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ABSTRACT

The purpose of this [EBGIISIE combine the Bregman distance with the shrinking projection
method to introduce a new hybrid iteration process for a generalized mixed equilibrium problem and
a Bregman totally quasi-asymptotically nonexpansive mapping. After that, under some suitable
conditions, we prove that the proposed iteration strongly converges to the Bregman projection of the
initial point onto common element set of the solution set of a generalized mixed equilibrium problem
and the fixed point set of a Bregman totally quasi-asymptotically nonexpansive mapping in reflexive
Banach spaces. This theorem extends and improves the results in (Alizadeh & Moradlou, 2016) from
a generalized hybrid mapping and an equilibrium problem in Hilbert spaces to a Bregman totally
quasi-asymptotically nonexpansive mapping and a generalized mixed equilibrium problem in
reflexive Banach spaces. The obtained result is applied to a generalized mixed equilibrium problem
and a Bregman quasi-asymptotically nonexpansive mapping in reflexive Banach spaces. In addition,
an example is provided to illustrate for the proposed iteration process.

Keywords: Bregman totally quasi-asymptotically nonexpansive mapping; generalized mixed
equilibrium problem; hybrid iteration process; reflexive Banach spaces

1.  Introduction and preliminaries
Suppose that X is a real reflexive Banach space, © is a honempty, closed and convex

subset of X, X* is a the dual space of X. Let f: QOxQ — R, ¢:Q — R be two function and
¥ :Q— X* be a mapping. We denote the value of v € X*at ue X by (u",u). The

generalized mixed equilibrium problem (GMEP) is to find u» € such that
Flu,v) + (W(u), v —u) + (v) > o(u) B v € . The set of solutions of (GMEP) is denoted

by GMEP(f, ) = {u € Q: f(u,v) + (¢(u),v — u) + o(v) > p(u), Vv € Q}. Note that, if o =0
and « = 0, the problem (GMEP) is reduced into the equilibrium problem (EP) which is to
find u € Q such that f(u,v) > 0 [l © € .

Cite this article as: Nguyen Trung Hieu (2021). Using creative methodology to explore factors influencing
teacher educator identity. Ho Chi Minh City University of Education Journal of Science, 18(9), 1359-1367.


http://journal.hcmue.edu.vn/
mailto:ngtrunghieu@dthu.edu.vn

HCMUE Journal of Science Vol. 18, No. 9 (2021): 1359-1367

In recent times, there were many methods for solving the above problems. In 2016,
Darvish introduced an iterative method for finding common elements of the solutions set
of the problem (GMEP) and the fixed points set of a Bregman strongly nonexpansive
mapping in reflexive Banach spaces. In 2016, Zhu and Huang introduced a new hybrid
iterative scheme for finding common solutions of the problem (EP) and fixed points of
Bregman totally quasi-asymptotically nonexpansive mappings. In 2018, Ni and Wen
proposed a new iterative scheme for finding a common solution of a system of the problem
(GMEP) and fixed points of a finite family of Bregman totally quasi-asymptotically
nonexpansive mappings. Note that these convergence results extend and improve the
existing results from Hilbert spaces or smooth Banach spaces to reflexive Banach spaces.
Therefore, an interesting work naturally raised is to continue to generalize the existing
convergence results from Hilbert spaces to reflexive Banach spaces.

In this paper, motivated by the iteration process in (Alizadeh &Moradlou, 2016), we
introduce a new hybrid iterative scheme which is to find common elements of the set of
solutions of the problem (GMEP) and the set of fixed points of Bregman totally quasi-
asymptotically nonexpansive mappings. After that, we prove a strong convergence theorem
for the proposed iteration in reflexive Banach spaces. In addition, we give a numerical
example to illustrate the obtained results.

Now, we recall some notions and results which will be useful in what follows.

Assume that ¢g: X — (—oo,+o00] IS a lower semi-continuous, convex and proper

function. We denote the domain of g by domg={ue X:g(u)<+oc}. For any

u € int(domg) and v € X, we denote by g¢'(u,v) = lim glu+ )\;)\) —9(w) (1.1) the right-

A—0"

hand derivative of ¢ at » in the direction ». The function ¢ is called Gateaux
differentiable at « if the limit (1.1) exists for all v. Then the gradient of ¢ at u is Vg(u),
which is defined by (Vg(u),v) = ¢'(u,v)for all v € X.The function ¢ is called Fréchet
differentiable at « if the limit (1.1) is attained uniformly in || v ||=1. The functiong is
called be uniformly Fréchet differentiable on a subset 2 of X if the limit (1.1) is attained
uniformly for v € Q and || v ||=1.

Note that if ¢ is uniformly Fréchet differentiable, then ¢ is uniformly continuous (see
[Ambrosetti & Prodi, 1993, Theorem 1.8]). If ¢ is Gateaux differentiable and lower semi-
continuous convex, then ¢ is bounded on bounded sets if and only if Vg is bounded on
bounded sets (see [Ambrosetti & Prodi, 1993, Proposition 1.1.11]). Furthermore, if ¢ is
uniformly Frechet differentiable and bounded on bounded subsets, then Vg is uniformly

continuous on bounded subsets of X ™ (see [Reich & Sabach, 2009, Proposition 1]).
Let u ¢ int(domg), the Fenchel conjugate of ¢ is the function ¢* : X — (—o0,400]

defined by ¢* (uv*) = sup{(u*,u) — g(u) : v € X} - w e X,
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Definition 1.1 [Chang et al., 2014, Definition 2.2]. Let X be a real reflexive Banach space
and ¢g: X — (—oo,+o0] be afunction. Then g is called Legendre if

(L1) int(domg) = @, g is Gateaux differentiable on int(domg) and

dom(Vg) = int(domyg).

