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TOM TAT

Khdng gian Sobolev cap phan sé cé trong c6 nhiéu ing dung trong phirong trinh dao ham
riéng. Trong bai b&o nay, chung tdi khao sat 1ép khdng gian Sobolev cdp phan sé ¢é trong, iing Véi
ham trong & ham khodng cdch dén bién cia mién xdc dinh. Lép khdng gian ndy dwoc sir dung dé
thu dwrgc mgt dang bar dang thizc dang Cacciopoli ¢6 trong cho bai toan p-Laplace véi dir liéu d@o
do. Két qua cua chung tdi 1a mé réng cua bar dang thizc Cacciopoli trong bai bao gan day (Tran &
Nguyen, 2021b).

Tir khoa: bat dang thic dang Cacciopoli; phuong trinh dao ham riéng; phuong trinh p-
Laplace; khdng gian Sobolev cap phan sé c6 trong

1. Introduction
In this paper, we are interested in the following Dirichlet problem with measure data

—div(A(x,Vu))= in Q,

(A Vu))=# 1)
u =0 on 0Q,

where the domain QQ < R" is open and bounded, and the given data x is a Borel measure with

finite mass in €. The operator A is close to the operator & +— |(§|"’2 &, & eR", this means

0, (£])1d, <0.A(~¢) < g, (I¢])1d,,
where g, (|£]) ~ 9, (|£]) = €[ . 1t is well-known that when p =2, if the data 4 belongs to

the Lebesgue space Li, (Q) then Vu belongs to the Sobolev space Wis2 (Q2) :

loc
pell (Q) = VueWsd(Q), 1<g<c. (1.2)
We hope that (1.2) still true for g =1, but instance, in the recent paper by Avelin et

al. in (Avelin, Kuusi & Mingione, 2018), the authors showed that the result just holds for
the fractional Sobolev spaces. More precisely, they proved that
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pelin(Q) = Vuew T (Q), 0<o<l. (1.3)
Moreover, also in the same paper, authors gave a very important regularity result

1 : .
when 2——< p<2. Letus recall the following theorem for the reader's convenience:
n

Theorem 1.1. (Avelin, Kuusi & Mingione, 2018) Let O be an open subset of R" and
D >2—%. Assume that u e WEM-PTH(Q) is a SOLA solution to (1.1). Then for any
o €(0,1) one has

A(Vu) eWZHQ). (1.4)
Moreover, there exists a constant C =C(c 4,o,n, p) >0 such that

‘A (Vu(x))- A(Vu(y))‘

o dxdy
|/ BR/Z J.BR/ZJ‘BR/Z x| y (1.5)
C 1 ,u(B )
: R"(|ﬂ|(BR)IBR‘A(vu(x))‘dx{ Rt D

for every ball By € 2.

We remark that the weak solution to the measure data problem (1.1) may be not
unique. To ensure the existence and uniqueness of solution to (1.1), we deal with the
SOLA solution which has been defined in (Benilan et al., 1995) and (Maso et al., 1999).
There are lots of interesting results related to regularity for solutions to the measure data
problem (1.1), such as (Mingione, 2007), (Tran & Nguyen, 2019, 2020a, 2021a), (Balci et
al., 2020), etc.

Recently, Tran & Nguyen established the global regularity result of (1.4) in (Tran &
Nguyen, 2021). However, they only proved that .A(Vu) belongs to the weighted fractional

Sobolev space, even for the smooth domain €. In the present article, we improve the
result in (Tran & Nguyen, 2021) by proving the inequality similar to (1.5), where the
weights are both on the left-hand and right-hand side. In other word, we prove the
following inequality

A(Vu(x)-A(Vu(y))

ijQda(x)dﬂ(y) P dxdy

(1.6)
< C(IQdy(x)‘A(Vu(x))‘dx+|,u|(Q)),

where d(x) :=dist(x,00Q) defines the distance from x to the boundary of the domain. Here
the result holds for every ¢, >0 and y >0 satisfying a>y, >y, a+f-y>0o.

