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 Assessment of top coal fall potential is of great importance for sustainable 
longwall caving mining. However, available assessment tools/indices for 
the fall are applicable to roof rock only, and their use for top coal (whose 
geological structures may be different) can be inappropriate. This paper 
presents a new index for top coal fall in longwall mining where the fall is 
controlled by the cantilever effect. The index is developed from an 
integrated numerical and statistical analysis using the database from Ha 
Lam coal mine in Vietnam. The numerical analysis reveals that the 
strength and stiffness of in-seam discrete fractures and coal’s elastic 
modulus are inversely proportional to top coal fall. Meanwhile, the density 
of discrete fractures and seam depth are found to be directly proportional 
to the fall. A procedure for the development of assessment equation for 
top coal is established using single and multiple regressions and model 
transformation technique. A new assessment index for longwall top coal 
fall named Fall Index (FI) is proposed, taking coal elastic modulus, 
fracture density, fracture friction angle, fracture stiffness and seam depth 
as input parameters. The study also reveals that statistically seam depth 
has the most significant effect while fracture density and fracture 
strength show the least significant effect on top coal fall. At the same time, 
coal’s elastic modulus and fracture stiffness play similar roles in the fall. 
The results from this paper assist engineers in better assessing top coal 
fall potential and subsequently better controlling longwall stability for 
various geological conditions in mine design.  
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1. Introduction

Longwall is the major underground mining
method producing coal in many countries such as 

Australia, Europe, and Vietnam (Mohutsiwa and 
Musingwini, 2015). In terms of geotechnics, the 
stability of top coal (in Longwall Top Coal Caving) 
or roof rock (in Single Pass Longwall) portion 
between coal wall (coal face line) and face support 
plays an important role in the successful 
operation of a longwall caving method (Figure 1). 
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Mining practices around the world show that top 
coal/roof rock may uncontrollably fall 
downwards which causes serious 
shearer/support damage, worker injury/fatality, 
and huge economic loss (Le et al., 2022). A 
geotechnical assessment of top coal/roof rock fall 
potential is therefore of importance for 
minimizing the above damage or loss, particularly 
at the early stage of a mining project. 

The reliability and accuracy of a longwall top 
coal/roof rock fall assessment greatly depend on 
the understanding of fall mechanisms and the 
database used for assessment. As reviewed in 
detail in past studies (Le et al., 2022), the top 
coal/roof rock fall between coal wall and face 
support (roof cavity) is basically controlled by 
either top coal/immediate roof cantilever or 
massive roof weighting. Based on these 
mechanisms, several tools or indices were 
developed for the assessment or prediction of the 
fall. For example, from empirical and analytical 
analysis, Langosch et al. (2003) calculated an 
index of roof fall frequency. This index used the 
data of support resistance, vertical stress, fracture 
direction and tip-to-face distance collected from 
German longwalls. Similarly, Frith (2005) 
developed equations for calculating the potential 
of roof fall using panel width, extraction height, 
and massive strata thickness from Australia 
mining practice. Also from field monitoring of face 
support in Australia longwalls, Hoyer (2011) and 

Trueman and Hutchinson (2018) presented 
indices of roof cavity risk using leg pressure, load 
rate and yield cycles. Medhurst et al. (2014) used 
similar approach and incorporated Geophysical 
Strata Rating (GRS) to develop a chart for 
predicting roof cavity risk. Using a qualitative 
risk-analysis technique, Iannacchione et al. 
(2007) introduced a roof fall risk index based on 
characteristics and defects of roof conditions from 
US mining practice. Also using risk assessment 
method, Prusek et al. (2017) developed another 
roof fall risk index from various characteristics of 
roof strata, face support, panel geometry and fault 
orientation from Poland longwalls. Recently, 
Islavath et al. (2020) developed a numerical-
based index for roof fall, but the simulation could 
not show explicit fall. Meanwhile, Małkowski and 
Juszyński (2021) performed a modern 
assessment of roof fall using an artificial neural 
network, but for copper mines rather than coal 
mines. In general, the above tools/indices are 
helpful for the assessment of longwall roof fall 
potential in various geotechnical conditions at 
different levels of details and cost. However, as the 
original database from practice for a tool/index 
development was limited and representative of a 
specific mining region, a new assessment 
tool/index applicable to wide range of geological 
conditions is recommended. More importantly, 
since many tools/indices are applicable to roof 
rock only, its use for top coal (whose geological 
structures may be different) can be inappropriate. 
Although some studies assessed top coal fall (i) 
separately from roof rock fall (Le et al., 2018, 
2020, 2022) or (ii) as a consequence of face spall 
(Yao et al., 2017, Kong et al., 2019, Guo et al., 
2019), a tool/index for top coal fall assessment 
remains unavailable and needs to be developed 
exclusively. 