(L2) int(domg*) = @, g* is Gateaux differentiable on int(domg*) and

dom(Vg") = int(domg”).
Remark 1.2. [Chang et al., 2014, Remark 2.3]. Let X be a real reflexive Banach space
and g: F — (—oo,+oco] be Legendre. Then

(1) ¢ is Legendre if and only if ¢g* is Legendre.
(2) Vg=(Vg) " ran(Vg) = dom(Vg") and ran(Vg )= dom(Vg) = int(domg), where
ran(Vyg) is the range of Vg.
Definition 1.3. [Censor & Lent, 1981, p.324]. Let X be a real reflexive Banach space and
g: X — (—oo,+oo] be Gateaux differentiable. Then D :domg x int(domg) — [0,00), defined
by D (u,v) = g(u) — g(v) — (Vg(v),u —v) is called the Bregman distance with respect to g.
From the definition, we have D (u,v)+ D (v,w)—D (u,w)=(Vg(w)—Vg(v),u—v)
for all u € domg and v, w € int(domg).
Let g:X — (—oo,+00] be Gateaux differentiable and V : X x X —[0,00) be
defined by V (u,u") = g(u) —(u",u) + ¢"(v") forall v € X and u" € X
Remark 1.4. Let ¢g: X — (—oo,+oo] be a Gateaux differentiable function. Then
(1) [Kohsaka & Takahashi, 2005, Lemma 3.2] Forany v € X and «* € X', we have
V,(u) = D,(w, Vg ().

(2) [Kumam et al., 2016, p.7] V, is convex in the second variable. Furthermore, for

any u € domg, {u};", Cint(domg) and {t,};" c[0,1] with ) ¢ =1, we have
k=1

k k=1

Dg(u, Vg*(z thg(uk))) < ZtkDg(u, uk).
k=1 k=1

Definition 1.5. [Butnariu & lusem, 2000, p.69]. Let X be a real reflexive Banach space,
g: X — (—oo,+c0] be Legendre and {2 be a nonempty, convex and closed subset of

int(domg).The Bregman projection of w« € int(domg) onto € is the unique vector
Fy(u) € 0 statisfying D (P (u),u) = inf{D (v,u):v € Q}.

Definition 1.6. [Resmerita, 2004, p.1]. Let X be a real reflexive Banach space and
g: X — (—oo,+00] be Gateaux differentiable. Then

(1) ¢ is called totally convex atu € int(domg) if any ¢ > 0, we have

v (u,e) = nf{D (v,u):y € domg,[|v—u|[=e}> 0.
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(2) ¢ is called totally convex if ¢ is totally convex at every point « € int(domf).
(3) ¢ is called totally convex on bounded subsets of X if any nonempty bounded

subset £ of X and ¢ > 0,we have v (E,c) = inf{vg(u, e):u € ENdomg}>0.

Proposition 1.7. [Resmerita, 2004, Proposition 2.2]. Let X be a real reflexive Banach
space, andg: X — R be Gateaux differentiable. Then ¢ is totally convex atu € X if and

only if for any sequense {v,} C X suchthat lim D (v ,u) = 0, we have lim || v, —u ||= 0.

Proposition 1.8. [Butnariu & lusem, 2000, Lemma 2.1.2]. Let X be a real reflexive
Banach space, andg: X — R be convex and Gateaux differentiable. Then ¢ is totally
convex on bounded sets if and only if for any sequence {u },{v } C X such that {u } is
bounded and lim D (v ,u,) =0, we havelim || v, —u, ||= 0.

n— 00

Proposition 1.9. [Butnariu & Resmerita, 2006, Corollary 4.4]. Let X be a real reflexive
Banach space, g : X — (—o0o,+0oc] be a Gateaux differentiable function and totally convex

on int(domg), 2 be a nonempty, closed and convex subset and « € int(domg). Then
(1)w = PJ(u) ifand only if (Vg(u)—Vg(w),w—v)>0 forall v eQ.
(2) D, (v, () + D (F)(u),u) < D (v,u) forall v e Q.
Proposition 1.10. Let X be a real reflexive Banach space and ¢: X — R be a function.
(1) [Reich & Sabach, 2010, Lemma 1]. If g is Géateaux differentiable and totally

convex on X, u € X and {u } C X satisfying {Dg(un,u)} is bounded, then the sequence
{u_} is bounded.

(2) [Sabach, 2011, Proposition 2.3]. If ¢ is Legendre such that Vg* is bounded on
bounded subsets, © € X and {u } C X satisfying {Dg(u, u )} is bounded, then the sequence

{u, }is bounded.

