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ABSTRACT   
Facial attributes are useful for developing applications such as face recognition, search, and 

surveillance. They are therefore important for various facial analysis. Many facial attribute learning 
algorithms have been developed to automatically detect those key attributes over the years. In this 
paper, we have surveyed some typical facial attribute learning methods. Five major categories of the 
state-of-the-art methods are identified: (1) Traditional learning, (2) Deep Single Task Learning, (3) 
Deep Multitask Learning, (4) Imbalanced Data Solver, and (5) Facial Attribute Ontology. They 
included from traditional learning algorithm to deep learning, along with methods that assist in 
solving semantic gaps based on ontology and solving data imbalances. For each algorithm of 
category, basic theories as well as their strengths, weaknesses, and differences are discussed. We also 
compared their performance on the standard datasets. Finally, based on characteristics and 
contribution of methods, we present conclusion and future works to solve facial attributes learning. 
The survey can help researchers gain a quick overview to build future human face applications as 
well as further studies. 

Keywords: deep learning; facial attribute learning; facial attribute ontology; imbalanced data 
solver; multi-task learning 

 
1. Introduction 

Facial attribute learning (FAL) has become an impressive and potential trend for studies 
on machine learning (ML) to develop applications concerning human face such as predicting 
facial attributes, face retrieval at attribute level (Kumar et al., 2011), and surveillance 
environments (Vaquero et al., 2009). Some of the facial attributes are studied such as race 
(Fu et al., 2014), gender (Eidinger et al., 2014), age (Chen et al., 2014), facial expressions or 
emotions (Zhang et al., 2018), carrying (jewelry) (Deng et al., 2015), and physical appearance 
(Zafeiriou et al., 2015). 
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Figure 1. Facial attribute groups 

The process of attribute learning (AL) involves several main stages such as face 
detection, feature extraction, and AL methods. Some works used parts of face (such as eyes, 
nose, or mouth) in an AL model. However, in case of deep learning (DL), some works used 
the entire face to learn the attributes. This is called an end-to-end deep learning network. The 
result of AL process is one-hot attribute vector. 

The performance of AL is influenced by each stage in the above process. Using the 
entire face or parts of a face will achieve different performance during the AL stage. 
Moreover, the feature extraction stage plays a very important role in improving the 
performance of AL. Finally, the AL method is the most important stage. For example, some 
studies used parts of face (Zhang et al., 2014), entire face (Jadhav et al., 2016) for AL, hand-
crafted features extraction such as SIFT (Lowe, 2004), SURF (Bay et al., 2008), HOG (Dalal, 
& Triggs, 2005), GICA (Do, & Le, 2009), and deep features (Liu et al., 2016). There are five 
approaches for building AL methods: (1) Traditional Machine Learning, (2) Deep Single 
Task Learning, (3) Deep Multi-task learning, (4) Imbalanced Data Solver, and (5) Ontology-
based Learning. 

Firstly, with the traditional ML approach, SVM is popular and effective algorithm for AL 
(Kumar et al. 2011). Some works used LDA combined to PCA (Lyons et al., 2000), Bayesian 
(Everingham et al. 2006), and semi-supervised method (Cherniavsky et al., 2011) for AL.  

 
 (a) (b) 

Figure 2. Attribute Learning Process. (a) General Attribute Learning Process, 
(b) Attribute Learning Process in detail 

 
Figure 3(left). End-to-End deep neural network for Attribute Learning  

Figure 4(right). A process of attribute learning with part-based 
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Secondly, based on the deep single task learning approach, there are many famous 
works for AL, such as PANDA (Zhang et al., 2014), DeepFace verification (Taigman et al., 
2014), LNet+ANet. (Liu et al. 2015), Walk and Learn (Wang et al., 2016), ATNet_GT (Gao 
et al., 2017), AFFACT (Günther et al., 2017), Off-the-shelf CNN (Zhong et al., 2016), 
Semantic segmentation network (Kalayeh et al., 2017), General-to-specific learning (Sun, & 
Yu, 2018), and AttGAN (He et al., 2018).  

