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ABSTRACT 

The purpose of this paper is to combine the Bregman distance with the shrinking projection 
method to introduce a new hybrid iteration process for a generalized mixed equilibrium problem and 
a Bregman totally quasi-asymptotically nonexpansive mapping. After that, under some suitable 
conditions, we prove that the proposed iteration strongly converges to the Bregman projection of the 
initial point onto common element set of the solution set of a generalized mixed equilibrium problem 
and the fixed point set of a Bregman totally quasi-asymptotically nonexpansive mapping in reflexive 
Banach spaces. This theorem extends and improves the results in (Alizadeh & Moradlou, 2016) from 
a generalized hybrid mapping and an equilibrium problem in Hilbert spaces to a Bregman totally 
quasi-asymptotically nonexpansive mapping and a generalized mixed equilibrium problem in 
reflexive Banach spaces. The obtained result is applied to a generalized mixed equilibrium problem 
and a Bregman quasi-asymptotically nonexpansive mapping in reflexive Banach spaces. In addition, 
an example is provided to illustrate for the proposed iteration process. 

Keywords: Bregman totally quasi-asymptotically nonexpansive mapping; generalized mixed 
equilibrium problem; hybrid iteration process; reflexive Banach spaces 
 
1. Introduction and preliminaries   
 Suppose that X is a real reflexive Banach space,   is a nonempty, closed and convex 
subset of ,X X   is a the dual space of .X  Let : ,f     :     be two function and 

: X    be a mapping. We denote the value of u X  at u X  by , .u u   The 
generalized mixed equilibrium problem (GMEP) is to find u    such that
( , ) ( ), ( ) ( )f u v u v u v u      for all .v   The set of solutions of (GMEP) is denoted 

by ( , , ) { : ( , ) ( ), ( ) ( ), }.GMEP f u f u v u v u v u v              Note that, if 0   
and 0,   the problem (GMEP) is reduced into the equilibrium problem  (EP) which is to 
find u    such that ( , ) 0f u v   for all .v     
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In recent times, there were many methods for solving the above problems. In 2016, 
Darvish introduced an iterative method for finding common elements of the solutions set 
of the problem (GMEP) and the fixed points set of a Bregman strongly nonexpansive 
mapping in reflexive Banach spaces. In 2016, Zhu and Huang introduced a new hybrid 
iterative scheme for finding common solutions of the problem (EP) and fixed points of 
Bregman totally quasi-asymptotically nonexpansive mappings. In 2018, Ni and Wen 
proposed a new iterative scheme for finding a common solution of a system of the problem 
(GMEP) and fixed points of a finite family of Bregman totally quasi-asymptotically 
nonexpansive mappings. Note that these convergence results extend and improve the 
existing results from Hilbert spaces or smooth Banach spaces to reflexive Banach spaces. 
Therefore, an interesting work naturally raised is to continue to generalize the existing 
convergence results from Hilbert spaces to reflexive Banach spaces.  
 In this paper, motivated by the iteration process in (Alizadeh &Moradlou, 2016), we 
introduce a new hybrid iterative scheme which is to find common elements of the set of 
solutions of the problem (GMEP) and the set of fixed points of Bregman totally quasi-
asymptotically nonexpansive mappings. After that, we prove a strong convergence theorem 
for the proposed iteration in reflexive Banach spaces. In addition, we give a numerical 
example to illustrate the obtained results. 

Now, we recall some notions and results which will be useful in what follows.     
Assume that : ( , ]g X     is a lower semi-continuous, convex and proper 

function. We denote the domain of g  by dom { : ( ) }.g u X g u     For any

int(dom )u g  and ,v X  we denote by 
0

( ) ( )
( , ) lim

g u v g u
g u v






    (1.1) the right-

hand derivative of g  at u  in the direction .v  The function g  is called Gâteaux 
differentiable at u  if the limit (1.1) exists for all .v  Then the gradient of g  at u  is ( ),g u

which is defined by ( ), ( , )g u v g u v   for all .v X The function g  is called  Fréchet 
differentiable at u  if the limit (1.1) is attained uniformly in || || 1.v   The functiong  is 

called be uniformly Fréchet differentiable on a subset   of X  if the limit (1.1) is attained 
uniformly for u    and || || 1.v    

Note that if g  is uniformly Fréchet differentiable, then g  is uniformly continuous (see 
[Ambrosetti & Prodi, 1993, Theorem 1.8]). If g  is Gâteaux differentiable and lower semi-
continuous convex, then g  is bounded on bounded sets if and only if g  is bounded on 
bounded sets (see [Ambrosetti & Prodi, 1993, Proposition 1.1.11]). Furthermore, if g  is 
uniformly Fréchet differentiable  and bounded on bounded subsets, then g  is uniformly 

continuous on bounded subsets of X   (see [Reich & Sabach, 2009, Proposition 1]).   
Let int(dom ),u g  the Fenchel conjugate of g  is the function *: ( , ]g X     

defined by {( ) sup , ( ) : }g u u u g u u X      for all *.u X     
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Definition 1.1 [Chang et al., 2014, Definition 2.2]. Let X  be a real reflexive Banach space 
and : ( , ]g X     be a function. Then g  is called Legendre if  
     (L1) int(dom ) ,g   g  is Gâteaux differentiable on int(dom )g  and 

dom( ) int(dom ).g g   
(L2) int(dom ) ,g   g  is Gâteaux differentiable on int(dom )g  and
dom( ) int(dom ).g g     

Remark 1.2. [Chang et al., 2014, Remark 2.3]. Let X  be a real reflexive Banach space 
and : ( , ]g E     be  Legendre. Then 
(1) g  is Legendre if and only if g  is Legendre.  
(2) 1,( )g g    *)ran( ) dom(g g    and * ,r )an( ) ind tom (dom )( gg g    where 
ran( )g  is the range of .g  
Definition 1.3. [Censor & Lent, 1981, p.324].  Let X  be a real reflexive Banach space and  

