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ABSTRACT

Viability theory designs and develops mathematical and algorithmic methods that can be
found in many domains such as living beings, biological evolution, economics, environmental
sciences, financial markets or control theory, and robotics. In the paper, we provide sufficient
conditions assuring the existence of viable solutions of differential inclusions with fractional
derivatives with delay:

Dix(t) € F(t,x,),0<q<1,t€l:=[0,T].

We were inheriting the ideas of Carja, Donchev, Rafagat, and Ahmed (2014) and Girejko
(2018), we give the condition of tangency and the concept of approximate solution, these are
compatible with our problem. Thanks to Brezis-Browder Theorem, we prove the existence of an
approximate solution to the interval [0,T]. Then, passing to the limit, the sequence of approximate
solutions convergent to the viable solution. These results generalize the corresponding results
by Carja et al. (2014), Girejko, Mozyrska, and Wyrwas (2011), Vasundgaradevi and
Lakshmikantham (2009).

Keywords: delay; Fractional Derivative; Inclusion; Viable solution

1.  Introduction

The first definition of the fractional derivative was introduced at the end of the 19th
century by Liouville and Riemann. Still, the concept of non-integer derivative and integral,
as a generalization of the traditional integer-order differential and integral calculus, was
mentioned already in 1695 by Leibniz and L’Hospital. However, only in the late 1960s did
engineers start to be interested in this idea when the fact that descriptions of some systems
are more accurate in “fractional language” appeared. Since then, fractional calculus has been
increasingly used to model behaviors of natural systems in various fields of science and
engineering. Recently, several authors have reported new results concerning the solutions
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for nonlinear fractional differential equations (Diethelm, 2010; Kosmatov, 2009; Zhang,
2009), (Bonilla, Rivero, Rodriguez-Germa, & Trujillo, 2007), (Agarwal, Lakshmikantham,
& Nieto, 2010), (Luchko, Rivero, Trujillo, & Velasco, 2010), (Wei, Li, & Che, 2010),
(Diethelm & Ford, 2002).

Viability theory has its origin in the Nagumo theorem (Nagumo, 1942), in which
necessary and sufficient condition was stated for a differential equation to have a viable
solution. A viable solution means a solution initiated in a set of constraints and staying in
this set for a certain amount of time. Nowadays, viability theory designs and develops
mathematical and algorithmic methods that can be found in many domains such asliving
beings, biological evolution, economics, environmental sciences, financial markets or
control theory, and robotics. This theory joins fields of science that have been traditionally
developed in isolation into one interdisciplinary investigation (Aubin, Bayen, & Saint-
Pierre, 2011). All this gives a motivation to combine viability theory with fractional calculus.
To the best of our knowledge, there are only a few papers devoted to this subject (Carja et
al., 2014), (Girejko et al., 2011), (Mozyrska, Girejko, & Wyrwas, 2011), (Vasundgaradevi
& Lakshmikantham, 2009). The viability problem for fractional differential equations was
studied some studies (Girejko et al., 2011), (Mozyrska et al., 2011), (Vasundgaradevi &
Lakshmikantham, 2009). Unfortunately, in both papers (Girejko et al., 2011),
(Vasundgaradevi & Lakshmikantham, 2009), the proofs of the existence of viable solutions
are not correct because the tangency conditions proposed by the authors are not appropriate.
The viability property was first introduced by (Carja et al., 2014) for the Caputo derivative.
The authors give proper tangency conditions that ensure viable solutions for a class of
fractional differential inclusions.

Dax(t) € F(t,x(1)),0 < q < 1,t € I:= [0, T],x(0) = x, € R,

Then (Girejko, 2018) inherits the previous tangency condition for Caputo-Fabrizio
derivative.