 
Figure 5. Attribute learning approaches 

Thirdly, Multitask Learning (MTL) has been proved to be effective in AL, such as 
MCNN-AUX (Hand et al. 2016), MT-RBM PCA (Ehrlich et al., 2016), DMTL (Han et al., 
2017), MOON (Rudd et al., 2016), and FAO (Nguyen et al., 2018).  

Fourthly, Imbalanced Data Solver has helped to settle imbalanced data problems in AL. 
The attributes will be predicted more accurately, the predicted attributes do not tend to favor the 
majority attribute group. Some works performed Imbalanced Data Solver on fashion image (Ly 
et al., 2019), on face recognition (P. Wang et al., 2019). In the FAL, typical works are MOON 
(Rudd et al., 2016), LMLE-KNN (Loy et al., 2017), CRL (Dong et al., 2017), Selective Learning 
(Hand et al., 2018), CLMLE (Huang et al., 2018), and DCL (Wang et al., 2019).  

Finally, using ontology in AL to support semantic of images is also common such as in 
a study by Nguyen et al. (2018), Ly et al. (2019), Ly et al. (2020).  

The rest of this paper is organized as follows: Works of Traditional ML are reviewed 
in Section 2. Deep Learning is presented in Section 3. Deep Multitask Learning is reviewed 
in Section 4. Imbalanced Data Solver is discussed in Section 5. Ontology-based methods are 
investigated in Section 6. Datasets in reviewed works are described in Section 7. The 
performance of the reviewed works will be discussed in section 8. Finally, the conclusion is 
drawn in Section 9. 
2. Traditional methods for attribute learning 

In computer vision, attributes are considered as the bridge (intermediate level) between 
the low-level features and the high-level semantics of the image (Feris et al., 2017) because 
they support object recognition or object detection by object attributes more easily. For 
example, instead of searching for zebras, it is easier to find a black and white striped pattern 
as in a study by Ferrari and Zisserman (2007) or a spotted dog is replaced by a black dot 
pattern as in several studies (Farhadi et al., 2009; Lampert et al., 2013; Grauman, & Leibe, 
2011; Parikh, & Grauman, 2011) Russakovsky and Fei-Fei (2012) discovered the blue lizard 
with its "green" and "long" attribute. 

Some typical algorithms of AL will be then presented based on the traditional learning 
(i.e. do not use DL) such as SVM, Bayesian, and some other methods such as Hidden Markov 
and LDA. 
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2.1. SVM  
Before the era of DL, SVM has been the most prominent method for AL. A study by 

Kumar, Member, Berg, Belhumeur, and Nayar (2011) is a famous study of the human face 
attributes. The author used a manual method to divide the face image into ten parts, then chose 
different methods such as SIFT, HoG, Color to extract features of each part. They then used 
SVM to train facial attributes. Besides, the system allowed searching with keywords like 
"Asian woman with eyeglasses." With 73 attributes on the LFW dataset with high accuracy, 
it has created challenges for the next works. Following Kumar, Bor Chun Chen et al. (2014) 
also used SVM to train age attributes and received high accuracy on the Morph and CACD 
datasets. Chen et al. (2014) tried to use SVM and local description to identify face attribute 
vectors for predicting age and gender from names.  
2.2. BAYESIAN 

Besides SVM, Bayesian is a popular algorithm for training attributes based on 
probability and statistical methods. 

Everingham and Zisserman (2006), with the Bayesian and Adaboost methods, trained 
attributes such as eye and non-eye, achieved high accuracy on the FERET dataset. D. Chen 
et al.(2012) combined Bayesian and EM (Expectation–Maximization) for face recognition on 
the LFW dataset. Demirkus et al. (2015) used Bayesian to train hair and gender attributes. In 
particular, the experiments have yielded 100% accuracy of the hair attribute on the LFW 
dataset. Gao et al. (2015) used Bayesian Naive for learning aesthetic attributes. Bayesian and 
PCA (Chen et al. 2016) combination also showed good results. 