Motivated by these works, we first consider some basic properties of the weighted
fractional Sobolev spaces, which the weights are the power of distances to the boundary.
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Then we prove the weighted Cacciopoli type inequality (1.6) which corresponds to SOLA
solution to the measure data problem (1.1).

The rest of the article will be organized as follows. In the next section, we introduce
the weighted fractional Sobolev spaces by introducing some basic notation, definitions and
some properties of weighted fractional Sobolev spaces. Then, we end up with a section that
introduces the main results and proving the main results in this paper, and it allows us to
conclude a weighted approach for Cacciopoli inequality for solutions to p-Laplace
equations (1.1).

2. Preliminaries
2.1. Basic notation
In this article, the constant depends on real numbersa , f and y will be denoted by

C (a,ﬁ,y). From now on, B, (§)stands for the ball with radius p and centered at { € Q.

Finally, for 1< p<oo, we will denote by LP (Q)the usual Lebesgue spaces; and the

Sobolev spaces is signed as W* P (Q).

2.2. Fractional Sobolev spaces

We now introduce the definition of fractional Sobolev spaces, see (Avelin, Kuusi &
Mingione, 2018) and (Di Nezza, Palatucci & Valdinoci, 2012) for instance.
Definition 2.1. (The fractional Sobolev space) Assume that Q < R" is an open set wth
n>2, s is the fractional in (0,1) and p e[l +x). Then, the fractional Sobolev space

W' (Q) is defined as follow

WSP(Q) :=4uel’(Q): Me L (QxQ)}, (2.1)
| x=yI®
with the natural norm
1
u) -uy)® P
|uhye ooy [f uGa)® dx+ f J ﬁd"dy ' (2.2)
The Gagliardo semi-norm of u is deflned by
1
lu(x)-u(y) ", P
[u]vvs P@) {I »[Q | x—y [P xdy ' (2:3)
Furthermore, we defined W, (Q2) as
Wi (Q) = {v e WS (@) : VQ, = Q,Q, is compact]. (2.4)

Let us introduce some properties of weighted fractional Sobolev spaces
Lemma 2.2. Assume that QQ = R" is an open domain, p €[1,+o) and u:Q — R. Then

[z 20y < Uz - forall te (s.2).
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It follows that
WP (Q) cWSP(Q), forall te(s,l).

If we have Q is the bounded Lipschitz domain, then we have the following lemma.
Lemma 2.3. Assume that Q< R" is an open bounded and Lipschitz domain, p [1,+0)
and u:Q—>R.Then

WP (Q)cWSP(Q), forall se(0,1).

Proof of Lemma 2.2 and Lemma 2.3 can be found in (Di Nezza, Palatucci & Valdinoci,
2012).
2.3. Weighted fractional Sobolev spaces

Since the main content of the article uses some properties of weighted fractional
Sobolev space where the weights are the distance functions to the boundary of the domain.
We will introduce weighted fractional Sobolev spaces via the following definition.

Definition 2.4. (Weighted fractional Sobolev space) Assume that Q< R" is an open
bounded and Lipschitz domain, qe[l,«), s€(0,1) and a, >0. Then, we define the

weighted fractional Sobolev space as

p
WP (Qa,p)= {u elP(Q ”d (x)d? (y )%dxdy<w}, (2.5)
with the natural norm
_ p P
”U”Wsp (Qa.p) [j|u(X)|p dx+”d (x)d”(y )%dmy] : (2.6)

where d(x) = dist(x,0Q).
Similar to the non-weight spaces, the weighted Gagliardo semi-norm of Wé’p (Q;a,ﬁ) IS
defined by

1
W ) [[ [, (x)dﬁ(y)%my} . 2.7)

Let us introduce some properties of weighted fractional Sobolev space, which similar to
fractional Sobolev space.

Lemma 2.5. Assume that v:Q — R is measurable function. Then, there exists a constant
C >1 such that

||U|LNGS,p(Q;alﬂ) SC||u|LNé,p(Q;aﬁ), forall te(s,1).
In particular,
WP (@, B) cWEP (@, B), forall te(s,)).
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The proof is similar in spirit to the proof of Lemma 2.2. Now, we establish the connection
between fractional Sobolev space and weighted fractional Sobolev space by the following
lemma.