We denote ||-]| as the norm on R"™. This paper studies the viability properties of
solutions to nonlinear fractional differential inclusions with delay

Dax(t) € F(tx),0<q< 1,tel:=[0,T], (1)
satisfying the initial condition

x(t) = Y(v),t € [-r,0],
where T > 0,y € C; := C([—r, 0]; R™) with ||{s||o = sup W)l

te[-r,0]
We consider x: [—r, T] - R™. Fix t € [0, T], we set x;: [-r, 0] — R is defined by
x:(0) =x(t+06),0 € [-r,0].
The set valued map F:[0,T] x C. —» P(R") (2) is upper semicontinuous with
nonempty convex and compact values. Further, there exists a constant a > 0 such that
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It VIl = sup{llzll:z € F(t,v)} < a(1 + [Ivllo)

forall (t,v) € [0, T] X C,.
2. Viability for delay fractional differential inclusion
2.1. Preliminaries
Definition 2.1.1. (Caputo derivative) Let x: [a,b] » R™ be continuous with Lebesgue
integrable derivative. The Caputo fractional derivative Dgx(t) of order 0 < q < 1 is
defined by

DIx(t) = ﬁf X'(Ht—1)"%t,a<t<b.
0

Definition 2.1.2. (Upper semicontinuous) The multi-function F:1 x C. - P(R™) is upper
semicontinuous (u.s.c.) at £ € I x C, if for every open neighborhood V of F(£) there exists
an open neighborhood U of & such that F(n) < V for eachn € U.

Definition 2.1.3. (Mild solution) The continuous function x € AC([—r, T], R™) is called a
mild solution of (1) if there exists a selection mapping f,(t) € F(t,x,) such that for every
t € I we have

1
I'(q)

and x(t) = Y(t),t € [-1,0].
According to Lemma 3.1 (Zhou & Peng, 2016), when F satisfies (2), we have

Selg(x) = {f € L}(I, RM): f(t) € F(t,x,) fora.e.t € I} # 0, vx € C([-r, T], R™).
Definition 2.1.4. (Viable solution) Let closed set O ¢ R™ and K = {{r € C.: §(0) € Q}.
We say K, is viability if for every ¢ € K, there exists T > 0 such that (1) has mild solution
x: [—r, T] - R" satisfies x, € Kq, Vt € I. We call x is a corresponding viable solution.
Noticing:

x:(0) = x(t+ 0)

Xt EKg,Vtel & x(0) e QVtel = x(t) € Q,VteL
2.2. Tangency condition
Definition 2.2.1. Suppose t € I. Given E ¢ R" and g € L* (I, R"). We define yg: [-r, T] —»
R" by

x(t) = P(0) + f (t—s)971f (s)ds,0 <t < T

yo(®) = (0) + j (t— )0 1g(s)ds, vt € L

We say the pair (g, E) is tangent to I x Kq at (£, @) € I x K if (yg)O = ¢ and
q

o —qq: -
liminfj,_,,+ h™%dist [(p(O) + ®(t; g)(h) + —F(q D

E; Q] =0, (3)

with
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_ 1t _
M) = 5 [ [E+h =997 = E= 9% lg(s)ds.
0

Remark: If we replace C, with R™ and x; with x(t) we get the exact tangency condition that
was introduced in (Carja et al., 2014).

Proposition 2.2.2. (g, E) istangentto I X K at (t, @) € I X K, if and only if: for each 6 >0
and each € > 0, there exist h € (0,6) and v € E, p € R" satisfy |p| < € such that

hd
@(0)+ (5 gh) + QD
Proof.

We see (3) is equivalent to

(v+p) EQ

q
. —qq: -
58213 hel(r(l)fs) h~9dist [(p(O) + ®(t; g)(h) + —F(q D

In its turn, this relation is equivalent to: for each 6 > 0 and each € > 0, there exist h €
(0, 8) such that

E;Q] =0.

dist | (0 £ g)(h LA
lSt[(p( )+(D(t,g)( )+mE, ] <m.

Since dist(C,D) < a if and only if there exist x € Cand y € B(0, a) such thatx + y €
D. we finally deduce that (3) equivalent to: for each 6 >0 and each € > 0, there exist h €
(0,8) ,v e Eand p € R" satisfy |p| < € and

_ hd
@(0) + @ (tg)(h) +

F(q+1)
2.3. Approximate solution
We recall the Henry—Gronwall inequality (see Lemma 7.1.1 by Henry (1981)), which
can be used in fractional differential equations and integral equations with a singular kernel.
Lemma 2.3.1. Let u: [0,b] — [0,0) be a real function and v be a nonnegative, locally
integrable function on [0, b]. Suppose there are constantsa > 0 and 0 < a < 1 such that

u(®) < v(t) + a j (= 9% u(s)ds.

