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 The area of the tunnel face after the blasting is a very important factor in 
underground excavations where the drilling and blasting method is used. 
The area of the tunnel face, this is a significant factor that has affected 
the cost and safety of underground constructions in case of using the 
drilling and blasting method in underground excavations. Because the 
area of the tunnel after the blasting depends on many different 
parameters, such as geological conditions in the area where the tunnel is 
located, the parameters of the explosion, and other parameters of the 
tunnel, it is very difficult to accurately determine the value of the tunnel 
face area after blasting. This paper uses the data obtained in the actual 
blasting of the Deo Ca tunnel (39 datasets) to build the computational 
and prediction models for the area of the tunnel face after blasting by 
two methods, the multiple linear regression analysis method and the 
method of using artificial neural network (ANN). Determination 
coefficient R2 of multiple linear regression analysis (MLRA) method and 
ANN method were obtained at 0.9224, and 0.9449, respectively. The 
applicability of the multiple linear regression analysis method and ANN 
method in calculating and predicting tunnel face area after blasting 
were validated based on a comparison with the results of the tunnel face 
area after blasting in practice. 
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1. Introduction 

In underground excavation, overbreak and 
underbreak had long been recognized as the 
principal cause of hazards and deterioration 
costs in underground construction management, 
and as such numerous related research projects 
have been conducted. Many research papers 
have been devoted to clarifying the overbreak 
and underbreak phenomenon, but they are still 
unable to explain the exact occurrence process 
(Mahtab et al., 1997; Monjezi and Dehghani, 
2008; Jang and Topal, 2013; Mohamad et al., 
2017; Esmaeili et al., 2014; Koopialipoor et al., 
2017; Mohammadi et al., 2014; Mottahedi et al., 
2018). The area of tunnel face after blasting 
includes overbreak and underbreak 
phenomenon, and this value must be accurately 
determined. If overbreak occurred, undesirable 
effects will be showed up in the process of 
underground construction. The area of the tunnel 
face after blasting is large, which could increase 
the volume of soil/rock that needs to be 
transported after blasting, as well as increase the 
volume of the structure support that needs to be 
installed for the tunnel. Conversely, if an 
underbreak occurs, the construction progress of 
the tunnel is reduced, and the volume of work in 
underground construction is greatly increased. 
The safety reduction of working space in 
underground constructions, and time-consuming 
due to the creation of unproductive works are 
such as these negative effects. Based on the 
foregoing, overbreak and underbreak must be 
predicted and then controlled. 

According to the former research, factors 
causing overbreak and underbreak can be 
classified into two groups. In 2008, Mandal et al. 
had given the different terminology of factors 
causing overbreak and underbreak phenomenon 
in underground excavation by blasting method, 
in these geological and blasting factors were the 
principal groups influencing the area of tunnel 
face after blasting.  

In this paper, the parameters of geological 
and parameters of explosive with the tunnel in 
the blasting design of a tunnel were used and the 
study focuses on the effects of these parameters 
on the area of the tunnel face after blasting. The 
rock mass rating (RMR), specific charge (SC), 

average boreholes length (L), and design tunnel 
face area (Sd) were collected through 39 blasting 
sections, and the area of tunnel face after blasting 
data was individually investigated. Various 
methods have been applied in engineering for 
the area of tunnel face after blasting prediction. 
In this study, the multiple linear regression 
analysis (MLRA) method and artificial neural 
network (ANN) method are used to predict 
potential the area of the tunnel face after 
blasting. The geological data sets and the 
explosive, tunnel datasets are put as input 
parameters and encountered the area of the 
tunnel face after blasting results are used as 
output parameters to ANN models and 
simultaneously to MLRA. Consequently, the 
optimum area of tunnel face after blasting 
predicting model is selected by comparing 
measured and predicted the area of tunnel face 
after blasting and the coefficient of 
determination (R2) of each proposed model. This 
model can be used for other tunnels that have 
similar geological conditions. 