Definition 1.11. [Zalinescu, 2002, p.203, p.207, p.221]. Let X be a Banach space. We
denote by S, = {u € X :|[ul| <1} and B. = {u € X :||u|| < e} for some ¢ > 0. Then

(1) g: X — R is called uniformly convex on bounded subsets if p (\)>0 for all
A€ > 0, where the function p_:[0,00) — [0,00) is defined by

o Do)+ (1= 8)g) — glbu+(1— )
e B Jlu—vl[=A,5€(0,1) 5(1 _ 5) ’

p.(A) =

a.(\)

(2) g: X — R is called uniformly smooth on bounded subsets if lAiHéfT: 0 for all

e > 0, where the functiono_ :[0,00) — [0,00) is defined by

o= sup Dot ON)+ (1= O(u—OAe) —g(w),
u€B_wes,6€(0,1) (5(]_ _ 6)
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Remark 1.12. [Naraghirad & Yao, 2013, p.7]. The function g is uniformly convex on
bounded subsets if and only if ¢ is totally convex on bounded subsets.
Definition 1.13. [Kohsaka and Takahashi, 2005, p.509]. Let X be a Banach space. Then

g: X — (—o0o,+00] is called strongly coercive if lim 9(w)

i ]

Proposition 1.14. [Zalinescu, 2002, Proposition 3.6.3]. Let X be a real reflexive Banach
space, g : X — R be strongly coercive, continuous and convex. Then ¢ is bounded on

= +o00.

bounded subsets and uniformly smooth on bounded subsets if and only if dom(g") = X™,

g is strongly coercive and uniformly convex on bounded subsets.

Proposition 1.15. [Zalinescu, 2002, Proposition 3.6.4]. Let X be a real reflexive Banach
space,g: X — R be convex, continuous and bounded on bounded subsets of X. Then the

following statements are equivalent.
(1) ¢ is uniformly convex on bounded subsets and strongly coercive.
(2) Dom(g") = X, ¢" is bounded and uniformly smooth on bounded subsets.

(3) Dom(g")= X", ¢g"is Fréchet differentiable and Vg¢* is uniformly continuous on

bounded subsets.
Lemma 1.16. [Naraghirad & Yao, 2013, Lemma 2.2]. Let X be a Banach space, r > 0
and g: X — R be convex and uniformly convex on bounded subsets. Then

o0, )< Dasn,) ~ap (v, I)

with 4,j € {1,2,...,m}, v € B.={ue X:||u|[<e} and a_e[0,1] such that S a =1

n=1

and the function p_is defined as in Definition 1.11.

We denote by F(S) = {w € Q: Sw = w} the set of fixed points of S : 2 — Q.
Definition 1.17. [Chang et al., 2014, Definition 2.10]. Let X be a reflexive Banach space,
Q be a nonempty subset of X, S: — Q be a mapping and D, be the Bregman distance.

Then
(1) S is called a Bregman quasi-asymptotically nonexpansive mapping if F(S) = o and

there exists a real sequence {6 } C[1,00) with lim § =1 such that
D (u,5"v) <6 D (u,v) forall veQ and u € F(S).
(2) S is called a Bregman totally quasi-asymptotically nonexpansive mapping if F(S) = @

and there exist nonnegative real sequences {«a, },{3,} with lima =1limj3 =0 and a

n—oo

strictly increasing continuous function ¢ : R™ — R with ¢(0) = 0 such that
D (u,5"v) < D (u,v) +a (D (u,v))+ B, forall veQ and u € F(S).
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(3) S is called a Bregman firmly nonexpansive mapping if

(Vg(Su) — Vg(Sv), Su — Sv) < (Vg(u) — Vg(v),Su — Sv) forall u,v € Q.
(4) S is called a Bregman quasi-nonexpansive mapping if F(S) = @ and

D (u,Sv) < D (u,v) forall veQ and u € F(S).

IREIEER 1.18. [Chang et al., 2014, p.42].
(1) If S is a Bregman quasi-asymptotically nonexpansive mapping, then S is a

Bregman totally quasi-asymptotically nonexpansive mapping with ¢(\) =\ for all A >0,
o =6 —1 with § > 1lsatisfying limé =1 and 3, = 0; but the converse is not true.

(2) If S is a Bregman firmly nonexpansive mapping, then S is a Bregman quasi-
nonexpansive mapping.
Definition 1.19. [Zhu & Huang, 2016, Definition 2.10]. Let X be a Banach space, €2 be a
nonempty subset of X, S:Q — Q be a mapping. Then

(1) S is called closed if any sequence {u } in € such that limu =uv e and

n—o0

lim Su = v € Q, we have Su = v.

n—00

(2) S'is called uniformly asymptotically regular on €2 if for all bounded subset U of
2 we have lim sup || $""'u — S"u ||= 0.

N0 ey

Lemma 1.20. [Chang et al., 2014, Lemma 2.16]. Let X be a real reflexive Banach space, €2 be
a nonempty, closed and convex subset of X, ¢g: X — (—oo,+o00] be a Legendre function which

is totally convex on bounded subsets of X, S : 2 — € be a closed and Bregman totally quasi-
asymptotically nonexpansive mapping. Then F(S) is convex and closed.

In order to slove (GMEP), we suppose that f satisfies the following hypotheses:

(C1) f(u,u)=0 forall u € Q.

(C2) f(u,v)+ f(v,u) <0 forall u,v € .

(C3) liIIAI soup fOw+ (1= Nu,v) < f(u,v) forall u,v,w € €,

(C4) For each u € €, v — f(u,v) is convex and lower semi-continuous.