Then, there exists a constant K = K(«) such that

v+p)EQ =

u(t) < v(t) +Ka ft(t —5)* 1y(s)ds.
0

From now on, we fix the closed set O ¢ R" and ¢ € K.
Definition 2.3.2. Let € € (0,1),0 < 6 < T. We say that a quarter (o,f, g,y) is an e-solution
to (1) on the interval [—r, 8] if the non-decreasing function o: [0, 6] — [0, 0], the measurable
function f:[0,0] - R", the integrable function g:[0,6] — R" and continuous function
y: [—r, 0] - R" satisfy

(t—e<o(t) <tforeveryte|0,0];

(i) [lg(|l < eforeveryte [0,0];
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(i) y(o(t)) € Q forevery t € [0,0 ] and y(8) € Q;
(iv) f(t) € F(o(t), ¥4 ) such that

y(O = y(0) + f (t— )9 1[f(s) + g(s)]ds

1
I'(q)
0
forevery t € [0, 0];
(V) yo = .
Lemma 2.3.3. There exists N > 0 such that foreverye > 0,0 < 6 < T, and every &-solution
(o,f, g y) to (1) on the interval [—r, 6], we have
llyllc(-r.0,rm) < N.
Proof.
Noticing,

t

y(® = P(0) + —= | (t— )97 [f(s) + g()]ds

r ( )
where f(s) € F(c(s),yc(s)) and y(t) = Y(t),t € [—r, 0]. Thanking to (2), we have

t

Iyl < WO+ [ =95 (a+1+a|lyoee|l,)ds, 0 <t <.

F()

Put w(t) = sup{|ly(s)||: —r S s < t}. Using the above inequality and the definition of w,
we have that

a+1
'(g+1)

w(t) < [[Wllo + + FE’; ) f (t — $)9-Tw(s)ds
0

Lemma 3 implies
t

a+1 a+1 _
w(®) < Il + g5 + e (19l + o) f (t—)9ds

a+1 N KaT4
l(q+1) T(q+1)

< llwllo +

Thus

lyllc(-re1rm) < N. O
Proposition 2.3.4. Let € € (0,1),0 < 06 < T and let (o,f,g y) be € —solution on [—r, 0] of
(1). If the pair (Dgy; F(6, yg)) is tangent to I X K, at (8,yg) € I X K, then there exist § >
0 and an extension (o4, f;, g1, 2z) of (o, f, g y) which is € —solution of (1) on [—1; 6 + §].
Proof.

Proposition 6 implies that there exist h € (0,€) and v € F(0,yg),p € R?, |p| <€
such that

1
(Ml + - 5) = Nve e 0,01
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y(8) + @ (8; Ddy)(h) + (v+p)€EQ. (4)

hd
I'(g+1)
We claim that there exists 6 = h > 0 such that z is defined on [—r; 6 + 8] by
B (t—
z(t) =y(6) + & (6 D y)(t— 0) + NCES)
and z(t) = y(t),t € [—r, 8] is € —solution. It is clear that Property (V) is satisfied.
Denoting o, (t) = 06, g,;(t) = p, f;(t) = von [6; 8 + §]. We see propositions (i), and (ii) are
satisfied.
Since y be & —solution on [—r, 8] of (P,) , we have z(a(t)) = y(6) € Q.
From (4) we see z(0 + 8) = y(8) + @ (6;DJy)(h) +
Hence Property (iii) is satisfied.
Since y is € —solution on [—r, 0] of (1), there exist non-decreasing function o: [0, 0] -
[0,6], the integrable function g:[0,0] - R™ , and measurable selection f;(t) €
F(o(t), yo(r) such that

(V+p)t€[9 8+35] (5)

a +1)(V+p) € Q.

t

y(®) =y(0) + — [ (t = )97 [f1(s) + g(s)]ds

F()

for every t € [0, 6]. So qu(t) = f; (t) + g(t) for every t € [0, 6].
From (5) we have

2(t) = y(8) + ——

0

ol [(t—)97* = (8 — 5)97*]Dy(s)ds

s f (t= 99 (5) + g()]ds

Furthermore,

y(8) = y(0) + —— f (0 — )91 Dy(s)ds.