: ( , ]g X     be  Gâteaux differentiable. Then : dom int(dom ) [0, ),
g

D g g    defined 

by ( , ) ( ) ( ) ( ),
g

D u v g u g v g v u v     is called the Bregman distance with respect to .g   

From the definition, we have ( , ) ( , ) ( , ) ( ) ( ),
g g g

D u v D v w D u w g w g v u v        
for all domu g  and , int(dom ).v w g    

Let : ( , ]g X     be Gâteaux differentiable and *: [0, )
g

V X X    be 

defined by , ( ) ,( ( ))
g

V u u g u u u g u       for all u X  and *.u X   
Remark 1.4. Let : ( , ]g X     be a Gâteaux  differentiable function. Then  
 (1) [Kohsaka & Takahashi, 2005, Lemma 3.2] For any u X  and *,u X   we have 

* .( ) ( , (, ))
g g

V u u D u g u     

 (2) [Kumam et al., 2016, p.7] f
V  is convex in the second variable. Furthermore, for 

any m ,dou g  
1

{ } int(dom )
k k

mu g   and 
1

]{ } [0,1m
kk

t    with 
1

1,
m

k
k

t


  we have 

1 1

, ( .)( ( )) ( , )
m m

g k k
k

k g k
k

D t g tu g u D u u

 

     

Definition 1.5. [Butnariu & Iusem, 2000, p.69]. Let X  be a real reflexive Banach space, 
: ( , ]g X     be Legendre and   be a nonempty, convex and closed subset of 

int(dom ).g The Bregman projection of int(dom )u g  onto   is the unique vector 

( )gP u    statisfying ( ), ) inf{ ( , ) : }.( g
g g

D P u u D v u v     
Definition 1.6. [Resmerita, 2004, p.1]. Let X  be a real reflexive Banach space and

: ( , ]g X     be Gâteaux  differentiable. Then 
(1) g  is called totally convex at int(dom )u g  if any 0  , we have 

( , ) inf{ ( , ) : dom ,|| || } 0.
gg

u D v u yv g v u       
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(2) g  is called totally convex if g  is totally convex at every point int(dom ).fu    
(3) g  is called totally convex on bounded subsets of X  if any nonempty bounded 

subset E of X  and 0,t  we have ( , ) inf{ ( , ) : dom } 0.
g g

v E v u u E g      
Proposition 1.7. [Resmerita, 2004, Proposition 2.2]. Let X  be a real reflexive Banach 
space, and :g X    be Gâteaux differentiable. Then g  is totally convex atu X if and 

only if  for any sequense { }
n

v X  such that lim ( , ) 0,
g nn

D v u


  we have lim || || 0.
nn

v u


   

Proposition 1.8. [Butnariu & Iusem, 2000, Lemma 2.1.2]. Let X  be a real reflexive 
Banach space, and :g X    be convex and Gâteaux  differentiable. Then g  is totally 

convex on bounded sets if and only if for any sequence { },{ }
n n

u v X  such that { }
n

u  is 
bounded and lim ( , ) 0

g n nn
D v u


 , we have lim || || 0.

n nn
v u


    

Proposition 1.9. [Butnariu & Resmerita, 2006, Corollary 4.4]. Let X  be a real reflexive 
Banach space, : ( , ]g X     be a Gâteaux differentiable function and totally convex 
on int(dom ),g    be a nonempty, closed and convex subset and int(dom ).u g Then  

(1) ( )gw P u  if and only if  ( ) ( ), 0g u g w w v     for all .v     

(2) ( , ( )) ( ( ), ) ( , )g g
g g g

D v P u D P u u D v u    for all .v      
Proposition 1.10. Let X  be a real reflexive Banach space and :g X    be a function.  

(1) [Reich & Sabach, 2010, Lemma 1]. If g  is Gâteaux differentiable and  totally 

convex on ,X u X  and { }
n

u X  satisfying { ( , )}
g n

D u u  is bounded, then the sequence 

{ }
n

u is bounded. 

(2) [Sabach, 2011, Proposition 2.3]. If g  is Legendre such that g  is bounded on 

bounded subsets, u X  and { }
n

u X  satisfying { ( , )}
g n

D u u  is bounded, then the sequence 

{ }
n

u is bounded. 
Definition 1.11. [Zalinescu, 2002, p.203, p.207, p.221]. Let X  be a Banach space. We 
denote by 

1
{ : || || 1}S u X u    and { : || || }B u X u     for some 0.  Then 

(1) :g X    is called uniformly convex on bounded subsets if ( ) 0    for all 

, 0,    where the function : [0, ) [0, )     is defined by 

, ,|| || , (0,1)

( ) (1 ) ( ) ( (1 ) )
( ) inf .

(1 )u v B u v

g u g v g u v


  

   
 

    

    



 

(2) :g X    is called uniformly smooth on bounded subsets if 
0

( )
lim 0



 


  for all 

0,   where the function : [0, ) [0, )     is defined by 

1, , (0,1)

( (1 ) ) (1 ) ( ) ( )
( ) sup .

(1 )u B v S

g u v g u v g u
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Remark 1.12. [Naraghirad & Yao, 2013, p.7]. The function g  is uniformly convex on 
bounded subsets if and only if g  is totally convex on bounded subsets. 
Definition 1.13. [Kohsaka and Takahashi, 2005, p.509]. Let X  be a Banach space. Then 

: ( , ]g X     is called strongly coercive if 
|| ||

( )
lim .

|| ||u

g u
u

     

Proposition 1.14. [Zalinescu, 2002, Proposition 3.6.3]. Let X  be a real reflexive Banach 
space, :g X    be strongly coercive, continuous and convex. Then g  is bounded on 

bounded subsets and uniformly smooth on bounded subsets if and only if dom( ) ,g X 

g is strongly coercive and uniformly convex on bounded subsets. 
Proposition 1.15. [Zalinescu, 2002, Proposition 3.6.4]. Let X  be a real reflexive Banach 
space, :g X    be convex, continuous and bounded on bounded subsets of .X  Then the 
following statements are equivalent. 
(1) g  is uniformly convex on bounded subsets and strongly coercive.  