Definition 1.21. [Darvish, 2016, Definition 2.4]. Let X be a real reflexive Banach space,
Q2 be a nonempty, convex and closed subset of X. Suppose that f:QxQ — R satisfies

(C1)-(C4), ¢:92 — R is convex and lower semi-continuous, #:Q — X" is continuous
monotone. The mixed resolvent of f is the mapping Res]  :X — 2? which is defined by
Resj  (u)={w e Q: f(w,v) + ¢(v) + (Y(u), v — w)
+(Vf(w) = Vf(u), v - w) 2 p(w), Vv € Q).
Note that if ¢g: X — (—oo,+00] is strongly coercive and Gateaux differentiable, then
dom(Res] )= X, see [Darvish, 2016, Lemma 2.7]. We find that the formula of the

function Resjw contains the term (u) for all v € X.Since domy = Q C X, the value

6
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Y(u) does not exist for all « € X\ Q. Motivated by this confusion, we revise the formula of
the function Res| | by replacing the term «(u), v € X by ¢(w), w € Q. This formula has
been stated in (Ni & Wen, 2018, Lemma 2.5), where Res] | is denoted by Tf as follows.
Res|  (u) ={w € Q: f(w,v) + ¢(v) + (Y (w),v — w)
+(Vf(w) — Vf(u),v—w) > p(w),YveQ}. (1.2)
The following lemma presents some properties of Res! which is defined by (1.2).
Lemma 1.22. [Ni & Wen, 2018, Lemma 2.5]. Let X be a real reflexive Banach space, €2 be
a nonempty, closed and convex subset of X, g: X — R be Legendre and f: Q2 x — R be
a bifunctional satisfying (C1)-(C4). Then
(1) Res! ~is asingle-valued and Bregman firmly nonexpansive mapping.
(2) F( Res| )= GMEP(f,¢,v), GMEP(f,¢,v) is convex and closed.
(3) Forall uw € X and v € F(Res| ), we have

Dg(v,Resi,M_w( u))+ D (Res} o (u),u) <D (v,u).

2. Main results

The following result shows the strong convergence of a hybrid iteration process for a
generalized mixed equilibrium problem and a Bregman totally quasi-asymptotically
nonexpansive mapping in reflexive Banach spaces.
Theorem 2.1. Let X be a real reflexive Banach space, {2 be a nonempty, closed and convex
subset of X, ¢: X — R be Legendre, strongly coercive, bounded, totally convex and

Fréchet differentiable on bounded subsets. Suppose that f : 2 x Q — R satisfies (C1)-

(C4), p:Q2— R is lower semi-continuous and convex, v :{2— X" is continuous
monotone, S: Q2 — Q is a closed, uniformly asymptotically regular and Bregman totally
quasi-asymptotically nonexpansive mapping with  {« },{3 } C[0,00) satisfying

lim o —hrnﬂ =0 and a strictly increasing continuous function ¢:R" — R" with

n—oo

¢(0) = 0 such that F = F(S)NGMEP(f,¢,1) is bounded and nonempty. Let {z } be a

sequence generated by: z € ,Q =Q and

u, =Vg'(aVy(z,)+1—a)Vg(s"z))

0, € f(0,,0) + 9(0) + (Wb, ) 0 —v,) + (Tglv,) — Vg2, )0 —v,) > (1, ), Yo € O

w, =Vg'(bVg(u,)+1-b)Vg(S"y,)) (2.1)
Q. = {ue Q. :Dg(u,w ) < ( ) ’y”}

z = PS;’M (z),n €N’

n+1

wherey, =« sup{¢(D, (u,z,)):u € F}+ 3, and {a },{b } C[0,1] such that lima =1 and

n—o0

liminfb (1—5 ) > 0. Then the sequence {z,} strongly convergestop = Pi(z,).

n—o0
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Proof. We divide the proof of this theorem into six steps.
Step 1. We show that P!(z,) is well-defined. Indeed, it follows from Lemma 1.20 and

Lemma 1.22 that F(S) and GMEP(f,p,+) are closed and convex. Therefore, by
combining this with the assumption, we obtain that F = F(S)NGMEP(f,p,7) IS a

nonempty, closed and convex subset of €2. This fact ensures that P!(z ) is well-defined.
- We show that B! (z) is well-defined. We first claim by mathematical induction

that © is convex and closed for all » € N*. Obviously, for » =1, we have @ =Q is

closed and convex. Now we suppose that €2, is convex and closed for some % € N*. Then,

by the definition of @ ., we have

Q. ={ueQ (Vy(z,),u—2z)—(Vg(w,),u—w)<v, —g(z)+g(w)} (2.2)

By combining (2.2) with the continuity of Vg(.), we get that © _ is convex and

1

closed. Therefore, @ is convex and closed for all n e N*. Next, we will claim by
mathematical induction that 7 c ©_for all » € N'. Obviously, we have 7 c Q = Q,. Now,
we suppose that F c Q, for some ke N. We will show thatF c Q, ,.Indeed, for any
u e F, we get u € Q. By using Remark 1.4.(2), we have
D (uu) =D (1, Vg (a,Vg(z) + (1 —a)Ve(S"2))) < a.D (u,z)+(1—a)D (u,5%,)
<a,D (u,2,)+(1—a)[D,(u.2)+ (D, (uz))+ 6]
= D, (u,2,) + (1 - a)[oC(D, (w,2) + B1< D, (w.z) + 0, (D, (wz)) + B (2.3)
Furthermore, by the definition of v and Definition 1.21, we have v, = Res]_ (z,). It
follows from Remark 1.18 and Lemma 1.22 that Res;  is a Bregman quasi-nonexpansive

mapping. Therefore D (u,v,) =D (u,Res}_ (z,)) <D (u,2,). (2.4)