Lemma 2.6. For every «, >0 we have

atp
[V]Wé,p(g;aﬁ) <(diam(QY)) q [V]Wé,p(g),
and it yields
WGs’p(Q) CWGS'p(Q;a,ﬂ).
That means that weighted fractional Sobolev space is the expansion of fractional Sobolev
space, and the result we have obtained is more general. In the following section, we
introduce the main results and prove the main results.

3. Main results
In this section, we state our main results and their proofs.

Theorem 3.1. Let p > 2—%, o €(0,2) and Q be an open bounded and smooth domain in
R". Assume that ueW>™ P (0) js a SOLA solution to (1.1). Then for every «,

£ >0 and y>0 satisfying a >y, f>y, a+ -y >0c, there exists a constant C >0
such that

‘A (Vu (|x)) —|ﬁ£Vu ( y))‘ xdy

<C (IQdy(x)‘A(Vu (x))‘dx +|,u|(Q))
where d?(x) = [dist(x,0Q)]° .

d*(x)d”
[, ], d400d”(y) o

. . 1
In this section, we always assume that p>2-—, c€(0,1), Q<R" be an open
n

bounded and smooth domain. Furthermore, ueW>™*%PL(0) js a SOLA solution to
(1.1). Denote by D(Q) the diameter of Q, this means D(Q) = sup d(Xx, y).

X,yeQ
First, suppose that 0 <R, < D(Q2)/2, let
Q, Z={XeQ|0<d(X)S%},
be the set of points near 6Q . We define Q, as
Q, II{XEQl h., <d(x)< rk},
with r, =27"R,,Vk e N*. It is clear that

Q, = JQ, (seeFigure 1).
k=1
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///////i::;;6 Q3

Figure 1. The sets of points near the boundary
To facilitate the proof of main results, we introduce the following function.

T(x,y) ::da(x)dﬁ(y)|A(V“‘|§>i‘y|ﬁng(y))|

: X,y €Q), X # Y.

Let us introduce some lemmas that necessary for later use.
Lemma 3.2. Assume that a, >0, y>20; a>y, f>y and a+ [ —y >oc. Then, there
exists a constant C >0 such that

T(x, y)dxdy < C (IQ\QO d 7(x)‘A(Vu (x))‘ X + || (Q\ Qo)j. (3.2)
Proof of Lemma 3.2. First, let us establish

(I11) := jQ\QO Lmo T(x, y)dxdy.

.[ Q\Q, .[ Q\Q,

We remark that Q\ €, can be covered by actually finite balls centered at z, with radius 1
k=1N,ie

N
Q\QOCUBrl(Zk): U Brl(zk)
k:]. ZkEQ\QO

Let P be the set of all centers, i.e.
Pi={z, eQ\Qy:kef{l,2,...,N}}.
Now, we estimate (III) as follows

(I1T) = jQ\QO jQ\QO T(x, y)dxdy < Z ZZ pIBrl o) [ . (1 TO6 Y)ecly.
k41 €
Let P, be the set of all centers that are closed to z, , which means

P ¢={Z| € PiBgy/2(2)) M By (z¢) # @},
It is clear that
B (21) = Bay /(7)) = By (7)., V7, € P, (see Figure 2).
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Bz, /2(zx) By 2(21)

%EIL

Figure 2. The centers are closed to z, .

Furthermore, the cardinality of P, is finite, i.e. there exists C >0 such that ‘sz ‘ <C

. So, we can decompose the integral Q\Q, xQ\Q, as follows

‘[Q\Qo J.Q\Qo T(X’ y)dXdy = Z J-Blrl(Zk)-.‘Br1(2|)’]r(x’ y)dXdy

Zk,Z|€P

<> 2 IBq(zk)IBq(z,)T(x'y)dXdy+ > > qu(zk)IBq(zl)T(x,y)dxdy.