(2) Dom( ) ,g X  g  is bounded and uniformly smooth on bounded subsets.  

(3) Dom( ) ,g X  g is Fréchet differentiable and g  is uniformly continuous on 
bounded subsets.  
Lemma 1.16. [Naraghirad & Yao, 2013, Lemma 2.2]. Let X  be a Banach space, 0r 
and :g X    be convex and uniformly convex on bounded subsets. Then 

1 1

( ) ( ) (|| ||)
n

m m

n n i j i j
n n

g a u ag u a a u u
 

     

with , {1,2,..., },i j m  { :|| || }
n

u B u X u      and [0,1]
n

a   such that 
1

1,
m

n
n

a


  

and the function  is defined as in Definition 1.11. 
We denote by ( ) { : }F S w Sw w     the set of fixed points of : .S     

Definition 1.17. [Chang et al., 2014, Definition 2.10]. Let X  be a reflexive Banach space, 
  be a nonempty subset of ,X  :S     be a mapping and 

g
D  be the Bregman distance. 

Then  
(1) S  is called a Bregman quasi-asymptotically nonexpansive mapping if ( )F S    and 

there exists a real sequence { } [1, )
n
    with lim 1

nn



  such that  

( , ) ( , )n
g n g

D u S v D u v  for all v    and ( ).u F S                     
(2) S  is called a Bregman totally quasi-asymptotically nonexpansive mapping if ( )F S    

and there exist nonnegative real sequences { },{ }
n n

   with lim lim 0
n nn n

 
 

   and a 

strictly increasing continuous function :    with (0) 0   such that  

( , ) ( , ) ( ( , ))n
g g n g n

D u S v D u v D u v      for all v    and ( ).u F S       
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(3) S  is called a Bregman firmly nonexpansive mapping if  
( ) ( ), ( ) ( ),g Su g Sv Su Sv g u g v Su Sv         for all , .u v    

(4) S  is called a Bregman quasi-nonexpansive mapping if ( )F S    and  

         ( , ) ( , )
g g

D u Sv D u v  for all v    and ( ).u F S   
Remark 1.18. [Chang et al., 2014, p.42].  

(1) If S  is a Bregman quasi-asymptotically nonexpansive mapping, then S  is a 
Bregman totally quasi-asymptotically nonexpansive mapping with ( )    for all 0, 

1
n n

    with 1
n
  satisfying lim 1

nn



  and 0;

n
   but the converse is not true. 

(2) If S  is a Bregman firmly nonexpansive mapping, then S  is a Bregman quasi-
nonexpansive mapping. 
Definition 1.19. [Zhu & Huang, 2016, Definition 2.10]. Let X  be a Banach space,   be a 
nonempty subset of  ,X  :S     be a mapping. Then  

(1) S  is called closed if any sequence { }
n

u  in   such that lim
nn

u u


    and  

lim ,
nn

Su v


    we have .Su v  

(2) S is called uniformly asymptotically regular on   if for all bounded subset U of 
  we have 1lim sup || || 0.n n

n x U
S u S u

 
   

Lemma 1.20. [Chang et al., 2014, Lemma 2.16]. Let X be a real reflexive Banach space,   be 
a nonempty, closed and convex subset of ,X  : ( , ]g X     be a Legendre function which 
is totally convex on bounded subsets of ,X :S     be a closed and Bregman totally quasi-
asymptotically nonexpansive mapping. Then ( )F S  is convex and closed.  

In order to slove (GMEP), we suppose that f satisfies the following hypotheses:  
(C1) ( , ) 0f u u   for all .u    
(C2) ( , ) ( , ) 0f u v f v u   for all , .u v    

(C3) 
0

lim sup ( (1 ) , ) ( , )f w u v f u v


 


    for all , , ,u v w    

(C4) For each ,u   ( , )v f u v is convex and lower semi-continuous.  
Definition 1.21. [Darvish, 2016, Definition 2.4]. Let X be a real reflexive Banach space, 
  be a nonempty, convex and closed subset of .X  Suppose that :f     satisfies 
(C1)-(C4), :     is convex and lower semi-continuous, : X    is continuous 
monotone. The mixed resolvent of f  is the mapping 

, ,
Res : 2g

f
X 

  which is defined by  

, ,
Res ( ) { : ( , ) ( ) ( ),g

f
u w f w v v u v w           

( ) ( ), ( ), }.f w f u v w w v         
Note that if : ( , ]g X     is strongly coercive and Gâteaux differentiable, then 

, ,
dom(Res )g

f
X   , see [Darvish, 2016, Lemma 2.7]. We find that the formula of the 

function 
, ,

Resg
f  

contains the term ( )u  for all .u X Since dom ,X     the value 
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( )u  does not exist for all \ .u X   Motivated by this confusion, we revise the formula of 
the function 

, ,
Resg

f  
 by replacing the term ( ),u u X  by ( ),w  .w   This formula has 

been stated in (Ni & Wen, 2018, Lemma 2.5), where 
, ,

Resg
f  

 is denoted by G
r

T  as follows.   

, ,
Res ( ) { : ( , ) ( ) ( ),g

f
u w f w v v w v w           

        ( ) ( ), ( ), }.f w f u v w w v            (1.2) 

The following lemma presents some properties of 
, ,

Resg
f  

 which is defined by (1.2).  