Next, by using Remark 1.4.(2), we obtain
D (u,w,) =D, (u,Vg (b,Vg(u)+(1—-b)Vg(S',))) <bD (u,u)+1—0b)D, (u,T,)
<D, (u,u) + (1= b)[D, (u,v,) + 0, (D, (u,,)) + ] (2.5)
It follows from (2.4) and the strictly increasing property of (¢ that
(D, (u,v,)) < (D, (u,2,)). Then, from (2.4), (2.5) becomes
D, (u,w,) < b,D, (u,u) + (1 =)D, (u,2,) + a,C(D, (u,2,)) + B,). (2.6)
By substituting (2.3) into (2.6), we have
D (u,w,) < b[D, (u,2,) + . ¢(D (u2,)) + B,]+ 1= b)[D, (uz,) + o, (D (u, 2,)) + B,]

=D (u,z,)+ (D (u,2))+ B8, <D (uz)+7, (2.7)
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This implies that « € ©, and hence F c Q. Therefore, we conclude that 7 C Q2

= @. Therefore, we find that

1

for alln € N".By the assumption F =@, we obtain ©Q

P! (z,) is well-defined.

Qo

Step 3. We show that {D (z,,z,)}.{,} are bounded and lim D (2 ,z,) exists. Indeed, since

n—oo

z, = Py (z,), by Proposition 1.9, we get D (y,z,) + D, (,,2) < D,(y,2,),Yy € Q. (2.8)

Let uw € F. Since 7 CQ , we get v € Q2 .By choosing y = v in (2.8), we obtain
D (u,z,)+ D (z,,2) < D (u,z). (2.9)

n?71

This implies that D (z,,z) < D (u,2)— D, (u,z,) < D, (u,z,). Therefore, {D (z .z )} is
bounded. Then, by Proposition 1.10(1), we conclude that the sequence {z } is bounded.
Furthermore, we have 2z . = P! (z)eQ  cQ . Bychoosing y =z  in(2.8), we get

D (z,,,2)+D (2,2)<D,|(z,,7). Thisimplies that D (2 ,z)< D (

g

z,). This proves that

n+1’

{D,(,,2)} is a nondecreasing sequence. By combining this with the boundedness of the

sequence {D (z,,z)}, we conclude that the limit lim D (2 ,z) exsits.

n—0o0

Step 4. We show that limz =peQ and lim ||z 6 —z |/=0.Indeed, for m >mn, we

n—oQ

have = =P/ (z)eQ cQ . Bychoosing y =z in(2.8), we get

Dg(zm,z”) + Dg(z z) < Dg(zm,zl).

n? 1

Thisimplesthat 0 < D (z,,2,) <D (z,,2)— D, (z,,2). (2.10)

n?”1

Taking the limit (2.10) as m,n — oo and using the existence of lim D (z ,z ), we get
gy n

n—oo

lim D (z ,z )=0. (2.11)

n,m—oo 9 m ! n

By combining (2.11) with the boundedness of the sequence {z }, by Proposition 1.8,

we have lim ||z —z |[|=0. (2.12)

This proves that {z } is a Cauchy sequence in Q. Since X is a Banach space and 2
is a closed subset of X, there exists p € @ such that lim = = p. Moreover, by choosing

n—oo

m =n+1in(2.11) and (2.12), we obtain lim D (z ,,2, ) =0 (2.13)

Y
00 n+1’ "n

and lim [z —z [=0. (2.14)

Step 5. We show that p € F.Indeed, since z , =B/ (z)eQ, ., CQ  wehave

'Dg (Z7i+17 wn) S Dg (zn+17 Zn ) + /Yn . (215)
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It follows from (2.9) and the boundedness of {D (z ,z)}that{D (u,z, )} is bounded for any
u € F. Then, by using lim o, = lim 3 =0, we find that lim y =0. (2.16)

n—00 n—o0 n—00

Therefore, from (2.13), (2.15) and (2.16), we conclude that lim D (2, ,w,) = 0. (2.17)

?
N0 n+1 n

Let u € F. By (2.9) and the boundednees of {D (z ,z )}, we obtain that {D (u,z,)}
is bounded. By combining this with (2.7), we conclude that {D (u,w, )} is bounded.

Furthermore, by Proposition 1.15, we find that ¢ is bounded on bounded sets. Then Vg* is
bounded on bounded sets. It follows from Proposition 1.10(2) that {w } is bounded. By
combining this with (2.17), from Proposition 1.8, we have lim || z ., —w, ||=0. (2.18)

It follows from (2.14) and (2.18) that hjg |z, —w [|=0. (2.19)

Since ¢ is uniformly Fréchet differentiable, ¢ is uniformly continuous. Then, from
(2.19) we get lim || g(z,) — g(w,) || = 0. (2.20)

Since ¢ is uniformly Fréchet differentiable, V¢ is uniformly continuous on bounded
subsets of X.Therefore, from (2.19), we have lim || Vg(z,) = Vg(w,) ||= 0. (2.21)
For any« € F, by using similar arguments as in the proofs of (2.3) and (2.4), we obtain

D (u,u,) <D (u,2,)+a, (D (uz,))+ B, (2.22)
and D (u,v,) < D (u,z,). (2.23)