7 eP z1€Py 7,eP 71 eP\P,

With the first term on the right-hand side of (3.3), we get

2 2 JBQ(Zk)IBrl(Z|)T(X’ y)dXdySCzkze:PIB4r1(Zk)IB4q(Zk)T(X’ y)dxdy.

ZkeP Z|€PZk
Applying (1.5) in Theorem 1.1, we have

T(x, y)dxd
‘[B4r1(zk)jB4q(Zk) (X, y)dxdy

[ g AU - AVU(Y)
By (2k) ¥ By (z) |X_y|”+0

e _[ dxdy

<cprthre UBSr o) 7 ()[AVU(xX))| dx+ [ 1] (Bgy, )]j-

Combining between (3.4) and (3.5), we reach that

2 2 o, o, iy TOO VI

ZKEP ZIEPZK

<c.rff+ﬁ”[ 2 o, (a8 QAT UO e+ 3 IuI(BerJ-

ZkEP ZkEP

(3.3)

(3.4)

(3.5)

(3.6)
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Notice that there is a constant C =C(n) >0 such that
2 X8y, (0(6) <Chang (), Ve

7 eP
therefore, for all f e Lj,.(R"), we reach that
z jB L (906 = 3 [0 zm, 0O F(OAE<C  F()dE (37)

ZkG

Substltutlng (3.7) to (3.6), we obtain that

2 2 IBrl(zk)Ian(z.)T(X' y)dxdy

ZKEP Z|€P2k
<Crrthr—o j
1 Q

Moreover, it's clear that for any x € B, (z), y€B,(z), with z, P and 7, e P\P, , we

o d” ()| A(Vu(x)|dx + |4 (Q\QO)]). (3.8)

get [x—y|>3n. Itis easy for us to check that

d%(x)d” | dxd
71€P\P,, J.Bﬁ(zk)-[Bq(ZO ()7 (Y) —— e | y|n+a xay

- - 1
< 3a+ﬂ " rlOH_ﬂ }/J.Brl(zk)[ PZ\P Brl(Zl)Wdy}dy(XNA(VU(X))MX
[

a+p-y—o 1
<crFthr jBrl(zwL j{§>l}|ﬂTad§]d7(x)|A(vU(x))|dx

<crothre j d” (x)|A(Vu(x))|dx.

Brl(zk)
Now we estimate the last term in (3.3) as
> oy T(x, y)dxdy < C.5**#777¢ Z d” (x)|A(Vu(x))|dx
2,eP 2cP\P,, '[B&(ZK)IBq( 2) '[B (2

<crtbr-e ‘[Q\Qo d” (x)|A(VU(x))|dx. (3.9)

Applying (3.8), (3.9) to (3.3), we reach that
(I1I) = jQ\QO jQ\QO T(x, y)dxdy

c.(r1“+ﬂ—7—“ jQ\QO d7 ()| ACVU())|dx + 577 ] (@) QO))

IN

< C'(_[Q\QO d” (X)|A(VU(X))| dx + |Iu| (Q \ QO)) r1a+/3—7—0

< C.(J.Q\QO d” (x)|A(Vu(x))| dx + | ] (Q\Qo)), (3.10)

which leads to the desired result. O
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Lemma 3.3. Assume that o, #>0, y>20;a >y, >y and a+ -y >o. Then, there
exists a constant C >0 such that

j j d* ()dﬁ()||( ())| xdy < clj dy(x)|A(Vu(x))|dx (3.11)

_ y|n+0' (r

Proof of Lemma 3.3. First, forany xeQ,, ye Qj, li—j|>2, we get

S fith -
|x—y| > max i > 5 (see Figure 3).