Lemma 1.22. [Ni & Wen, 2018, Lemma 2.5]. Let X be a real reflexive Banach space,   be 
a nonempty, closed and convex subset of ,X :g X    be Legendre and :f     be 
a bifunctional satisfying (C1)-(C4). Then 
(1) 

, ,
Resg

f  
 is  a single-valued and  Bregman firmly nonexpansive mapping.  

(2) 
, ,

(Res ) ( , , ),g
f

F GMEP f     ( , , )GMEP f    is convex and closed. 

(3) For all u X  and 
, ,

(Res ),g
f

v F   we have  

                               
, , , ,

( ,Res ( )) (Res ( ), ) ( , ).g g
g f g f g

D v u D u u D v u      
2. Main results   
 The following result shows the strong convergence of a hybrid iteration process for a 
generalized mixed equilibrium problem and a Bregman totally quasi-asymptotically 
nonexpansive mapping in reflexive Banach spaces. 
Theorem 2.1. Let X  be a real reflexive Banach space,  be a nonempty, closed and convex 
subset of ,X :g X    be Legendre, strongly coercive, bounded, totally convex and 
Fréchet differentiable on bounded subsets. Suppose that :f     satisfies (C1)-

(C4), :     is lower semi-continuous and convex, : X    is continuous 
monotone, :S     is a closed, uniformly asymptotically regular and Bregman totally 
quasi-asymptotically nonexpansive mapping with { },{ } [0, )

n n
     satisfying 

lim lim 0
n nn n

 
 

   and a strictly increasing continuous function :     with 

(0) 0   such that ( ) ( , , )F S GMEP f     is bounded and nonempty. Let { }
n

z  be a 

sequence generated by: 1 1
,z       and   

1

1

1 1

( ( (1 ( )

: ( , ) ( ) ( ), ( ) ( , ( ),

( ) (1 ) ( ))

{ : , }(

) ) )

)

(

( , ) )

( ),
n

n
n n n n n

n n n n n n n n
n

n n n n n

n n g n g n n
g

n

u g a g z a g S z

v f v v v v v v g v g z v v v v

w g b g u b g S v

u D w D u

z

zu

z nP

  














     
           

    





  


    




   (2.1) 

where sup{ ( , ) : }( )
n n g n n

D u z u       and { ,{ [0,1]} }
n n

a b   such that lim 1
nn

a


  and  

.lim (1inf ) 0
nn n

bb


   Then the sequence { }
n

z  strongly converges to
1

.( )gp P z   
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Proof. We divide the proof of this theorem into six steps.   
Step 1. We show that 

1
( )gP x  is well-defined. Indeed, it follows from Lemma 1.20 and 

Lemma 1.22 that ( )F S  and ( , , )GMEP f    are closed and convex.  Therefore, by 
combining this with the assumption, we obtain that ( ) GMEP( , , )F S f     is a 
nonempty, closed and convex subset of . This fact ensures that 

1
( )gP z  is well-defined.  

Step 2. We show that 
1 1
( )

n

gP z


 is well-defined. We first claim by mathematical induction 

that n
  is convex and closed for all .n    Obviously, for 1,n   we have 1

    is 

closed and convex. Now we suppose that k
  is convex and closed for some .k   Then, 

by the definition of 
1
,

n  we have  

1
,) )}.{ : ( ( ), ( ) (

k k k k k kk kk
u g z u z g w u w g z g w                  (2.2) 

By combining (2.2) with the continuity of (.),g  we get that 
1k  is convex and 

closed. Therefore, n
  is convex and closed for all .n    Next, we will claim by 

mathematical induction that n
  for all *.n    Obviously, we have 

1
.   Now, 

we suppose that 
k

  for some *.k    We will show that
1
.

k  Indeed, for any 

,u    we get .
k

u   By using Remark 1.4.(2), we have 

         ( , ) ( , ( ( ) (1 ) ( ))) ( , ) (1 ) ( , )k k
g k g k k k k k g k k g k

D u u D u g a g z a g S z a D u z a D u S z            

          ( , ) (1 )[ ( , ) ( ( , )) ]
k g k k g k k g k k

a D u z a D u z D u z        

( , ) (1 )[ ( ( , )) ] ( , ) ( ( , )) .
g k k k g k k g k k g k k

D u z a D u z D u z D u z                         (2.3)                                       

Furthermore, by the definition of 
n

v and Definition 1.21, we have , ,
( ).Res

n f n
gv z  It 

follows from Remark 1.18 and Lemma 1.22 that , ,
Resg

f    is a Bregman quasi-nonexpansive 

mapping. Therefore , ,
, , Res , .( ) ( ( )) ( )g

g k g f k g k
D u v D u z D u z             (2.4) 

Next, by using Remark 1.4.(2), we obtain 
* (( ) ( ( )), , ( ) (1 ) )k

g k g n k k k
D u w D u g b g u b g S v      1( ) ( ), ( ) , k

k g k k g k
b D u u b D u T v          

               ., (1 )[ ,( ) ( ( ( ], )) )
k g k k g k k g k k

b D u u b D u v D u v                      (2.5) 
It follows from (2.4) and the strictly increasing property of   that

)( , ) ( , ).( ) (
g k g k

D u v D u z  Then, from (2.4), (2.5) becomes   

, , (1 )[ , ( , .(( ) ( ) ( ) )) ]
g k k g k k g k k g k k

D u w b D u u b D u z D u z                     (2.6) 
By substituting (2.3) into (2.6), we have  

, , ( , ) (1 )[ ,( ) [ ( ) ( ) ] ( ) ( ) ]( , )
g k k g k k g k k k g k k g k k

D u w b D u z D u z b D u z D u z                   

                       (( ) ( ) ( ) ., , ) ,
g k k g k k g k k

D u z D u z D u z                   (2.7)     



HCMUE Journal of Science Nguyen Trung Hieu 

 

9 

This implies that 
1k

u   and hence 
1
.

k   Therefore, we conclude that n
  

for all .n   By the assumption ,   we obtain 
1

.
n   Therefore, we find that

1 1
( )

n

gP z


 is well-defined.  