2. Case study and data in the paper 

Deo Ca tunnel is a tunnel connecting the two 
provinces of Khanh Hoa and Phu Yen (Figure 1). 
The point of the northern tunnel entrance is at 
Km 1353+500, National Highway 1A, in Hao Son 
Bac village, Hoa Xuan Nam commune, Dong Hoa 
town, Phu Yen province. The point of the 
southern tunnel entrance is at Km 1371+525, 
National Highway 1A, in Co Ma village, Van Tho 
commune, Van Ninh district, Khanh Hoa 
province. In this paper, there are 39 datasets 
collected and used to build and check the 
accuracy of models that be used to predict, and 

Figure 1. The Deo Ca tunnel. 
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calculate the area of the tunnel face after blasting, 
with 80% datasets were used for training models 
(27 datasets) and 12 datasets were used for 
testing models (20%). In the datasets above, 
there are 4 parameters kinds: the rock mass 
rating (RMR), the design tunnel face area (Sd), the 
average boreholes length (L), and the specific 
charge of explosive (SC). The output data is the 
area of the tunnel face after blasting (SA). The 
values of parameters are shown in Table 1.  

3. Calculation and prediction methods of 
tunnel face area after blasting 

3.1. Multiple linear regression analysis model 
(MLRA) 

One of the methods used to describe and 
analyze the variance of dependent variables 
considering independent variables is the Multiple 
linear regression analysis (MLRA) method. 

In this paper, the rock mass rating (RMR) of 
the rock mass on the tunnel face, the design 
tunnel face area (Sd), the specific charge (SC), and 
the length of the average borehole (L) are 
independent variables and the dependent 
variable, this is the area of the tunnel face after 
blasting (SA). 

By using the SPSS software, 39 datasets were 
obtained in 39 blasting sections, and the area of 
the tunnel face after blasting data was 
individually investigated tunnel. In this data, 
80% of datasets had been used to train the 
prediction model for tunnel face area after 
blasting and 20% datasets for checking the 
accuracy and performance of the model. The 
governing relationship between the dependent 
variable (the area of tunnel face after blasting) 
and independent variables (factors causing the 
area of tunnel face, including the rock mass 
rating RMR; the design tunnel face area Sd, the 
specific charge SC, and the length of the average 
borehole L) was generated and presented in the 
formula: 

𝑆𝑆𝑆𝑆 = 5.88 + 0.604 ∗ 𝐿𝐿 + 0.981 ∗ 𝑆𝑆𝑑𝑑 +
2.047 ∗ 𝑆𝑆𝑆𝑆 − 0.089 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅  (1) 

The coefficient of determination (R2) has 
been used to check the accuracy of the multiple 
linear regression analysis models. The value of R2 
ranges from 0 to 1, in which it is often specified 

that R2 must have a value greater than or equal to 
0.5, then the multiple regression equation 
represents the relationship between the 
independent variable and the dependent 
variables' acceptable accuracy (Rodríguez and 
Benítez-Parejo, 2011; Monjezi and Dehghani, 
2012). After testing for R2, the model must be 
checked for autocorrelation and multicollinearity 
problems. In this study, the coefficient of 
determination of the model R2=0.9224 and the 
adjusted coefficient of determination R2=0.908, 
satisfying the accuracy of the model. 

To ensure the accuracy of the MLRA model. 
The multicollinearity problem has to be 
controlled. It occurs when the correlation among 
the independent variables is strong. Hence, the 
standard errors of the coefficients are increasing, 
which leads to an erroneous conclusion of 
multiple regression analysis. Variance Inflation 
Factor (VIF) and Tolerance are commonly used 
to verify the multicollinearity problem. VIF 
measures how much the variance of the 
estimated coefficients increases over the case of 
no correlation among the independent variables. 
If two independent variables are not correlated, 
then all the VIFs will be equal to 1. Generally, if 
the value of VIF is over ten, the model 
demonstrates a strong multicollinearity problem. 
Tolerance is an inverse number of VIF, and if the 
tolerance value is less than 0.1, it is 
acknowledged that there is a multicollinearity 
problem associated with the model. The case of 
the multicollinearity problem that appears in the 
study model, must eliminate the suspicious 
variable (Mohammad et al., 2014). 

In this paper, with data in Table 2, the 
parameter values in the MLRA model were 
presented.  

It can be seen that the multicollinearity 
problem does not occur in the MLRA model built 
above. The coefficient of determination R2 = 
0.9224. 