Figure 3.

it yields
Joy Jo 40007y )|| (VU0 g V=g, [o, 4“7 047y y[AU0) (vu|( ))|d7(x)dxdy
y

|n+0' |

<r*7rf jQi L j {§> : ,}—d de(x)|A(Vu(x))|dx

€]
<80'a_—7rﬂj j Ldg d” (x)|A(Vu(x))| dx
()7 e Tl g

&7 ﬂ
SC— d” (x)|A(Vu(x))|dx. (3.12)
(f+1;)7 °< I | |
Notice that the fraction | |:+ Is integrable since n+o >n. I:I
5 o

Lemma 3.4. Assume that o, #>0, y20;a >y, >y and a+ -y >o. Then, there
exist constants C, >0 and C, >0 such that

ra—}/ r.¥ ﬂ—}’
.,Z>2 (r— N dy(x)|A(Vu(x)>|dx+W Jo, &7 IAVU(y)dy
scl.jg d7(x)|A(Vu(x))|dxi r e, (3.13)
0 =1
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and

a

> [(ra—y j d” ()| A(Vu(x))|dx +—

j—i>2 +T; )G (r|

Jﬂ‘?’
7 Jo. d?(y)|A(Vu(y))|dy]

<C, j d7(y)|A(Vu(y))|der“+ﬂ i (3.14)
i=1

Proof of Lemma 3.4. First let us establish

a-y % /"‘7
D= Y { A d7(x)|A<Vu(x»|dx+—r)c, def(y)|A(Vu<y»|dy}
i J

i—j>2 (I J)U (rl
and
ra V4 ﬂ a ﬂ—}/
D= Y J A7 (AU [ 07 ()| ATu(y|dy |
o2 (6 + (r+ rj) j
We have

0 a V4 ﬂ
Ou=3 Y ——d | A7 (9| A(Vu()|dx

j=li=j+2 I
r.
J

© 18—7/
I %jgjdy(yﬂAWu(y»wy

ey T g Avu)|dx
Z—‘i |§2 (21 B DUI | |
r-o( 47 VR I
+er I (Y)|AVu(y)) y %Z 2117
<Zr‘“ﬁ 4 Z I dy(x)IA(VU(X))ld“Zrﬂ 1y dy(y)|A(V”(y))|dy Z a
i=j+2 N =2

< Iszo ol7(x)|A(Vu(x))|o|sz:l (e +c1.jz:‘i (e ij d” (y)|A(Vu(y))|dy

<C,. jQO o|7(x)|A(Vu(x))|o|ij:‘1 rfthre,

and similarly, we get

10
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a=y

d rﬂ arﬂ‘?’
Op= 3 |~ [ d7<x)|A(Vu(x»|dx+ﬁj 47 ()| AVu(y)|dy
J

T2l (h+1p)7

<Cpf, dy(y)|A<Vu<y»|der“+ﬂ 7,
i=1

which provides us (3.13) and (3.14). (]
Lemma 3.5. Assume that o, #>0, y>20;a>y, >y and a+ -y >o. Then, there

exists constant C >0 such that
> j j T(x y)dxdy < C j dy(x)|A(Vu(x))|dxz ratpr=o. (3.15)
P2
Proof of Lemma 3.5. In this proof, let us set
@r= 3 Jq I TOy)oxy.
2
Applying (3.11) in Lemma 3.3, we get

= 2 Jq Jg, TOyydxdy

32
3 [l 0 A Dy [ 00ty |
S [x=y] [x=y]
< Z ﬂ dy(x)|A(Vu(x))|dx ar—ﬂ—y d”( )|A(Vu( ))|d
iR ()T o +(ﬁ+fj)GIQi ’ S
< C((Dag + Mhao) (3.16)

where
Oy= 3|0 A (0] AV T @ Ayl

= + )
H isp2l (6+17)7 (r+r;)° Q;

and

D= Y e Jio, 47 0O AU d a’ﬁ_yj d” (y)|A(Vu(y))|d
= X U(Xx X+——— u .
2 joz2 (h+ J)G (r"‘rj)a 2 Y e

From what have already been proved in (3.13), (3.14) and (3.16), (I), can be estimated as