Step 3. We show that 
1

{ }( ), },{
g n n

zD z z  are bounded and 
1
)lim ,(

g nn
D z z


 exists. Indeed, since 

1
( ),

n

g
n

P zz   by Proposition 1.9, we get 
1 1

( ) ( ) ( ), ., , ,
g n g n g n

D y z D z z D y z y           (2.8)  

Let .u    Since ,
n

  we get .
n

u   By choosing y u  in (2.8), we obtain  

  
1 1

., ,( ) ( ) ( ),
g n g n g

D u z D z z D u z                                                      (2.9) 

This implies that 
1 1 1

( ) ( ) ( ) ( ).,, , ,
g n g g n g

D z z D u z D u z D u z   Therefore, 
1

{ ( )},
g n

D z z  is 

bounded. Then, by Proposition 1.10(1), we  conclude that the sequence { }
n

z  is bounded. 

Furthermore, we have 
1 111
( ) .

n

g
n n n

zz P
        By choosing 

1n
y z  in (2.8), we get 

1 1 1 1
, , , .( ) ( ) ( )

g n n g n g n
D z z D z z D z z     This implies that 

1 1 1
( ) (, .),

g n g n
D z z D z z This proves that 

1
{ ( )},

g n
D z z  is a nondecreasing sequence. By combining this with the boundedness of the 

sequence 
1

,,{ ( )}
g n

D z z  we conclude that  the limit 
1
)lim ,(

g nn
D z z


 exsits.  

Step 4. We show that  lim
n n

z p


    and 
1

lim 0.|| ||
n nn

z z
  Indeed, for ,m n  we 

have 
1

.( )
m

g
m m n

z zP      By choosing 
m

y z  in (2.8), we get  

1 1
., ,( ) ( ),) (

g m n g n g m
D z z D z z D z z   

This imples that 
1 1

0 , , , .( ) ( ) ( )
g m n g m g n

D z z D z z D z z                                    (2.10) 

Taking the limit (2.10) as ,m n    and using the existence of 
1

( ),lim ,
g nn

D z z


 we get 

,
.(lim , 0)

g m nn m
D z z


                                                         (2.11) 

By combining (2.11) with the boundedness of the sequence { },
n

z  by Proposition 1.8, 

we have 
,
lim 0.|| ||

n mn m
z z


                  (2.12) 

This proves that { }
n

z  is a Cauchy sequence in  . Since X  is a Banach space and   

is a closed subset of ,X  there exists p    such that lim .
nn

z p


  Moreover, by choosing 

1m n  in (2.11) and (2.12), we obtain  
1

lim , 0( )
g n nn

D z z
                                (2.13) 

and 
1

lim 0.|| ||
n nn

z z
        (2.14) 

Step 5. We show that .p   Indeed, since 
1 111
( ) ,

n

g
n n n

zz P
       we have 

1 1
( ) ( , ., )

g n n g n nn
D z w D z z                                  (2.15) 
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It follows from (2.9) and the boundedness of 
1

{ ( )},
g n

D z z that },{ ( )
g n

D u z  is bounded for any 

.u    Then, by using lim lim 0,
n nn n

 
 

   we find that  lim 0.
nn




                        (2.16) 

Therefore, from (2.13), (2.15) and (2.16), we conclude that 
1

lim , 0.( )
g n nn

D z w
         (2.17) 

Let .u    By (2.9) and the boundednees of 
1

{ ( , )},
g n

z zD  we obtain that },{ ( )
g n

D u z  

is bounded. By combining this with (2.7), we conclude that },{ ( )
g n

D u w  is bounded. 

Furthermore, by Proposition 1.15, we find that g  is bounded on bounded sets. Then g  is 
bounded on bounded sets. It follows from Proposition 1.10(2) that { }

n
w  is bounded. By 

combining this with (2.17), from Proposition 1.8, we have 
1

lim 0.|| ||
n nn

z w
          (2.18) 

It follows from (2.14) and (2.18) that lim 0.|| ||
n nn

z w


           (2.19) 

Since g  is uniformly Fréchet differentiable, g  is uniformly continuous. Then, from 
(2.19) we get lim ( ) ( ) 0.|| ||

n nn
g z g w


    (2.20) 

Since g  is uniformly Fréchet differentiable, g  is uniformly continuous on bounded 
subsets of .X Therefore, from (2.19), we have lim ( ) |( ) 0.|| |

n nn
g z g w


          (2.21)  

For any ,u    by using similar arguments as in the proofs of  (2.3) and (2.4), we obtain  
( ) ( , ) ( , ), ( )

g n g nn g nn
D u u z uu D D z                                (2.22) 

and ( , ) ( , ).
g n g n

D u v D u z                  (2.23) 

By combining (2.22) with the boundedness of ,,{ ( )}
g n

D u x  we get that },{ ( )
g n

D u u  is 

bounded. By Proposition 1.10(2), we get that { }
n

u  is bounded. It follows from (2.23) and 

the boundedness of },{ ( )
g n

D u x  that },{ ( )
g n

D u v is bounded. Since  },{ ( )
g n

D u v  is bounded 

and , , (( ) ( ) ,, )n
g n g n n g n n

D u S v D u v D u v      we find that { ( )}, n
g n

D u S v  is bounded. 