3.2. ANN model 

An artificial neural network (ANN) can be 
identified as a simplified mathematical model of 
reasoning based on the human brain. ANN is able 
to determine the complex relationship among 
variables for the simulation of one (or more) 
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Parameter Symbol Unit Category Min Max Mean Std. Deviation 
The average boreholes length L m Input 1.0 3.0 2.0815 0.65518 

The design tunnel face area Sd m2 Input 49.26 64.855 54.2289 6.52140 
Specific charge SC kg/m3 Input 0.45 2.07 1.3556 0.43075 

 
 
The rock mass rating RMR - Input 8.0 72.0 49.9630 16.7825 

The actual area of the tunnel face 
after blasting SA m2 Output 51.221 70.131 58.6592 6.76450 

 
 

Model 
Unstandardized 

coefficients 
Standardized 
coefficients t Sig 

Collinearity 
statistics 

B Std.Error Beta Tolerance VIF 
Constant 5.88 3.427  1.716 0.100   

The average boreholes length (L) 0.604 1.272 0.059 0.475 0.639 0.233 4.300 
Area of the tunnel face (Sd) 0.981 0.068 0.946 14.405 0.000 0.819 1.222 

Specific charge (SC) 2.047 1.920 0.130 1.066 0.298 0.236 4.240 
Rock Mass Rating (RMR) -0.089 0.065 -0.220 -1.364 0.135 0.205 7.410 

 
output(s) (Holland, 1975; Hecht-Nielsen, 1987; 
Zorlu et al., 2008). 

An ANN model is defined by the following 
important parameters: the transfer function, 
learning rule, and network architecture 
(Simpson, 1990;). One of the most commonly 
used artificial neural models is the multilayer 
perceptron (MLP), which is the feedforward 
neural network model and typically contains an 
input layer of source neurons, at least one hidden 
layer of computational neurons, and one output 
layer (Figure 2). Each of these layers has its 
specific function. The input layer accepts inputs 
from the outside world and distributes them to 
the subsequent layers. Features hidden in the 
input patterns are detected by the neurons in the 
hidden layer. The output layer exploits these 
features to determine the output pattern 
(Whitley, 1993; Armaghani et al., 2015; 
Hasanipanah et al., 2016a, 2017a; Liu and Hou, 
2019; Nguyen et al., 2019; 2020). 

According to the author (Basheer and 
Hajmeer 2000; Poli et al., 2007; Hajihassani et al., 
2014; Gordan et al., 2016; Alsarraf et al., 2019; 
Longqi et al., 2019; Lawal and Kwon, 2022), the 
BP is the most popular learning method among a 

vast number of MLP learning algorithms. In the 
BP method, the input data are presented to the 
input layer to be propagated through the 
network until an output is generated: 

𝑋𝑋 = �𝑥𝑥𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖 − 𝑎𝑎
𝑚𝑚

𝑖𝑖=1

 (2) 

Where: X- output data at the output layer, xi-
value of the ith input, wi- weight of the ith input, 
respectively, m- number of input data, a- the 
threshold applied to the neuron that is 
processing the data. 

In this study, the transfer function of the 
form TANSIG function is used because of the 
advantages of this form of transfer function such 
as fast model convergence, reflecting variable 
values in the range [-1, 1]. To be able to use the 
TANSIG transfer function as mentioned above in 
the ANN model, it is necessary to normalize the 
data of the input variables and output variables 
in the ANN model according to the following 
formula: 

𝑋𝑋𝑛𝑛 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)
 (3) 

Table 2a. The coefficients values in the MLRA model. 

Table 2b. The coefficients values in the MLRA model. 

Table 1. The limit and average values of parameters in models. 
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Where: Xn- the normalized value of the 
variable, X-the initial value of the variable, Xmax-
the initial maximum value of the unnormalized 
variable, Xmin- the initial minimum value of the 
unnormalized variable. 

In the ANN, the most difficult thing is to 
determine the best network architecture with 
the number of hidden layers and the most 
reasonable number of neurons in the hidden 
layer, from there will get the most accurate 
results for the ANN (Simpson, 1990). There have 
been many publications successfully using 
Levenberg - Marquardt back-propagation 
training algorithm for the ANN. Some authors in 
their publications have presented that, with a 
hidden layer, an ANN can approximate any 
continuum function (Basheer et al., 2001; Dey 
and Murthy, 2012; Armaghani et al., 2014; 2017; 
Hajihassani et al., 2015; Shahnazar et al., 2017). 
Due to the advantages of having only one hidden 
layer of neurons in the ANN model, such as: 
reducing the complexity of the model, and 
reducing the processing time of the model's 
results, etc., therefore, the ANN model built in 
this study, the number of hidden layers in the 
model is chosen equal 1 (Figure 3). According to 
some researchers, the number of neurons in the 
hidden layer of the ANN model is determined 
through the number of neurons in the input layer 
and the number of neurons in the output layer of 
the model. Hecht-Nielsen et al. (1987) mentioned 
the number of neurons in the hidden layer 
determined by the formula: 𝑁𝑁 ≤ (2 ∗ 𝑁𝑁𝑖𝑖 + 1) 
where Ni is the number of neurons in the input 
layer. According to Ripley, 1993, the number of 
neurons in the hidden layer of ANN model 