(M), <C '[Qo d7 (x)| A(Vu(x)) deZ:l rfhre,
which allows us to get (3.15). O
Lemma 3.6. Assume that o, #>0, y>20;a>y, >y and a+ -y >o. Then, there

exists constant C > 0 such that

11
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i [ [, T Y)dxdySCUQ d” (x)|A(Vu(x))|dx+|u|(Qo))irf‘*f”‘“f. (3.17)
ER 0

i=1
Proof of Lemma 3.6. In this proof, let us denote

(1), = i [, ], Tx, y)dxdy.
=

To continue estimates (I),, our idea is to decompose the Q; into open balls with a radius

I; then applying the local inequality (1.5) in Theorem 1.1.
o0

Notice that Q. can be covered with N; ~T‘ balls centered at zf( € Q; with radius ;,
1

k:m It means

o CUB (@)= U B (@)

ZkEQ

Let P be the set of all centers, i.e.

P={zf eQ:kefl2,...,N;}}.
Now, we estimate (I), as follows

(1), :% jQi Iai T(x,y)dxdy <> > jB @ jB (Z , T(x, y)dxdy.

i= i=1z,z/eR

Let P i be the set of all centers that are closed to z} which means
12k

R 1={Z|i € P 1By o () M By 2 (2k) iQ}-
It is not difficult for us to check that
By, (1) < Bay2(21)  Byy (7). V2 € R

Moreover, the cardinality of Pizi is finite, means there exists a constant C such that
1k

. <C. So, we can decompose the integral Q; x€}; as follows

J
!

J' j T(x, y)dxdy < 2 .[B (Zk)IB (I)T(x y)dxdy

Zk zje

<> X (zk)jB (T 0% Y)dxely

ZkEp Z|EP i

+ 2 2 [y e,y T vIOy. (3.18)

ZkeP Z|€P\P i
2y

12
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Applying (3.8), (3.9) to (3.18), we reach that
M2 =2 ], |, Tx y)dxdy
i=1 i i

< c(i rethro IQ d7 (x)| A(Vu(x))|dx+ 5> A7 | ) (QO)J

=1

< C.('[Q d” ()| A(VU(x))|dx + | ] (Qo))z rethr=o,
° i=1 (3.19)
which leads to the desired result. O
Lemma 3.7. Assume that o, >0, y>20;a>y, f>y and a+ -y >o. Then, there
exists constant C >0 such that
i—ZJ:'—l jQi ij T(x, y)dxdy < C ( jQO d” ()| A(Vu(x))| dx + ﬂ(QO))E alavaad (3.20)
Proof of Lemma 3.7. Let us establish
M= 3 [, Jo Txy)xdy.
.
We estimate (I); with note that
M= X |, Jo Toenaxdy =23 [ | T y)dxdy <23 [, [, T(x,y)dey,
i—jfm = i=1
where A is defined by

A ZZQiUQH_l:{XEQZ%<d(X)Sﬁ}.

In a similar way, for (I); we may estimate by the same the way to (I), in (3.18) and reach
that
(I)s < C-(IQ dV(x)lA(Vu(x»ldxw(ﬂo)) s (3.21)
0 i=1
which leads to the desired result. O
Lemma 3.8. Assume that ¢, >0, y>20;a>y, >y and a+ [ —y>o. Then, there
exists a constant C >0 such that

jQO IQO T(x, y)dxdy <C ( on d” (x)| A(Vu(x))|dx + ] (Qo)j. (3.22)
Proof of Lemma 3.8. In this proof, let us set
M=, [, T y)axdy.

13
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Since Qg = J O , we can rewrite (I) as follows
k=L

1) = Z j j T(x y)dxdy= > j j ']1"(x y)dxdy + > j j ']I‘(x y)dxdy

li-j[>2 li-j]=

+Z IQ_ IQ_ T(x, y)dxdy
o

= (I)y + (D)3 + (1), (3.23)
with
@r= X o Jo Toeyddy: @5 = 3 ] [, T y)dxy
i—jp>2 & i—jl=1
and

2=, [, 7O )y
i=L

We can estimate each term on the right-hand side of (3.23) by applying Lemma 3.5, 3.6
and 3.7. Then, we can find a constant C >0 such that