Thus, from Proposition 1.10(2), we get that { }n
n

S v  is bounded. Since { },
n

u  { }n
n

S v  are 

bounded and g  is bounded on bounded subsets of  ,X  we conclude that { ( )}
n

g u  and

{ ( )}n
n

g S v  are bounded. Put sup max{|| ( ) ||,|| ( ) ||}.n
n n

n

r g u g S v


  


 Therefore, 

{ :|| || }.( ), ( )n
n n

g u g B u X uS v       By Proposition 1.14, we find that g  is 

uniformly convex on bounded subsets of .X   Therefore, by Lemma 1.16, we have 
( ( ) (1 ) ( ))n

n n n n
g b g u b g S v      

            ( ( )) (1 ) ( ( )) (1 ) (|| ( ) ( ) ||),n n
n n n n n n n n

b g g u b g g S v b b g u g S v
           

where  is defined as in Definition 1.11. By using Remark 1.4.(1) and the definition of 

,
f

V  we get  

         ( , ) ( , ( ( ) (1 ) ( ))) ( , ( ) (1 ) ( ))n n
g n g n n n n g n n n n

D u w D u g b g u b g S v V u b g u b g S v               
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           ( ) ( ) (1 ) ( ), ( ( ) (1 ) ( ))n n
n n n n n n n n

g u b g u b g S v u g b g u b g S v            

           ( ) ( ) (1 ) ( ),n
n n n n

g u b g u b g S v u        

              ( ( )) (1 ) ( ( )) (1 ) (|| ( ) ( ) ||)n n
n n n n n n n n

b g g u b g g S v b b g u g S v
           

           [ ( ) ( ), ( ( ))] (1 )[ ( ) ( ), ( ( ))]n n
n n n n n n

b g u g u u g g u b g u g S v u g g S v             

                                      (1 ) (|| ( ) ( ) ||)n
n n n n

b b g u g S v     
                        ( , ( )) (1 ) ( , ( )) (1 ) (|| ( ) ( ) ||)n n

n g n n g n n n n n
b V u g u b V u g S v b b g u g S v          

           ( , ( ( ))) (1 ) ( , ( ( )))n
n g n n g n

b D u g g u b D u g g S v         

                                       (1 ) (|| ( ) ( ) ||)n
n n n n

b b g u g S v     

           ( , ) (1 ) ( , ) (1 ) (|| ( ) ( ) ||)n n
n g n n g n n n n n

b D u u b D u S v b b g u g S v                  
           ( , ) (1 )[ ( , ) ( ( , )) ]

n g n n g n n g n n
b D u u b D u v D u v        

(1 ) (|| ( ) ( ) ||).n
n n n n

b b g u g S v                                     (2.24) 
Thus, by combining (2.23), (2.24) and the the strictly increasing property of ,  we get  

], , (1 )[ ,( ) ((( ( ) ), ))
g n n g n n g n n g n n

D u w b D u u b D u z D u z        

.1 ( ) ( )( ) (|| ||)n
n n n n

b b g u g S v                              (2.25) 

By (2.22) and (2.25), we get ( ) ( ) ( ) (|| ||)., , 1 ( ) ( )n
g n g n n n n n n

D u w D u z b b g u g S v        

This implies that ( ) (|| ||) ( ) ( ) .1 ( ) ( ) , ,n
n n n n g n g n n

b b g u g S v D u z D u w             (2.26) 

Furthermore, by the property of the function ,
g

D  we have  

| ( , ) ( , ) | | ( , ) ( ) ( ), |
g n g n n n n n n

D u z D u w D z w g w g z u z                

           | ( ) ( ) | || ( ) || . || || || || . || ( ) ( ) || .
n n n n n n n n

g z g w g w z w u z g w g z                    (2.27) 

Then from (2.19), (2.20), (2.21) and (2.27), we get .| ( , ) ,( )li |m 0
gn n g n

D D u wu z


      (2.28) 

By (2.16), (2.26) and (2.28) that lim 1 ( ) ( ) 0.( ) (|| ||)n
n n n nn

b b g u g S v
                     (2.29)                      

By (2.29) and ,lim (inf 1 ) 0
n nn

b b


  we have lim ( ) |( ) 0.(|| | )n
n nn

g u g S v
          (2.30) 

By combining (2.30) and the property of ,  we get lim ( ) ( ) 0.|| ||n
n nn

g u g S v


      (2.31)                 

It follows from the assumptions of g  and Proposition 1.15 that g  is uniformly 
continuous on bounded subsets. Thus, by (2.31), we get lim 0.|| ||n

n nn
u S v


        (2.32) 

Furthermore, by 1( )g g     and the definition of ,
n

u we obtain  

( ) ( ( ) (1 ) ( ) ) ( ) (1 ( ).( ) )n n
n n n n n n n n n

g u g g a g z a g S z a g z a g S z             This 

leads to || ( ) ( ) || (1 ) || ( ) ( ) || .n
n n n n n

g u g z a g S z g z                                    (2.33) 

By lim 1,
nn

a


  the boundedness of { },
n

z  (2.33), we get .| ( ) )li ( |m | 0
n n n

g u g z


         (2.34) 

Since g  is uniformly continuous on bounded subsets, from (2.34), we have 
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lim 0.|| ||
n nn

u z


                                  (2.35) 

By combining (2.32) and (2.35), we obtain  lim 0.|| ||n
n nn

z S v


                     (2.36) 

It follows from (2.36) and lim
nn

z p


  that lim .n
nn

S v p


  Thus, by combining this with the 

asymptotically regular property of S  and 1 1|| || || || || ||,n n n n
n n n n

S v p S v S v S v p        

we conclude that 1lim .n
nn

vS p


 This leads to 1lim ( ) lim .n n

n nn n
S S v pS v

 
   Since S  is 

closed, we conclude that Sp p  and hence ( ).p F S  

Next, we will prove that ( , , )p GMEP f   . Since , ,
( ),Res

n f n
gv z   we obtain  

( , ) ( ) ( ), ( ) ( ), ( )
n n n n n n n

f v v v v v v g v g z v v v          for all .v     (2.37) 