This paper presents a new index for 
assessment of top coal fall in longwall mining 
where the fall is controlled by the cantilever effect. 
The index is developed from an integrated 
numerical analysis (parametric study) and 
statistical analysis (multiple regression) using the 
database from Ha Lam coal mine, Vietnam. The 
index assists mining engineers in better 
assessment of top coal fall potential for various 
geological conditions at the preliminary stage of 
mine design. 

 
Figure 1.  Conceptual model of top coal/roof rock 

fall in longwall mining (modified from Le et al., 
2022). 
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2. Parametric study of geotechnical 
parameters 

2.1. Numerical and parametric consideration 

The 2D discontinuum-based numerical code 
UDEC (Itasca Consulting Group, 2019) is used to 
develop longwall models for understanding key 
parameters controlling top coal fall. The code can 
well represent typical joints and discrete 
fractures in coal seam/rock strata and explicit 

coal/rock detachment in the fall. The geological 
and mining conditions from Ha Lam coal mine are 
used for development of a longwall model 
because the top coal fall is controlled by the 
cantilever effect. The model is then used for 
parametric study. The details of model 
development are described in (Le and Oh, 2022) 
and thus not presented in this paper. Considering 
the 2D nature of the code, computation time for 
each longwall mining simulation and effect of 
controlling parameters on top coal fall in the 
literature, the current paper focuses on the key 
geotechnical parameters, as can be classified into 
three groups of intact coal/rock characteristics, 
fracture/joint characteristics, and others (Figure 
2). To quantify top coal fall, an index called top 
coal fall rate (%) is adopted from Le and Oh 
(2022). The rate is calculated by dividing the total 
fallen blocks from all face advances by the total of 
pre-mining top coal blocks. For the parametric 
study, a range of three to five values is assigned for 
each parameter to cover practical and possible 
values of parameters  in the field. 

2.2. Parametric study

 
Figure 2. Geotechnical parameters affecting top 

coal fall. 

Table 1. Input and result of parametric study. 
Order Coal 

cohesion 
strength  

(MPa) 

Coal elastic 
modulus 

(GPa) 

Fracture 
density  
(m/m2) 

Fracture 
friction 
angle  

(degree) 

Fracture 
stiffness  
(GPa/m) 

Support 
advance 

speed 
(timestep) 

Seam 
depth 

(m) 

Horizontal 
stress 

(MPa) 

Top 
coal fall 

rate  
(%) 

1 0.70 1.09 2.0 15 10 50 200 5.2 6.20 
2 1.40 1.09 2.0 15 10 50 200 5.2 7.16 
3 2.79 1.09 2.0 15 10 50 200 5.2 8.91 
4 3.49 1.09 2.0 15 10 50 200 5.2 8.59 
5 1.40 0.54 2.0 15 10 50 200 5.2 10.89 
6 1.40 2.17 2.0 15 10 50 200 5.2 5.65 
7 1.40 2.72 2.0 15 10 50 200 5.2 5.01 
8 1.40 1.09 1.0 15 10 50 200 5.2 4.48 
9 1.40 1.09 1.5 15 10 50 200 5.2 4.90 