satisfies 𝑁𝑁 ≤ (𝑁𝑁𝑖𝑖+𝑁𝑁0)
2

 with Ni is the number of 
neurons in the input layer, N0 is the number of 
neurons in the output layer, According to Wang, 
𝑁𝑁 ≤ 2∗𝑁𝑁𝑖𝑖

3
. 

In this paper, in order to determine the 
reasonable number of neurons for the hidden 
layer of the ANN model, the authors had been 
built a series of ANN models corresponding to 
the same data. 

Each model corresponds to a specific 
number of neurons in the hidden layer. After 
building the model, determine the accuracy of 
the ANN model in calculating and predicting the 
tunnel face area after blasting SA based on two 
indicators, the coefficient of determination R2 
and mean squared error MSE. The more accurate 
the model, the larger the R2 and the smaller the 
MSE value. Each model will be repeated 5 times 
to ensure the representativeness of the results 
obtained. 

Figure 2. Diagram of the ANN in study. 

Figure 3. Structure of the artificial neural 
network ANN in the study. 
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Where the mean square error MSE is 
determined through the equation: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�((𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖′)2
𝑁𝑁

𝑖𝑖=1

 (4) 

The coefficient of determination R2 is 
determined through the equation: 

𝑅𝑅2 = �
∑ (𝑦𝑦 − 𝑦𝑦�)(𝑦𝑦′ − 𝑦𝑦�′)𝑁𝑁
𝑖𝑖=1

∑ (𝑦𝑦 − 𝑦𝑦)���2 ∑ (𝑦𝑦′ − 𝑦𝑦�′)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

�
2

 (5) 

Where: N - the number of data at the input 
layer; yi - the ith actual measured value; y’i - the ith 
predicted value; 𝑦𝑦� - the actual measured mean 
and 𝑦𝑦�′ - the value average prediction.  

Based on the results obtained in Tables 3, 4 

and Figures 4, 5, conclusions can be drawn: the 
appropriate number of neurons in the hidden 
layer is n=5. Thus, the ANN model used to predict 
and calculate the area of tunnel face after blasting 
SA has a structure of 4x5x1with 4 neurons in the 
input layer, 5 neurons in the hidden layer and 1 
neuron in the output layer. 

On the base of the values of the coefficient of 
determination R2 as well as the prediction results 
of the area of tunnel face after blasting SA in the 
MLRA model and ANN model (Figures 6 to 11), 
the following comments can be made: the 
predicted value of the area of tunnel face after 
blasting obtained in the artificial neural network 
ANN model has a deviation from the actual value 
of the tunnel face after blasting, which is smaller  

 
 

The 
model 

number 

Number 
neurons 

in the 
hidden 
layer 

The results of the models 
R 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Average 
of Rtrain 

Average 
of Rtest 

Train Test Train Test Train Test Train Test Train Test Train Test 
1 2 0.97094 0.8726 0.96827 0.94761 0.95063 0.92589 0.93273 0.92305 0.96634 0.90656 0.936462 0.915142 
2 3 0.9675 0.97951 0.96181 0.95798 0.98389 0.87334 0.95234 0.93986 0.97265 0.95288 0.954176 0.940714 
3 4 0.95341 0.96047 0.9614 0.92813 0.98968 0.96632 0.94658 0.96656 0.94315 0.93983 0.955553 0.952262 
4 5 0.98502 0.95128 0.97206 0.97647 0.98653 0.96432 0.96716 0.97124 0.95206 0.94481 0.967095 0.961624 
5 6 0.91831 0.94033 0.98882 0.92201 0.93134 0.9366 0.90959 0.91552 0.96235 0.92581 0.935068 0.928054 
6 7 0.93647 0.93976 0.91923 0.90909 0.92487 0.94881 0.95567 0.90176 0.93918 0.92962 0.930446 0.925808 
7 8 0.93821 0.94948 0.91133 0.90387 0.93019 0.91717 0.95887 0.90911 0.91484 0.90421 0.923728 0.916768 
8 9 0.92508 0.91615 0.90749 0.91963 0.91962 0.905581 0.904377 0.912866 0.94573 0.93819 0.919471 0.918483 