By combining (2.22) with the boundedness of {D (u,z,)}, we getthat {D (u,u )} is
bounded. By Proposition 1.10(2), we get that {«_} is bounded. It follows from (2.23) and
the boundedness of {D (u,z,)} that {D (u,v,)}is bounded. Since {D (u,v,)} is bounded
and D (u,5"v,) <D (u,v,)+ (D uv,)+ 6, we find that {D (u,S"v,)} is bounded.
Thus, from Proposition 1.10(2), we get that {S"v } is bounded. Since {u }, {S"v } are
bounded and Vg is bounded on bounded subsets of X, we conclude that {Vg(x )} and

n

{Vg(S"v )} are bounded. Put r=supmax{||Vg(u)]||]|Vg(S"v )|l}. Therefore,

neN”

Vy(u ), Vg(S"v ) e B. ={uec X" :||u||<e}. By Proposition 1.14, we find that ¢" is
uniformly convex on bounded subsets of X*. Therefore, by Lemma 1.16, we have

9 (0,Vg(u,)+1-0,)Vg(5",))

<b,9'(Vy(u,))+1=0,)g"(Vg(§"v,)) =b (1=, )p (| Vg(u,) = Vg(5"v,) ),
where p_is defined as in Definition 1.11. By using Remark 1.4.(1) and the definition of
Vf, we get

D (u,w,) =D (u,Vg (b,Vg(u,)+1—=b)Vg(S"0,))) =V, (ubVg(u,)+1-b)Vg(S"v,))

10
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= g(u) =, Vy(u,)+1=b)Vg(S"v,),u) +g"(b,Vg(u,)+ 1 -0, )Vy(5"v,))
= (U)—<b V(u,)+0=b,)Vy(S",),u)
9 (Vg(u,))+1=0,)g(Vg(§"v,))—b,A=b )p.(I| Vg(u,) = Vg(5"v,)[])
=b7[ (u) =(Vg(u,),u) + g"(Vg(u,))]+ @ =0, )[g(u) = (Vg(S"v,),u) + 9" (Vg(S"v,))]
—b, (=5, )p.(|| Vg(u,) = Vg(S"v,) |])
=5V, (u,Vg(u,))+1A=0b)V (u,Vg(S" vn))fb(lf o (|| Vg(u,) = Vg(S"v,) [[)
=0,D (u,Vg'(Vy(u,)))+1=b,)D (u, Vg (Vg(5'v,)))
—b,(L=0)p_(I| Vg(u,) = Vg(S"v,) |])
=0,D (u,u,)+(1=0)D (u,S",)—bA—=b)p. (Il Vg(u,) = Vg(5"v,) )
<b,D (u,u,)+(1—b)[D,(u,0,)+ 0 ((D, (u,0,)) + 8]
—b,(1=b,)p.(I| Vg(u,) = Vg(S"v,) |])- (2.24)
Thus, by combining (2.23), (2.24) and the the strictly increasing property of ¢, we get
Dg(u, w ) < any(u, u )+ (1—-0b) [Dg(u, z,)+a D (vz,))+0,]
—b,(1=b,)p.(|| Vg(u,) = Vg(5"v,) [])- (2.25)
By (2.22) and (2.25), we get D, (u,w,) < D, (u,z,) +7, —b,(1—b)p.(|| Vglu,) ~ Vg(5™0,) |I).
This implies that b (10 )p.(|| Vg(u,) = Va(S"v,) [[) < D (u,2,) = D (u,w,) +,. (2.26)

)
9(

Furthermore, by the property of the function D‘q, we have

’ D!l (’U/, Z7L> - D!] (U, wn) ‘:’ 7D(Z”, wn) + <Vg(wn> - vg('zn)’u - Z”> ‘

<lg(z,)—g(w ) |+ | Vaw)Il.Ilz, —w, [[+|[u—2z ][ Vg(w,) = Vg(z,) . (2.27)
Then from (2.19), (2.20), (2.21) and (2.27), we get lim | D (u,z,) — D (u,w,)|=0. (2.28)
By (2.16), (2.26) and (2.28) that hm b (1—=0)p.(||Vg(u )—Vg(S"v )|)=0. (2.29)

By (2.29) and liminfb (1 -5 )> 0,we have lim p (|| Vg(u, ) —Vg(S"v,)[) = 0. (2.30)
By combining (2.30) and the property of p_, we get lim || Vg(u ) — Vg(S"v ) ||= 0. (2.31)

It follows from the assumptions of ¢ and Proposition 1.15 that Vg* is uniformly
continuous on bounded subsets. Thus, by (2.31), we get lim Ju, —S"v ||=0. (2.32)
Furthermore, by Vg = (Vg")" and the definition of » ,we obtain
Vo(u,)=Vg(Vyg'(a,Vy(z,)+(1—a,)Vg(S"z,)) =aVy(z,)+(1—a,)Vg(S"z,). This
leads to || V(u,)— Vg(z,) [|= (1-a,)|| Vg(5"2,) ~ Va(z,) | (2.33)
By lim o, =1, the boundedness of {z }, (2.33), we get lim | Vg(u,) — Vyg(z,) [|= 0. (2.34)

n—o0

Since Vg* is uniformly continuous on bounded subsets, from (2.34), we have

11
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lim [|u, — 2, [|=0. (2.35)

By combining (2.32) and (2.35), we obtain lim ||z —S"v ||=0. (2.36)

It follows from (2.36) and lim z, = p that lim S"v = p. Thus, by combining this with the

n—0o0 n—00

asymptotically regular property of S and || S""v —p||<||S"v, —S™v ||+ ]| S"v, —p ],

we conclude that lim S"*'v = p. This leads to lim S(5"v ) = lim 5""'v = p. Since S is

n—oo n—oo n—oo

closed, we conclude that Sp = p and hence p € F(9).