I'(q)
So

0 t

1
z(t) = y(0) + m (t— s)q_lD y(s)ds + m (t—s)I7Lf,(s) + g(s)]ds
= y(0) + —— f (6= )£, (s) + g(s)]ds + —— f (t— )4 1[f, (s) + g(s)]ds
Q) ' @) '

=z(0) + Lf(t —s)37f (s) + g(s)]ds. m
O, ! '
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We set

M ={(6,0d) €I XxKq:Ve> 0,3 e—solution (o,f, g y) on [0,0], yg = ¢}

Suppose (q;,F(O, LlJ)) is tangent to I X K at (0,¢) € I X Kg. Then, according to
Proposition 6, we see M’ # (.

Definition 2.3.5. Inclusion (1) would satisfy tangency condition at (6, ) € M if for each
e > 0, the pair (Dgy; F(6, ye)) is tangent to I X K, at (8,yg) € I X Kq, with (o,f,g,y) is
€ —solution on [0, 6].
Lemma 2.3.6. (Brezis-Browder Theorem) Let S be a nonempty set, < a preorder on §, and
let M: § - R U {40} be a function. Suppose that:

(i) for any increasing sequence (&) € S, there exists some 1 € § such that &, < 7, for
allk € N;

(ii) the function M is increasing.
Then for each £ € S there exists an M — maximal element € € S satisfying € < &.
Lemma 2.3.7. If (¢, F(0,y)) is tangent to I x K, at (0, ) € I x K and (1) is tangent at
every (0,d) € M, for each € € (0,1), there exists € —solution (o, f, g, y) determined on the
entire [—r, T].
Proof.

Fix € € (0,1). Let S be the set of all € —approximate solutions to the initial value
problem (1) defined on the interval [0, c] with c € [0, T]. On § we define the relation “ < ”
by (04, f1,81,%1) < (04, £, 82,%,) if [0,¢4] E [0, c,] and the two € —approximate solutions
coincide on the common part of the domains.

Let ((om, fm,gm,xm))m be an increasing sequence defined on [0, c,,], and let ¢c* =

lim cy,. Clearly, c* € [0, T]. Let us now prove the existence of lim x,,(c,,). Note that for
m-—-oo

m-—-oo

each m, KEN,m <k, we have oy,(s)=o0x(s), gmn(s) =gk(s) and x,(s)=
xk(s), fn(s) = fi(s) forall s € [0, ¢, ]. Moreover, ¢, — € < 6,(Cry) < Cpy.

Noticing, for every m € N,

1
I'(q)

where f,(s) € F(cm(s), (xm)cm(s)) and x,, (t) = ¢ (t),t € [T, 0].
By virtue of Lemma 9, we have
”Xm”C([—r,cm],]R“) <N (6)
This implies
”(Xm)om(s)”O <NVse€e [O; Cm]-
Furthermore ||[F(t,v)|| < a(1 + [|v]ly), VV € C, SO
|[F(om (s, (Xm)cm(S))”* < a(l+N):=M,Vs € [0, cp].

Xm (1) = Y(0) + f (t— )91 [fn(s) + g(s)]ds,
0
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We have

(60 = K = 5 f (6= 97 [f(s) + g(]ds
- j (Cm = )T [f(s) + B(S)]ds

-5 f [ = 9% = (em = [ (5) + 8()]ds

Ck

4 f (o — )9+ [fi(s) + g()]ds

Cm
Cm Ck

: f [(cxk — )9t — (¢, —5)971]ds + f (cx —s)971ds

0

<

I'(q)

M+s
- T(9

j (cx —s)971ds — J- (¢ — s)97ds

M+e | |
ECE
for every k,m € N. We know that lim ¢, = ¢*, 50 lim cg, = (c*)9. Then for |e — e[ <

m—-oo
r'(q+1)
M+¢

that x, (c,) € Q. The set Q is closed, so lim x,(cy,) € Q.
m-—-oco

- &, We get |[xi(cr) — xm(cm) |l < €4, what proves the existence of lim x,(cy,). Note
m-—-oco