10 1.40 1.09 3.0 15 10 50 200 5.2 7.98 
11 1.40 1.09 2.0 10 10 50 200 5.2 8.11 
12 1.40 1.09 2.0 25 10 50 200 5.2 5.96 
13 1.40 1.09 2.0 35 10 50 200 5.2 4.45 
14 1.40 1.09 2.0 15 1 50 200 5.2 12.09 
15 1.40 1.09 2.0 15 30 50 200 5.2 6.36 
16 1.40 1.09 2.0 15 50 50 200 5.2 6.12 
17 1.40 1.09 2.0 15 10 100 200 5.2 7.71 
18 1.40 1.09 2.0 15 10 400 200 5.2 8.19 
19 1.40 1.09 2.0 15 10 50 100 5.2 5.25 
20 1.40 1.09 2.0 15 10 50 300 5.2 8.91 
21 1.40 1.09 2.0 15 10 50 400 5.2 10.02 
22 1.40 1.09 2.0 15 10 50 500 5.2 12.48 
23 1.40 1.09 2.0 15 10 50 200 2.6 6.20 
24 1.40 1.09 2.0 15 10 50 200 10.4 8.11 
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The input and result of the parametric study 
are presented in Table 1. The table also includes 
the effect of fracture characteristics which were 
investigated by Le and Oh (2022). In this paper, 
the variation in coal strength and fracture 
strength is represented through the variation in 
intact block cohesion and fracture friction angle, 
respectively. The results in Table 1 show that as 
the coal cohesion strength increases from 0.7 to 
3.49 MPa, the top coal fall rate fluctuates in the 
range of 6.20÷8.91%. This result which is not 
expected as a stronger coal seam should increase 
its stability. One likely explanation for the result is 
that as top coal falls explicitly in the simulation, its 
fall rate is controlled by not only intact coal 
strength but also fracture strength (boundaries 
between blocks). This can be clearly seen from the 
results of fracture friction angle’s variation. As the 
angle increases from 10 to 35 degrees, the fall rate 
clearly decreases from 8.11 to 4.45%.   

The results from coal elastic modulus and 
fracture stiffness show consistency. That is, as the 
modulus and stiffness increase from 0.54 and 1 
GPa to 2.72 and 50 GPa, respectively, the fall rate 
decreases from 10.89 and 12.09% to 5.01 and 
6.12%, respectively. The results can be explained 
by a field observation that stiffer rock/fracture 
suffers more stress concentration (Calleja, 2008). 
This consequently causes more coal/fracture 
failure and fall. The role of stress concentration in 
top coal fall is clearly seen from seam depth and 
horizontal stress analyses. As the seam depth (or 
vertical stress) increases, the fall rate clearly 
increases as expected. An increase in horizontal 
stress from 2.6 to 10.4 MPa increases the fall rate 
from 6.20 to 8.11%. It should be noted that as the 
horizontal stress is 3D in nature, the effect of this 
parameter on top coal fall should be further 
studied using a 3D numerical code. 

For the advance of face support, it is proved 
that before setting support at new coal wall, an 
amount of roof convergence occurs that needs 
great support capacity for resistance (Mitchell, 
2009). This explains why in practice, after each 
face cut, a support is advanced to new coal wall 
after a short period of time rather than 
immediately. As there is no guideline for 
modelling this period in UDEC, the time for 
support advance is represented through the 
mechanical timestep in UDEC. The result shows 

that as the time for face advance increases, top 
coal rate also increases. This result agrees with 
practical mining. Note that the timestep is a 
function of the simulation setting, and it should 
not be used as an input parameter for 
geotechnical assessment. 

3. Top coal fall index  

3.1. Statistical analysis 

A procedure for the development of longwall 
top coal fall index (FI) is shown in Figure 3. In the 
first step, all geotechnical parameters affecting 
top coal fall are theoretically analyzed (see 
Section 1). Eight parameters (i.e., coal cohesion, 
coal elastic modulus, fracture density, fracture 
friction angle, fracture stiffness, timestep, seam 
depth and horizontal stress) that fulfill the 
requirements of code’s nature and computation 

 
Figure 3. Procedure for development of 

longwall top coal fall index. 
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(1) 

time are entered into the second step. The second 
step is a parametric study (see Section 2). Five 
parameters from the study (i.e., coal elastic 
modulus, fracture density, fracture friction angle, 
fracture stiffness and seam depth), whose effect 
on top coal fall is mechanistically explainable, are 
used in the next step. 