Next, we will prove that p € GMEP(f,¢,%). Since v, = Res}_ (z,), we obtain

f ,v)+ @)+ @ ), v—v)+(Vgv )= Vg(z ),v—v)> ¢ ) forall veq. (2.37)
Then, from the condition (C,)and (2.37), we have

f0,0,) < =f(v,,0) < @W(v,),0=v,)+(Vg(v,) = Vg(z,),v = v,) + @(0) = (v,). (2.38)

Furthermore, since ¢ and Vg are uniformly continuous on bounded subsets of X, by
(2.36), we get lim || g(z,) — g(S"v,) || = lim || Vg(z,) — Vg($"v,) ||= 0. (2.39)

We have | D (u,z,)— D (u.8"v,) [=|—D(z,,5",) +(Vg(S"v,) = Vy(z,),u—z,)|

<[g(z,) = 9(8"0,) |+ [1Vg(S"0,) [ [ 2, = S"v, ||+ [Ju =z, ||| Vg(S"v,) = Vg(z,) || (2.40)
By (2.36), (2.39) and (2.40), we get that lim | D (u,2,)— D, (u,5"v,)|= 0. (2.41)
For w e 7, by Lemmal.22and v, = Res}_ (z,),we find that

D (v,z,) <D (u,z2)~D (uv,)<D(uz)~D (u,5")+al(D/(uv))+6,. (242)

It follows from (2.41), (2.42) and lim o, = lim 3, = 0that lim D (v ,z )= 0. Since

n—00 n—oo

{z,} is bounded, by Proposition 1.8, we have lim ||v, —z, ||=0.Since Vg is uniformly
continuous on bounded subsets, we get lim || Vg(z, ) — Vg(v )||= 0. Therefore, by using

(2.38), the lower semi-continuous property of ¢, the lower semi-continuous property in the
second variable of f and the continuous property of ¢, we have

f(,p) < ((p), v — p) + ¢(v) — @(p)
and hence f(v,p) + (¥(p),p — y) + ¢(p) — p(v) < 0 forall v e (2.43)

For all ¢ (0,1], put v, =tv+(1—t)p. Since v,p €Q and Q is convex, we have v, € (L
Thus, replacing v by v, in (2.43), we get f(v,,p) + (¥(p),p —v,) + ¢(p) — p(v,) < 0. (2.44)

Then, by using the condition (C,),the convexity in the second variable of f, the
convexity of ¢ and (2.44), we have

0= f(v,v) = fv,v,) +(¥(p),v, —v) + &lv,) = ¢(v,)

12
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< (v, 0) + (L= 1)f(v,, p) + H{(p), 0 = v,) + (L= D)W(p), p — v,) + tp(v) + (L= t)p(p) — ¢(v,)
= t[f(v,,v) + ((p),v = v,) + 9(v) —p(v,)]+ 1 =) [f(v,, ) + (%(p), p — v,) + (p) — &(v,)]
< (v, 0) + (W), y — ) + @(v) = (v,
This leads to f(v,,v) + (¥(p),v —v,) +
and using the condition (C,),we have f(p,v)+ (¥(p),y — p) + ¢(v) —¢(p) > 0. This proves
that p € GMEP(f,¢,v). Therefore, p € F = F(S)NGMEP(f,p,1).
Step 6. We show that p = P/(z).Indeed, since z , = £}

o(v) —¢(v,) >0 by te(0,1]. Letting ¢ — 0*

t

( ), by Proposition 1.9, we have

(Vg(2)=Vy(z,,,),2,, —v>0forallveQ . .Letue ]—".Slnce FcQ,,wegetueQ

n+1°

By choosing v = w in the above inequality, we get (Vg(z,) — Vg(z u)> 0. Taking

n+1) n+1 -

n — oo, Using lim z = p and the uniform continuous on bounded subsets of V¢, we have

n—0o0

(Vy(z)—Vg(p),p—u)>0 forall w€ F. By Proposition 1.9, we find that p = P(z)). []

Remark 2.2. (1) Theorem 2.1 is an extension of [Alizadeh & Moradlou, 2016, Theorem
3.1] from a generalized hybrid mapping in Hilbert spaces to a Bregman totally quasi-
asymptotically nonexpansive mapping, and from an equilibrium problem to a generalized
mixed equilibrium problem in reflexive Banach spaces.

(2) Since [Alizadeh & Moradlou, 2016, Theorem 3.1] is an extension of [Tada &
Takahashi, 2007, Theorem 3.1], Theorem 2.1 is also an extension of [Tada & Takahashi,
2007, Theorem 3.1].

(3) By Remark 1.8(2), we conclude that the conclusion of Theorem 2.1 holds when S is a
Bregman quasi-asymptotically nonexpansive mapping.

Finally, an example is given to illustrate for the proposed iteration.
Example 23. Let X =R, Q=10,0.9],g(z)=v> for all zeR, and S(u)=u’

o(u) = 10u’, P(u) = 2u, f(u,v) = —9u’ + 4uv + 5v* for all u,v € Q. Then

)

2
(1) By calculating, we get Vg(u) = 2u, ¢ (w) = wz, V' (w) :% forall u,weR

(2) Forall u,v € R, we have D (u,v) = uw — v’ —20(u—v) = (u—v).
(3) We have F(S) = {0}. Therefore, for w € F(S) and u € €, we obtain

D (w,8"u) = (0—§"u)’ = (u" <v’ =D (0,u)=D (w,u).