All the functions in the set {o,,: m € N} are non-decreasing with values in [0, c*] and satisfy

Oom(Cm) < ox(cy) for m,k € N,m < k. Hence there exists lim o,,(cy,) and this limit
m-—-00o

belongs to [0, c*]. Therefore the quartet of function (o*, f*, g%, x*): [0,c*] = [0, c*] X R™ X

R"™ x R" can be defined by

. on(t) fort € [0,cy], m EN,
o’(t) = { hm om(cy) fort=c’, @)
gm(t) fort € [0,cy],mEN,
g(t)—{ 0 fort =c”, 8
Xm(t) fort € [0,cp], m € N,
x'(0) = hm Xm(Cp) fort=c” 9)
(t)forte [0, c ] m € N,
m m
o= { n* fort = c* (10)
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where n* is an arbitrary but fixed element in F(c*,x*(c*(c"))).
One can see that (o*, f*, g*, x*) is an e-approximate solution for all m € N

(om, fm> 8m» Xm) < (07, f%, 87, x7).

Let us define the function M: § - R U {+o} by M'((o,f, g %)) = ¢, where (o, f, g x)
is defined on [0, c]. Then by the Brezis-Browder Theorem, § consists of at least one M -
maximal element (5,f g X) defined on [0,c], i.e. for every (5,f8 %) €S such that
(5,£8%) < (518 %) we have M ((E,Eg, X)) =M ((6, £g i)) which means that ¢ = .
By Proposition 10, we get ¢ = T. Therefore the existence of an € —approximate solution
defined on the whole interval [0, T] was proved. [
2.4. Proof of the main result

Before presenting proof of the main theorem, we will introduce some supporting

results.

Definition 2.4.1. A subset G < L'(I, R") is called uniformly integrable if for € > 0, there
exists § > 0 such that

f IOl dt < e
E

for each measurable subset E c I, whose Lebesgue measure is more minor than §, and
uniformly for f € G.

Theorem 2.4.2. (Theorem 1.3.7 by Dunford-Pettis theorem) G c L1([0, T], R®) is weakly
compact if and only if it is uniformly integrable.

Now we give the proof of the main result.

Theorem 2.4.3. If (2) is satisfied, (¢, F(0, ) is tangent to I x K, at (0, ) € I X Kq and
(1) satisfies tangency condition at every (6, ¢) € I X Kq, K is viable.
Proof.
Let (ex)keny be a decreasing sequence such that g, € (0,1) and llim e = 0. Let
(o fio 81 xk))kEN be a sequence of g,.-approximate solutions defined on the interval [0, T].
From (i) and (ii) of definition 8, we get the following uniform convergence on [0, T]:
&im ox(t) =t (12)
lim g (t) = 0. (12)
As a result of Lemma 13, the sequence (Xx)xen IS uniformly bounded on [0, T].
Moreover, for 0 < t; <t,, with f (s) €F (Gk(s),xk(ok(s))), we get
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lIx (t1) — xk(ED I = [1xk(t1) — W(0) — xi(tz) + Y (O]

1| 2

= rq) OJ-('H —5)a71 - [fi(s) + g(s)]ds — b[ (t, — $)31 - [fi(s) + g (s)]ds
= L fl[(t _ S)q—l _ (t _ S)q—l] . [f (S) +g (S)]ds

r@j\) ! 2 k k

- j(tz —s)971 - [f (s) + g(s)]ds

M 3 2
= r(+q§k. Oj[(tl — ) = (= )T ds + tf (t, —s)971ds
< Fl(\’(l;ll) ' |t;1 - tg +2(t; — t1)q|
< 3Gt <e

1

r(qg+D]q . . .
M]q. Hence the sequence (X )wey IS €quicontinuous on

3(M+1)
[0, T]. Since the sequence (xy)xen IS bounded and equicontinuous, it has a uniformly
convergent subsequence and keeps the same notations by the Arzela—Ascoli Theorem.