The Bayesian method is less popular than the SVM method, but the method has 
contributed significantly to AL in the statistical learning approach. 
2.3. Other methods  

Chen et al. (2013) combined many feature extraction methods such as HOG, Color, 
Gabor, and LBP. Then they used adaboost for voting in training some attributes such as age, 
gender, and race. B. Chen et al. (2013) proposed two methods "attribute enhanced sparse 
codeword" and "attribute embedded inverted indexing" for AL on LFW and Pubfig to 
improve MAP for large-scale face retrieval. Lin et al. (2014) used the Latent Human Topics 
(LHT) for AL. Using Markov Random Field for AL about age and expression (Liao et al., 
2014) was gained a high result. The table below shows some contributions in traditional 
learning approach. 
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Table 1. Traditional methods for attribute learning 
Method Name Attribute Learning Datasets Accuracy (Avg, %) 

Face Tracer (Kumar et 
al., 2011) SVM,73 LFW, LFWA, 

CelebA 83.62, 73.9, 81.1 

(Demirkus et al., 2015) Bayesian, Hair, gender LFW 89.25 

LFDA (An et al. 2015) FDA+LPP,8, Age, 
Gender Race LFW, PubFig MAP-19.3,21.8 

(Alorf et al. , 2018)  SVM, Eye/non-eye LFWA, CelebA,  80.3.,95.6, 

(Chen et al. 2013), Automatic Training, 
adaboost, 6 Flickr,  76.0 

(Chen et al. 2013) sparse codewords,40  LFW, Pubfig MAP: 43.5% 
(Lin et al. 2014) Latent Human Topics,  LFWA,6 85.0 
(Liao et al. 2014) MRF Groupwise LFW, age, emotion 86.73 

In the next section, we will present DL methods which is the most important 
contribution of attribute learning. 
3. Deep Single task learning for attribute learning 

Since 2012, DL has created a new wave for ML. Especially, Deep learning has proved 
that it could achieve the higher performance on almost tasks in Computer Vision. 

There are some typical deep neuron networks (DNN) such as (1) Convolutional Neural 
Network (CNN), (2) Recurrent Neural Network (RNN), (3) Generative Adversarial Network 
(GAN), and (4) Combination of multiple networks. They have their own power in each data 
domain. 

Deep Learning has provided many powerful methods and contributed significantly to 
AL. We will review some typical DNNs for AL. 
3.1. CNN 

Deep CNN was born in 1998 from a study by LeCun et al. (1998), but until 2012, 
AlexNet created a new wave for ML. There are two kinds for deep AL methods: (1) End-to-
End CNN and (2) Many CNNs. Each architecture will show its own strong points.  

 
Figure 6. A typical CNN model for attribute learning 

Zhang et al. (2014) proposed PANDA (Pose Align Networks for Deep Attribution), a 
Deep CNN to classify attributes based on parts of the face image. The work achieved State-
of-the-art performance on CelebA and LFWA. The work by Z. Liu et al. (2015) used many 
CNN networks (LNet+ANet) in combination with SVM for AL. They reported their 
experimental results on 40 attributes. The study outperformed the state-of-the-art methods on 
CelebA and LFWA datasets. To understand pedestrians, Wang et al. (2016) proposed a “Walk 
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and Learn” model for learning attribute representation by exploring contexts from geographic 
location and weather conditions. The model using CNN for AL gained the state-of-the-art 
performance on CelebA and LFWA datasets, and the highest result for lipstick attribute on 
LFWA dataset. Günther et al. (2017) used ResNet to develop Alignment-Free Facial Attribute 
Classification Technique (AFFACT) for attribute classification on CelebA dataset. In (Zhong 
et al., 2016), authors used the CNN Off-The-Shelf and SVM features to train 40 attributes on 
CelebA and LFWA datasets. In (Jadhav et al., 2016) the authors constructed the deep 
attributes using VGG-CNN and achieved the better results than (Liu et al., 2015) using ANet 
+ LNet for some attributes such as gender, mustache, chubby. 