This proves that S is a Bregman totally quasi-asymptotically nonexpansive mapping
with a =3 =0 forall n e N".

(4) By directly checking, we find that f satisfies the conditions (C))-(C,).
(5) We find the formula of w = Res]_ (u) for v € X,w € Q asin (1.2). Indeed, w = Res]_ (u)

If f(wa ’U) + 90(1}) + <w(w)7v - w> + <v9(w) - Vg(u)av - w> 2 QO(UJ),’U € Q. (245)
By substituting f,¢, v, Vg into (2.45) and by directly calculating, we get

13
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150" + (8w — 2u)v + 2uw — 23w” > 0.
Put h(v) = 150" + (8w — 2u)v + 2uw — 23w* for all v € Q. Then A(v) is a quadratic function
and A = (38w — 2u)’. We consider the following cases.

Case 1. A>0. Then the equation h(v) =0 has two solutions: v = w € and

—23w + 2u
Y =

\ T In order to n(v) >0 forall v € €2, we have following two cases:

—20.7 +2u

Casell v, =0.9 and v, <v,. Thenw=1v =0.9, v, = > 0.9, hence v > 17.1.

Case 1.2. v, = 0 and v, <v. Then w =v =0 and v, :%L< 0. This leads to « < 0.

Case 2. A <0. Then w:% and h(v)>0 for all veQ Since w e Q, we have

0< % <09 and hence 0<wu<17.1. Therefore, Res;,w(u) =w=0 Iif wu<O,

Res! (u)=w = % if 0<u<171 and Res}  (u)=w=09 if u>17.1.

[

By the above, all assumptions in Theorem 2.1 are satisfied with the given functions
[, T. Therefore, by Theorem 2.1, the sequence {z, } which is defined by (2.1) converges

to 0 € F = F(S)N GMEP(f,¢,4). Next, by choosing @ = —"—, b = "L forall nc N,
"oon4+2 " 3n+2

and z, = 0.5 € ©, we have P!(z )= {0}. The sequence (2.1) becomes

n 2 2" Zr
un = Zn + (Zn) ’Un =
n+2 n+2 19 (2.46)
n+1 2n+1, o z t+w
w o= u + (v) 2, = L

" 342" 3m+2 " 2
The convergence of iteration (2.46) is presented by the following figure.

0.5

0.4 o

0.3 o

Vitasofdr)

Figure 1. The convergence of the sequence (2.46) to 0
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3. Conclusion

In this paper, a hybrid iterative method is proposed for finding common elements of the
solution set of a generalized mixed equilibrium problem and the fixed point set of a Bregman
totally quasi-asymptotically nonexpansive mapping. After that, a strong convergence result for
the proposed iteration is proved in reflexive Banach spaces. This result is an improvement of
the main results in (Alizadeh & Moradlou, 2016) and (Tada & Takahashi, 2007) from a
generalized hybrid mapping, a nonexpansive mapping and an equilibrium problem in Hilbert
spaces to a Bregman totally quasi-asymptotically nonexpansive mapping and a generalized
mixed equilibrium problem in reflexive Banach spaces. As application, we obtain the
convergence result for a generalized mixed equilibrium problem and a Bregman quasi-
asymptotically nonexpansive mapping in reflexive Banach spaces. Moreover, we give a
numerical example to illustrate for the proposed iterative method.
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SU'HOQI TU MANH CUA DAY LAP LAI GHEP
CHO BAI TOAN CAN BANG HON HQP TONG QUAT
VA ANH XA TUA TIEM CAN KHONG GIAN HOAN TOAN BREGMAN
TRONG KHONG GIAN BANACH
Nguyén Trung Hiéu
Khoa Sw pham Toan — Tin, Truong Pai hoc Bong Thap, Viét Nam
“Téc gia lién hé: Nguyén Trung Hiéu, Email: ngtrunghieu@dthu.edu.vn
Ngay nhdgn bai: 20-6-2021; ngay nhdn bai sira: 20-8-2021; ngay duyét dang: -9-2021

TOM TAT

Muc dich ciia bai béo 1a két hop khodng cach Bregman Véi phwong phdp chiéu thu hep dé gidi
thigu mgt day Iip lai ghép méi cho bai toan can bang hon hop téng quét va anh xq tua tiém cdn khong
gidn hoan toan Bregman. Sau do, véi nhitng diéu kién thich hop, chdng ti chieng minh rang day lap
dwge dé xudt hoi tu manh dén hinh chiéu Bregman ciia diém xudt phat Ién giao cua tap nghiém bai toan
can bang han hop téng quat va tdp diém bdt dong cia anh xa tia tiém cdn khdng gidn hoan toan
Bregman trong khdng gian Banach phdn xa. Binh li ndy cdi tién két qua trong (Alizadeh & Moradlou,
2016) tir &nh xa lai ghép tong quat va bai toan can bang trong khong gian Hilbert sang anh xg tya
tiém cdn khdng gidn hoan toan Bregman va bai toan can bang han hop tong quét trong khéng gian
Banach phdn xa. Két qud duwot ap dung cho bai toan can bang hon hop tong quét va anh xa twa tiém
cdn khdng gidn Bregman trong khong gian Banach phan xa. Bong thoi, mét vi du dieoc diea ra dé minh
hoa cho day ldp duroc dé xudt.
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Tir khéa: anh xa twa tiém can khong gidn hoan toan Bregman; bai toan can bang hdn hop
tong quét; day lap lai ghép; khong gian Banach phan xa
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