 
 

The 
model 

number 

Number 
neurons 

in the 
hidden 
layer 

The results of the models 
MSE 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 
Average 
of MSE 
train 

Average 
of MSE 

test 
Train Test Train Test Train Test Train Test Train Test Train Test 

1 2 0.02428 0.11723 0.03249 0.0384 0.05811 0.06279 0.02633 0.04677 0.0331 0.07508 0.051458 0.068054 
2 3 0.0277 0.02194 0.02898 0.02208 0.03937 0.22653 0.0612 0.04298 0.01641 0.0222 0.050939 0.067146 
3 4 0.0613 0.04784 0.04967 0.12827 0.01225 0.02808 0.05824 0.04303 0.05707 0.09858 0.058433 0.06916 
4 5 0.01107 0.02066 0.02046 0.01849 0.01386 0.02129 0.04937 0.03551 0.01484 0.0218 0.022735 0.02355 
5 6 0.07226 0.05733 0.01258 0.13387 0.06971 0.08431 0.12527 0.09144 0.01151 0.10578 0.076406 0.094546 
6 7 0.06715 0.09177 0.1152 0.14693 0.08528 0.05331 0.07879 0.12308 0.05802 0.10234 0.092187 0.103486 
7 8 0.03311 0.03099 0.10538 0.12592 0.09169 0.12075 0.0809 0.127 0.08034 0.1254 0.092148 0.106012 
8 9 0.06337 0.1126 0.11607 0.08858 0.08887 0.113439 0.08387 0.12372 0.09064 0.136198 0.101736 0.114907 

Table 3. The correlation coefficients R for several ANN models with different hidden nodes. 

Table 4. The mean squared error (MSE) for several ANN models with different hidden nodes. 
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Figure 4. Relationship between the average 
coefficient of determination R2 and the number of 
neurons present in hidden layer of the ANN model. 

Figure 5. Relationship between the average mean 
square error MSE and the number of neurons in 

hidden layer of the ANN model. 

Figure 6. Comparison between measured and predicted SA for training datasets using MLRA model 
and ANN model. 

Figure 7. Comparison between measured and predicted SA for testing datasets using MLRA model 
and ANN model. 

Figure 8. Measured and predicted the area of 
tunnel face SA obtained via the MLRA model for 

training datasets. 

Figure 9. Measured and predicted the area of 
tunnel face SA obtained via the MLRA model for 

testing datasets. 
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than the accuracy deviation of values of the 
tunnel face area after blasting, respectively 
obtained in the MLRA model. Based on the 
coefficients of determination values R2 of the 
MLRA model and ANN model for training and 
testing data, respectively, a conclusion can give 
as follows: with the ANN model, the coefficient of 
determination R2 of the ANN model for the 
training dataset has the highest value. 

4. Conclusion 

In this paper, the multiple linear regression 
analysis MLRA model combined with an ANN 
model was built to calculate and predict the value 
of the tunnel area after blasting. By using SPSS 
software to build MLRA models as well as using 
Matlab 2019b software to build ANN models 
based on actual data sets obtained during the 
construction Deo Ca tunnel (including 39 
datasets), the paper evaluated the results 
obtained in each method and the following 
conclusions can be drawn: 

- With the associated of significance and 
coefficients related to the independent variables, 
it is found that the parameters (independent 
variables) of the models, including specific 
charge (SC), the design tunnel face area (Sd), and 
the average hole length (L), the rock mass rating 
(RMR) play an important role in the generation 
of the area of tunnel face after blasting; 

- The ANN model had an optimum 
architecture that was 4x5x1, with 4 neurons in 
the input layer, one hidden layer with 5 neurons, 
and one neuron in the output layer; 

- Both the MLRA model and ANN model can 
calculate and predict the tunnel area after 
blasting with high accuracy, the coefficients of 

determination of both models are greater than 
0.9 (their values are 0.9224, and 0.9449, 
respectively). The result of the ANN model and 
the MLRA model had an acceptable prediction 
performance; 

- Based on the results comparing the 
coefficient of determination R2 in the multiple 
linear regression MLRA model and ANN model, it 
is possible to realize the ANN model could 
predict, calculate the area of the tunnel face after 
blasting with higher accuracy than the MLRA 
model, and can use the ANN model to predict and 
calculate tunnel face area after blasting with high 
accuracy. 
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