In the third step, a single regression analysis 
is conducted to estimate the regression model 
with greatest fit for a single parameter. The 
finding indicates a linear relationship between 
fracture density, fracture friction angle, and seam 
depth with the top coal fall rate. The correlation 
has a high coefficient of determination (R square) 
and is consistent with field observations. At the 
same time, the optimal model for coal elastic 
modulus and fracture stiffness has a power  

relationship with the fall rate. The relationship 
well represents the role of coal elastic 
modulus/fracture stiffness in top coal fall, which 
is clearly manifested at practical values rather 
than high values. All the relationships are plotted 
in Figure 4. 

In the fourth step, a multiple regression 
analysis is performed to form a regression 
equation (𝑓𝑓) for top coal fall assessment. The 
regression equation (or assessment equation) is 
given as: 

𝑓𝑓 = 𝛼𝛼 + 𝛽𝛽1𝐸𝐸𝑎𝑎 + 𝛽𝛽2𝐹𝐹𝐹𝐹 + 𝛽𝛽3𝐹𝐹𝐹𝐹 
+𝛽𝛽4𝐹𝐹𝑆𝑆𝑏𝑏 + 𝛽𝛽5𝐷𝐷  

Where: 𝐸𝐸 is elastic modulus of coal (GPa); 𝐹𝐹𝐹𝐹 
is fracture density (m/m2); 𝐹𝐹𝐹𝐹 is fracture friction 
angle (degree); 𝐹𝐹𝐹𝐹 is fracture stiffness (GPa/m); 𝐷𝐷 
is seam depth (m); 𝛼𝛼 is intercept; 𝛽𝛽1–5 are 

 

 

 
Figure 4. Relationship between five parameters and top coal fall rate. 
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(2) 

(3) 

coefficients of independent variables; 𝑎𝑎 and 𝑏𝑏 are 
power. 

Since the single regression analysis shows 
three linear relationships and two nonlinear 
(power) relationships, either multiple linear or 
nonlinear regression model can be considered as 
best fit model. A multiple linear regression model 
is finally selected for two reasons: (i) simple use in 
practical assessment and (ii) limited input 
parameters. The power model in 𝑓𝑓 is accordingly 
transformed into linear model by assuming 
specific value of power (Ryan, 2008). The specific 
value is adopted from single regression analysis in 
Figure 4. The regression equation is rewritten as:  

𝑓𝑓 = 𝛼𝛼 + 𝛽𝛽1𝐸𝐸′ + 𝛽𝛽2𝐹𝐹𝐹𝐹 + 𝛽𝛽3𝐹𝐹𝐹𝐹 

+𝛽𝛽4𝐹𝐹𝑆𝑆′ + 𝛽𝛽5𝐷𝐷 

Where: 𝐸𝐸′ = 𝐸𝐸−0.465 and 𝐹𝐹𝐹𝐹′ = 𝐹𝐹𝑆𝑆−0.178. 
The data for multiple linear regression is listed in 
Table 2. The coefficients are then calculated using 
the following matrix algebra:  

�

𝑓𝑓1
𝑓𝑓2
…
𝑓𝑓17

� =

�

𝛼𝛼 𝛽𝛽1𝐸𝐸1′ 𝛽𝛽2𝐹𝐹𝐷𝐷1 𝛽𝛽3𝐹𝐹𝐹𝐹1 𝛽𝛽4𝐹𝐹𝑆𝑆1′ 𝛽𝛽5𝐷𝐷1
𝛼𝛼 𝛽𝛽1𝐸𝐸2′ 𝛽𝛽2𝐹𝐹𝐷𝐷2 𝛽𝛽3𝐹𝐹𝐹𝐹2 𝛽𝛽4𝐹𝐹𝑆𝑆2′ 𝛽𝛽5𝐷𝐷2
… … … … … …
𝛼𝛼 𝛽𝛽1𝐸𝐸17′ 𝛽𝛽2𝐹𝐹𝐷𝐷17 𝛽𝛽3𝐹𝐹𝐹𝐹17 𝛽𝛽4𝐹𝐹𝑆𝑆17′ 𝛽𝛽5𝐷𝐷17

�

  
The results of multiple linear regression are 

shown in Tables 3÷5. Table 3 shows that 93.69% 
of the total variance in top coal fall can be 
explained by the variance of the five parameters. 
The small difference between R square and 
Adjusted R square may denote that the set of five 
parameters is statistically suitable for 
development of regression model. Each 
independent parameter affects top coal fall with 
reasonable correlation. Table 4 indicates the 
validity of regression model because the 
Significance F is nearly zero with a Level of 