Then, from the condition 
2

( )C and (2.37), we have  

( , ) ( , ) ( ), ( ) ( ), ( ) ( ).
n n n n n n n n

f v v f v v v v v g v g z v v v v               (2.38) 
Furthermore, since g  and g  are uniformly continuous on bounded subsets of ,X by 

(2.36), we get lim ( ) ( ) lim .|| || || ( 0||) ( )n n
n n n nn n

g z g zgS v g S v
 

                      (2.39) 

We have | ( , ) ( , ) | | ( , ) ( ) ( ), |n n n
g n g n n n n n n

D u z D u S v D z S v g S v g z u z        

| ( ) ( ) | || ( ) || . || || || || . || ( ) ( ) || .n n n n
n n n n n n n n

g z g S v g S v z S v u z g S v g z            (2.40)                   

By (2.36), (2.39) and (2.40), we get that  lim , 0.| ( , ) ( ) |n
gn n g n

D D u S vu z


                 (2.41) 

For ,u    by Lemma 1.22 and , ,
Res ( ),g

n f n
v z  we find that  

( ) ( ) ( ) ( , .(, , , , ( ,( )) ) )n
g n n g n g n g g n g nn n n

D v z D u z D u v D Du u S v D uz v            (2.42) 

It follows from (2.41), (2.42) and lim lim 0
n nn n

 
 

  that lim , 0.( )
g n nn

D v z


  Since 

{ }
n

z  is bounded, by Proposition 1.8, we have lim 0.|| ||
n nn

v z


  Since g  is uniformly 

continuous on bounded subsets, we get lim || ( ) ( ) || 0.
n nn

g z g v


   Therefore, by using 

(2.38), the lower semi-continuous property of ,  the lower semi-continuous property in the 
second variable of f  and the continuous property of ,  we have 

( , ) ( ), ( ) ( )f v p p v p v p        
and hence ( , ) ( ), ( ) ( ) 0f v p p p y p v        for all .v             (2.43) 

For all (0,1],t   put (1 ) .
t

v tv t p    Since ,v p    and   is convex, we have .
t

v  

Thus, replacing v  by t
v  in (2.43), we get ( , ) ( ), ( ) ( ) 0.

t t t
f v p p p v p v               (2.44) 

Then, by using the condition 1
( ),C the convexity in the second variable of ,f  the 

convexity of   and  (2.44), we have   
0 ( , ) ( , ) ( ), ( ) ( )

t t t t t t t t
f v v f v v p v v v v          
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( , ) (1 ) ( , ) ( ), (1 ) ( ), ( ) (1 ) ( ) ( )
t t t t t

tf v v t f v p t p v v t p p v t v t p v                                                                     
[ ( , ) ( ), ( ) ( )] (1 )[ ( , ) ( ), ( ) ( )]

t t t t t t
t f v v p v v v v t f v p p p v p v               

[ ( , ) ( ), ( ) ( )].
t t t

t f v v p y v v v        

This leads to ( , ) ( ), ( ) ( ) 0
t t t

f v v p v v v v        by (0,1].t   Letting 0t   

and using the condition 3
( ),C we have ( , ) ( ), ( ) ( ) 0.f p v p y p v p        This proves 

that ( , , ).p GMEP f    Therefore, ( ) ( , , ).p F S GMEP f      
Step 6. We show that 

1
.( )gp P z  Indeed, since 

11 1
( ),

n

g
n

z zP
   by Proposition 1.9, we have

1 1 1
( ) ( ), 0

n n
g z g z z v      for all

1
.

n
v   Let .u   Since 

1
,

n   we get 
1
.

n
u    

By choosing v u in the above inequality,  we get 1 1 1
( ) ( ), 0.

n n
g z g z z u      Taking 

,n    using lim
nn

z p


  and the uniform continuous on  bounded subsets of ,g  we have 

1
( ) ( ), 0g z g p p u     for all .u    By Proposition 1.9, we find that 

1
( ).gp zP   

Remark 2.2. (1) Theorem 2.1 is an extension of [Alizadeh & Moradlou, 2016, Theorem 
3.1] from a generalized hybrid mapping in Hilbert spaces to a Bregman totally quasi-
asymptotically nonexpansive mapping, and from an equilibrium problem to a generalized 
mixed equilibrium problem in reflexive Banach spaces.  
(2) Since [Alizadeh & Moradlou, 2016, Theorem 3.1] is an extension of [Tada & 
Takahashi, 2007, Theorem 3.1], Theorem 2.1 is also an extension of [Tada & Takahashi, 
2007, Theorem 3.1].  
(3) By Remark 1.8(2), we conclude that the conclusion of Theorem 2.1 holds when S  is a 
Bregman quasi-asymptotically nonexpansive mapping.   