Hence (in)i is uniformly convergent on [0, T] to a function x: [0, T] - R™. Taking into

provided |t, —t;| <& = [

account the fact that Q is closed, x, (o, (t)) € Q, x,(T) € Q. Since (x;)xey IS equicontinuous
and condition (11) with we deduce that lim xk(ok(t)) = x(t). This implies that x(t) € Q
foreverytel.

By cause of (xy)xen IS uniformly bounded on I and (2), we get {fi}x is uniformly

integrable in L1 (I, R™). As long as Theorem 15, we take a subsequence of {f, }, and keeping
the same notations, we may assume that it converges weakly in L1(I, R®) to some f €

L1(I, R?). By the Mazur lemma, there exist A > 0,i = n, ..., k(n), such that Zi‘z(ﬁ) Al =1,

k(n)
i=n

and the sequence h,, := .= AM; converges to f in L'(I, R™). By a classical result due to

Lebesgue, we know that there exists a subsequence (hnj)_ converges to f almost everywhere.
j

Hence for every t € |,

t t
lim | (t— s)q‘lhn]. (s)ds = f (t —s)a7f(s)ds.
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Since (xx)x converges uniformly to x, for every t € I we get

k(nj)
X(® = lim ; AVx; (1)
| K(ny) K(ny)
= lim | $(0) + )j(t—s)q ! Z AN, (s) + Z Mg ()| ds

1n] 11’1]

— () + f (t — 5)4-1f(s)ds.

1
I'(q)
0
Put x(t) = Y(t),vt € [-1,0].
To end the proof, it is enough to show that f(s) € F(s,xg) almost everywhere in
s € [0, T].
Let E be an open half-space in R™including F(s,xs). Since (xi)x is uniformly
convergent on [0, T] to x and lll_)r?o ok(s) = s, we have (x)q,(s) CONVerges to x, in C,. Since

F is u.s.c. at (s, Xs), there exists k(E) belonging to N, such that F(oy(s), (xi) o, s)) € E for
each k = Kk(E). From the relation above, taking into account that f,(s) €
F(ox(s), (Xi)e,(s)): for each k € N and a.e. for s € [0; T], we can conclude that

hy,(s) € 0 (Urskee) F(0k(8), X1y (s)) )
foreachj € N with n; > k(E). Passing to the limit for j — oo in the relation above, we deduce
that f(s) € E. Since F(s,x,) is closed and convey, it is the intersection of all closed half-
spaces which include it. So, in as much as E was arbitrary, we finally get f(s) € F(s, x,)
almost everywhere in s € [0, T]. [ ]
3. Conclusion
In this paper, we inherit the existing schemas to consider the viability of delay
fractional differential inclusions. The new results presented in this paper include:
e Give a suitable tangency condition for this problem.
e Propose the concept of € — solution and apply it to prove the existence of a
viable solution.
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TOM TAT

Li thuyét viability ra doi va phdt trién, duoc vng dung trong nhiéu linh vue nhie sinh vit song,
tién héa sinh hoc, kinh té hoc, khoa hoc méi trieong, thi trieong tai chinh hodc [i thuyét diéu khién va
robotics. Trong bai bao nay, chung téi dwa ra mot diéu kién du cho sy ton tai nghiém vible cua bao
ham thire vi phin bdc khéng nguyén cé doi sé léch dang

Dix(t) € F(t,x,),0<q<1,t€l:=[0,T].

Ké thira nhitng y twéng cua (Carja, Donchev, Rafagat, & Ahmed, 2014), (Girejko, 2018),
chiing t6i dwa ra diéu kién tiép xiic va khdi niém nghiém xdp xi phit hop véi cau triic bai todn. Theo
dinh [i Brezis-Browder, ching toi thu dwoc nghiém xd'p xi trén toan bo doan [0,T]. Bdng cach cho
qua gidi han, day nghiém xdp xi héi tu vé nghiém viable. Két qua nay tong quat cdc két qua da cé
trong cac bai bao (Carja et al., 2014), (Girejko, Mozyrska, & Wyrwas, 2011), (Vasundgaradevi &
Lakshmikantham, 2009).

Tir khoa: nghiém viable; dbi s6 léch; bao ham thiic; dao ham bac khéng nguyén
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