Using bounding boxes for face detection, authors (He et al., 2017) used VGG-16 for 
analysis of facial attributes (eyeglasses, smiles, kisses) on the CelebA and LFWA datasets to 
achieve an average error comparable to the works such as Face Tracer, LNet+ANet (Liu et 
al., 2015), Walk and Learn (Wang et al., 2016), MOON (Rudd et al., 2016). In (Kalayeh et 
al., 2017), authors used semantic segmentation networks for predicting facial attributes. They 
perform training 40 attributes on LFWA and CelebA datasets. Especially, it gained the highest 
accuracy for gray hair attribute on LFWA. 

In segment-based approach, Upal Mahbub et al. (Mahbub et al., 2018) proposed two-
steps neural network-based approach to detect facial attributes. (Sun et al., 2018) used many 
VGG-16s to build general to specific AL. It has achieved the highest accuracy for blonde hair 
attribute on LFWA. Olivia Wiles (Wiles et al., 2019) suggested Fab-Net, a self-supervised 
without any label for AL by using encode-decode architecture and Curriculum Strategy. In 
(Ahmed, & B, 2019), authors suggested an age estimation method by using Bayesian 
Optimization and CNN on three large-scale datasets: MORPH, FG-NET and FERET. The 
results showed that using Bayesian Optimization for CNN outperformed the state-of-the-art 
methods on FG-NET and FERET datasets. In (Dornaika et al., 2020), authors suggested a 
method for age estimation by using CNN on FG-NET, and MORPH II datasets and gained 
State-of-the-art performances.  

Deep learning with CNN has contributed significantly to improve the performance of 
AL model. CNN is a strength in the development of AL and most of works have used CNN. 
However, there are also some studies using RNN, GAN, and some other deep neuron 
networks for AL.  
3.2. RNN, GAN and other deep networks 

Recurrent Neural Network (RNN) is a type of Neural Network. Different from 
feedforward network (such as feedforward CNN), RNN includes loops of hidden layers in 
the network and tries to remember the information of the previous step for entering the next 
iteration step (Zhang et al., 2019). Because of this difference, RNN is appropriate model for 
problems with sequential data in time and spatial such as text, speech and video analysis 
(Sundararajan et al. 2018). The variants of RNN are Long Short Term Memory (LSTM) and 
Gated Recurrent Unit (GRU) which solve the vanishing gradient problem (Zhang et al., 
2019).  
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Figure 7(left). Conceptual diagram for Generative Adversarial Networks (GAN)  

(Alom et al., 2019a) 
Figure 8 (right). An unrolled RNNs (Alom et al., 2019b) 

In AL, RNN has some contributions in aging and emotion prediction. We can divide it 
into three groups for RNN for AL: (1) Emotion prediction, (2) Aging prediction and (3) other 
facial attributes learning. In RNN-based emotion learning, Wang Xiaohua et al. (2019) 
suggested Bi-RNN for facial emotion learning (valence, arousal) by using Deep RNN with 
two-level attention combining MTL. (Pini et al., 2017) proposed multimodal DL architecture 
with LSTM and CNN for emotion recognition in video. Using DL for emotion from text and 
image (Illendula, & Sheth, 2019). Nicolaou et al. (2011) used the bidirectional Long Short-
Term Memory neural networks (BLSTM-NNs) and Support Vector Machines for Regression 
(SVR) for emotion prediction on Sensitive Artificial Listener Database (SAL- DB). Deng et 
al. (2018) suggested a deep bidirectional Long Short Term Memory (DBLSTM) network for 
emotion prediction by using LSTMs in layers. In RNN-based aging, Wang et al. (2018) used 
seven RNNs for aging decentralized faces. Jang et al. (2018) used LSTMs to recognize face 
attributes such as facial expressions, age, and gender on benchmark datasets: Multi-PIE, CK+, 
and Adience. Due to strong points of RNN is suitable for sequential data in time and spatial, 
RNN is effective for some FAL such as emotion and aging. 