(I) < c( jQO d7(x)|A(Vu(x))|dx+|,u|(QO)j. (3.24)

Notice that, the assumption « + f—y > o help us to find

0 © (1 (a+p-y—o)i
Z ria+ﬁ*776 _ CRSH,B*%U’ with C = Z(_) <o,
i=1 i\ 2
which completes the proof. O

Lemma 3.9. For every «, >0, >0 satisfying a>y, f>y and a+pf-y>o0,

there exists a constant C >0 such that

Y
Ty Joney, TOVIEY <C( [ 67 0O|ACUOO) B+ (@1 9) | (3.25)
Proof of Lemma 3.9. Note that €3; can be covered with N; ~ ‘ar__Q‘ balls centered at z,i with
radius I, i.e.
Q CUB (z)=U B, (@),

Z|€p

and Q\ Qg can be covered by finite balls centered at z, with radius 1, i.e

N
Q\Q < B, (z)= | By (%)

k=1 7 P
where
P={zleq:lefl,2,...,N}} and P:={z,eQ\Qy:ke{l,2,...,N}}.
It is not difficult for us to check that

14
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By, (2) < By (2). V2| €.
Now, we estimate (I) as follows

()= [, Jongy, TOWIAy =3[ [, TOxy)dxdy
i=1
< E Zlézl Zkze:P IBn (Zli)J.Brl(zk)T(X, y)dxdy = Ié Zkzelp z,‘%‘é J.Brl(zk)J.Bri (zf)T(X’ y)dxdy

<C

ZkEP

Combining between (3.5) and (3.26), we reach that

(IT) <C(n, p,Cp, 0, Ro)rf‘*ﬁyc’[ > IB . )d7(x)|A(Vu(x))|dx+r1 > |y|(Bgr1)J.
7 P B 1%k

T(x, y)dxdy.
J.B4rl(zk)'|.B4rl(Zk) (X, y)dxdy

(3.26)

ZkEP
(3.27)
Substituting (3.7) to (3.27), we obtain that

(IT) < C(n, p,Cp, 0, Ry)* P77 UQ d” () [A(VU(x))|dx + 1| 4| (Q\Qo)]j

\Qp

<C(n,p,cp . B.7,0, RO)UQ\QOdy(x)|A(Vu(x))|dx+|y|(Q\QO)). (3.28)

This achieves the proof of the desired result. I:I
Thanks to some lemmas that have been proved and some important properties of

weighted fractional Sobolev's spaces discussed in Section 2, now we prove the main

theorem.

Proof of Theorem 3.1. The integral of T over QxQ can be rewritten as

IQ J'Q']I‘(x, y)dxdy = -[Qo IQO T(x, y)dxdy + ZIQO IQ\QO T(x, y)dxdy + J.Q\Qo IQ\QO T(x, y)dxdy
= (I) + 2(I) + (TII),  (3.29)
with
(I) = IQO jQO T(x,y)dxdy; () = jQO jQ\QO T(x, y)dxdy,
and
(I1I) = Lmo Lmo T(x, y)dxdy.
We can estimate each term (I), (II) and (III) by using Lemmas 3.2, 3.8 and 3.9. Then,
there exists constant C =C(n, p,c4,, B,7,0,Ry) >0 such that

[, Jo, (%, y)xdy < c( [, 87 COLAVU() dx + ;4(9)), (3.30)
which leads to the desired result (3.1) from (3.30). O

15
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ABSTRACT

Weighted fractional Sobolev spaces have many applications in partial differential equations.
In this paper, we study a class of weighted fractional Sobolev spaces, where the weights are the
distance functions to the boundary of the defined domain. This class has been used to obtain a
weighted Cacciopoli-type inequality for solutions to p-Laplace equations with measure data. Our
result expands to the Cacciopoli inequality in the recent paper (Tran & Nguyen, 2021b).

Keywords: Cacciopoli-type inequality; partial differential equations; p-Laplace equations;
weighted fractional Sobolev spaces
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