Y (5,)) = bls, ¥ (s,))| ds

ds+

Using continuous property of the sample paths
of Y(t) and Y (¢) and Lemma 2.2, we have

— min {Y(t,0), V(¢ }>0.
mo = min (Y (1,0),¥ (1)
Together with the Lipschitz condition of b we
obtain

. .

. kY -Y

Ytw) — V) < [ ATl

0

2
my

t
+/ LY (s,w) = Y (s,w)|ds
0

It follows from Gronwall’s inequality that

Y (t,w) — Y (t,w)| = 0, for all ¢ € [0,T].

Therefore, Y (t,w) = Y (t,w) for all t € [0,T].
The uniqueness has been concluded.

The next result provides an estimate for the
supremum norm of the solution in terms of
the Holder norm of the fractional Brownian
motion B,

Theorem 2.4. Assume that conditions (Al)—
(A2) are satisfied, and Y (t) is the solution of
equation (1.2). Then for any v > 2, and for
any T > 0,

1Y llo,t,00 < C1,y,8,1k,0,a(lyo + 1) x

b
xexp {02,%5,T,k,c,d,a (IIBHH&%B” + 1> } :

Proof. Fix a time interval [0,T]. let z(t) =
Y7 (t). Applying the chain rule for Young inte-
gral, we have

z(t) =Y7(0)+

t
+7/0(1/7
t

foo
+ v oz v

b(s,Y (s ))) =5 (s)ds+

s)dBH (s).

[}

Together with the condition (A2) we obtain

‘/ ( T b(u, Y (u ))) 123 (w)du

S/s (411 @)+ €1+ |=)H7)]21F w)]) du

Since v > 2 then we have

[knznst O 4 O 4 (t—s).
(2.7)



Let Ir = '/t 275 (w)dBE (u)).

Following the argument in the proof of Theo-
rem 2.3 in [11] we have

I < R||B"|lo,r,5

1-1 11 1
(el =7 4 50 - 5D).

(2.8)
where R is a generic constant depending on
a,B and T.

Substituting (2.7) and (2.8) into (2.6), we ob-
tain

By following similar arguments in the proof of
Theorem 2.3 in [11], for all s,t € [0,T],s < ¢
such that t — s < A, we have

[ 2]|s.00 < 2|2(5)] + 4y(k + O)T + 4T%.
(2.9)

It leads to

[12]l0,7,00 <

H EicEsy 1/8
2T (20vR||B" |lo,1,8) POV —1 V(87 (k+C)+8vC)V(8cyR|| Bllo,1,5) +1
X

x (|2(0)] + 4v(k + C)T + 4T7) .

_2 _1 . . .
|2(t) — 2(s)| < v [kHZHi,t,lo + CHZ”i,t,go + CZ's,t,oo:| »L'his fact together with the estimate

x (t =)+ oyR||B™||or,5%
1—l 1_l .
X {IIZIIM,Z)O(t— 8)° + |12l 3 (t — 573> ] _

We choose A such that

A 1 BT 1
=l A A
[207R||BH|O,T,[J 8v(k +C) +8C

1
1Y llo.r00 < 112015/ o0

we obtain the proof.

. 18
A () .
8ovR| Bllo,r,s
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