Finally, an example is given to illustrate for the proposed iteration.   
Example 2.3. Let ,X   [0, 0.9],  2( )g x u  for all ,x    and 2,( )S u u

2( ) 10 ,u u  ( ) 2 ,u u   2 2( , ) 9 4 5f u v u uv v     for all , .u v    Then  

(1) By calculating, we get ( ) 2 ,g u u 
2

( ) ,
4

g
w

w   ( )
2

g w
w   for all  , .u w    

(2) For all ,u v   , we have 2 2 2( , ) 2 ( ) ( ) .
g

D u v u v v u v u v       
(3) We have ( ) {0}.F S  Therefore, for ( )w F S  and ,u    we obtain 

12 2 2, (0 ) ( ) (0, ) ( , ).( )
nn n

g g g
D S u S u u ww u D u D u



       
This proves that S  is a Bregman totally quasi-asymptotically nonexpansive mapping 

with 0
n n

    for all .n    

(4) By directly checking, we find that f  satisfies the conditions 
1

( )C -
4

( ).C  

(5) We find the formula of , ,
Res ( )g

f
w u   for ,u X w    as in (1.2). Indeed, , ,

Res ( )g
f

w u   
if ( , ) ( ) ( ), ( ) ( ), ( ) .,f w v v w v w g w g u v w vw            (2.45) 
By substituting , , ,f g    into (2.45) and by directly calculating, we get  
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2 215 (8 2 ) 2 23 0.v w u v uw w      
Put 2 2( ) 15 (8 2 ) 2 23h v v w u v uw w      for all .v    Then ( )h v  is a quadratic function 

and 2)38 2 .( w u    We consider the following cases.  
Case 1. 0.  Then the equation ( ) 0h v   has two solutions: 

1
v w    and 

2

23 2
.

15

w u
v

 
  In order to ( ) 0h v   for all ,v    we have following two cases: 

Case 1.1. 
1

0.9v   and 
1 2

.v v  Then 
1

0.9,w v  2

20.7 2
0.9,

15
u

v
 

   hence 17.1.u   

Case 1.2. 
1

0v   and 
2 1

.v v  Then 
1

0w v   and 
2

2
0.

15

u
v    This leads to 0.u   

Case 2. 0.   Then 
19

u
w   and ( ) 0h v   for all .v    Since ,w    we have 

0 0.9
19

u
   and hence 0 17.1.u   Therefore, 

, ,
Res ( ) 0g

f
u w     if  0,u   

, ,
Res ( )  

19
g
f

u
u w    if 0 17.1u    and 

, ,
Res ( ) 0.9g

f
u w     if 17.1.u   

By the above, all assumptions in Theorem 2.1 are satisfied  with  the given functions 
, , , .f T   Therefore, by Theorem 2.1, the sequence { }

n
z  which is defined by (2.1) converges 

to .0 ( ) ( , , )F S GMEP f      Next, by choosing ,
2n

n
a

n



 1

3 2n

n
b

n





 for all ,n    

and 
1

0.5 ,z     we have 
1

.( ) {0}gP z   The sequence (2.1) becomes   

2

2
1

2
( ) ,

2 2 19
1 2 1

( ) , .
3 2 3 2 2

n

n

n
n n n n

n n
n n n n

zn
u z z v

n n
z wn n

w u v z
n n 

            

         (2.46) 

The convergence of iteration (2.46) is presented by the following figure.   

 
Figure 1. The convergence of the sequence (2.46) to 0 
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3. Conclusion 
 In this paper, a hybrid iterative method is proposed for finding common elements of the 
solution set of a generalized mixed equilibrium problem and the fixed point set of a Bregman 
totally quasi-asymptotically nonexpansive mapping. After that, a strong convergence result for 
the proposed iteration is proved in reflexive Banach spaces. This result is an improvement of 
the main results in (Alizadeh & Moradlou, 2016) and (Tada & Takahashi, 2007) from a 
generalized hybrid mapping, a nonexpansive mapping and an equilibrium problem in Hilbert 
spaces to a Bregman totally quasi-asymptotically nonexpansive mapping and a generalized 
mixed equilibrium problem in reflexive Banach spaces. As application, we obtain the 
convergence result for a generalized mixed equilibrium problem and a Bregman quasi-
asymptotically nonexpansive mapping in reflexive Banach spaces. Moreover, we give a 
numerical example to illustrate for the proposed iterative method.     
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SỰ HỘI TỤ MẠNH CỦA DÃY LẶP LAI GHÉP  
CHO BÀI TOÁN CÂN BẰNG HỖN HỢP TỔNG QUÁT  

VÀ ÁNH XẠ TỰA TIỆM CẬN KHÔNG GIÃN HOÀN TOÀN BREGMAN  
TRONG KHÔNG GIAN BANACH 

Nguyễn Trung Hiếu 

Khoa Sư phạm Toán – Tin, Trường Đại học Đồng Tháp, Việt Nam 
*Tác giả liên hệ: Nguyễn Trung Hiếu, Email: ngtrunghieu@dthu.edu.vn 

Ngày nhận bài: 20-6-2021; ngày nhận bài sửa: 20-8-2021; ngày duyệt đăng: -9-2021 
TÓM TẮT 

Mục đích của bài báo là kết hợp khoảng cách Bregman với phương pháp chiếu thu hẹp để giới 
thiệu một dãy lặp lai ghép mới cho bài toán cân bằng hỗn hợp tổng quát và ánh xạ tựa tiệm cận không 
giãn hoàn toàn Bregman. Sau đó, với những điều kiện thích hợp, chúng tôi chứng minh rằng dãy lặp 
được đề xuất hội tụ mạnh đến hình chiếu Bregman của điểm xuất phát lên giao của tập nghiệm bài toán 
cân bằng hỗn hợp tổng quát và tập điểm bất động của ánh xạ tựa tiệm cận không giãn hoàn toàn 
Bregman trong không gian Banach phản xạ. Định lí này cải tiến kết quả trong (Alizadeh & Moradlou, 
2016) từ ánh xạ lai ghép tổng quát và bài toán cân bằng trong không gian Hilbert sang ánh xạ tựa 
tiệm cận không giãn hoàn toàn Bregman và bài toán cân bằng hỗn hợp tổng quát trong không gian 
Banach phản xạ. Kết quả được áp dụng cho bài toán cân bằng hỗn hợp tổng quát và ánh xạ tựa tiệm 
cận không giãn Bregman trong không gian Banach phản xạ. Đồng thời, một ví dụ được đưa ra để minh 
họa cho dãy lặp được đề xuất. 
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