Table 2. Data for multiple linear regression. 
Order Transformed coal 

elastic modulus 
(GPa) 

Fracture 
density  
(m/m2) 

Fracture 
friction angle  

(degree) 

Transformed 
fracture stiffness  

(GPa/m) 

Seam 
depth 

(m) 

Top coal 
fall rate  

(%) 
1 0.96072 2 15 0.663743 200 7.16 
2 1.331794 2 15 0.663743 200 10.89 
3 0.697503 2 15 0.663743 200 5.65 
4 0.627951 2 15 0.663743 200 5.01 
5 0.96072 1 15 0.663743 200 4.48 
6 0.96072 1.5 15 0.663743 200 4.9 
7 0.96072 3 15 0.663743 200 7.98 
8 0.96072 2 10 0.663743 200 8.11 
9 0.96072 2 25 0.663743 200 5.96 

10 0.96072 2 35 0.663743 200 4.45 
11 0.96072 2 15 1 200 12.09 
12 0.96072 2 15 0.545849 200 6.36 
13 0.96072 2 15 0.498406 200 6.12 
14 0.96072 2 15 0.663743 100 5.25 
15 0.96072 2 15 0.663743 300 8.91 
16 0.96072 2 15 0.663743 400 10.02 
17 0.96072 2 15 0.663743 500 12.48 

 
Table 3. Regression statistics. 

Parameter Value 
Multiple R 0.967943282 
R square 0.936914197 

Adjusted R square 0.908238832 
Standard Error 0.80036098 
Observations 17 

 



 Dung Tien Le and Hai Hong Mai/Journal of Mining and Earth Sciences 63 (6), 85 - 92 91 

(4) 

Significance at 0.05. Table 5 shows the validity of 
independent parameters. This is because all 
parameters have their p-value less than 0.05, and 
they are concluded to be statistically significant at 
a 0.05 Level of Significance. 

3.2. Top coal fall index 

The regression equation in Section 3.1 
(Equation 1) can serve as an assessment index for 
top coal fall and is named Fall Index (FI). Using the 
coefficients from Table 5, the Fall Index is written 
as follows:  
𝐹𝐹𝐹𝐹 = −14 + 7.918𝐸𝐸−0.465 + 2.076− 0.139𝐹𝐹

+ 12.44𝐹𝐹𝑆𝑆−0.178 + 0.016𝐷𝐷 
In order to compare the statistical 

significance of different parameters on top coal 
fall, the Standardised Multiple Regression (Kutner 
et al., 2005) is used. The result shows that 
statistically, seam depth has the most significant 
effect on top coal fall (28.27%). In contrast, both 
fracture density and fracture strength show the 
least significance effect on the fall (14.36 and 
14.22%). At the same time, coal elastic modulus 
and fracture stiffness play similar roles in the fall 
(20.55 and 22.59%).  

4. Conclusions 

This paper presents a new index for 
assessment of top coal fall in longwall mining 
from an integrated numerical and statistical 
analysis. The numerical analysis reveals that the 
strength and stiffness of in-seam discrete 
fractures and coal elastic modulus are inversely 
proportional to top coal fall. Meanwhile, the 

density of discrete fractures and the seam depth 
are found to be directly proportional to the fall. A 
procedure for the development of an assessment 
equation for top coal fall is established using 
single and multiple regressions and model 
transformation technique. A new assessment 
index for longwall top coal fall named Fall Index 
(FI) is proposed, taking coal elastic modulus, 
fracture density, fracture friction angle, fracture 
stiffness and seam depth as input parameters. The 
study also reveals that seam depth statistically 
has the most significant effect while fracture 
density and fracture strength show the least 
significant effect on top coal fall. At the same time, 
coal elastic modulus and fracture stiffness play 
similar roles in the fall. Due to the limitation of the 
numerical code, effect of support characteristics 
should be further studied in future research. The 
results from this paper assist mining engineers in 
better assessing top coal fall potential and 
subsequently better controlling longwall stability 
for various geological conditions at preliminary 
stage of mine design. 
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