Difference of CNN and RNN, GAN is a model for generating adversarial samples for 
robust discriminative learning model. As the name “Generative Adversarial Networks” 
(GAN), it is invented by Goodfellow in 2014 (Alom et al., 2019a), it can be considered that 
Discriminator (D) and Generator (G) two players playing the min-max game. In the FAL, 
GAN devoted a new approach in generating facial attribute data and predicting for prediction 
facial attributes such as emotion, age, gender and race. In the survey (Zheng et al., 2018), 
GAN was method of facial attribute manipulation (FAM) group. An emergent work of (He 
et al., 2018) used GAN to build AttGAN and gained the state-of-the- art on the CelebA dataset 
for training 40 attributes. Many works used GAN for prediction facial attributes such as 
emotion, age, gender and race.  

In emotion prediction, (Bozorgtabar et al., 2019) proposed Learn to synthesize and 
synthesize to learn (LSSL) for seven facial expressions classification by using GAN. Min 
Kyu Lee et al. suggested RcGAN (Lee et al., 2019) for emotion AL on CK+ and MMI. 

In age prediction, Penghui Sun et al. Proposed SADAL (Penghui et al., 2019) by using 
GAN for age estimation on FG-NET and MORPH. (Duong et al. 2017) used GAN for age-
invariant face recognition. In (Zhang et al., 2017), authors used GAN with two adversarial 
networks are imposed on the encoder and generator for Age Progression/Regression. In 
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(Yang et al., 2018), authors proposed Pyramid Architecture of GANs to learn how to deal 
with face aging. 

In age, gender, and race estimation, (Mirjalili et al., 2020) suggested PrivacyNet by 
using GAN based Semi-Adversarial Networks (SAN) model for predicting age, gender and 
race attributes on five datasets such as CelebA, MORPH, MUCT, RaFD and UTK-face. In 
(Wan et al., 2018), they built a fine-grained, multi-faceted learning to create faces of age, 
gender and ethnicity. In (Akbir et al., 2019), authors suggested a method for race classification 
by using GAN and transfer learning and gained outperforming on CelebA dataset. In 
(Gauthier, 2014), the authors built a conditional GAN to create a toddler face. (Tai et al., 
2018) used Conditional CycleGAN for attribute-guided and identity-guided face image 
generation. 
3.3. Combining methods 

Combining the learning methods could increase the performance of AL system. Most 
of works used DL for feature learning and using SVM or combining some deep networks 
such as CNN, RNN, and GAN for attribute classification. Using SVM for attribute training, 
(Alorf et al., 2018) used SVM for training attributes and RootSIFT for extracting and 
representing features. The high results are achieved for the open / close eye classification on 
the CEW and ZIU datasets, and classification of the presence or absence eyeglasses in high 
precision on LFWA and CelebA. The work achieved the accuracy rate equal to LNet + ANet 
(Liu et al., 2015) and better than Tracer (Kumar et al., 2011) and Panda (Zhang et al., 2014). 
In the topic (Li et al., 2017), they built multi-modal 2D + 3D to recognize facial expressions 
with deep-fused CNN. Using CNN-based Exemplar-SVM (Jadhav et al., 2016) to identify 
faces with hair and gender attributes. A combination of LDA, CNN and SVM (Tian et al., 
2017) has classified gender. In (Tzirakis et al., 2016), the authors have built an end-to-end 
network for emotional recognition based on CNN and RNN. Also using CNN and RNN 
(Kahou et al., 2015) for emotion recognition in video. Huang et al. (Huang et al., 2016) 
proposed a DL network for classification of imbalances by CNN and KNN. In (Haque et al., 
2018) the authors used CNN and LSTM models to identify pain recognition. In (Yang et al., 
2018), learning face age progression was performed by combining GAN and CNN. In (Li et 
al., 2021), authors combined VAE and GAN for facial image editing model that can 
effectively generate high-quality facial images with diverse specified attributes such as hair 
color, gender, age etc. A new work for the approach combining traditional learning and DL 
is in (Liang et al., 2021). The authors used a handcrafted feature Gabor surface feature (GSF) 
for Patch Attention Layer (PAL) in their CNN to achieve State-of-the-art in facial expression 
recognition on the CK+, Oulu-CASIA, and JAFFE datasets. Using effective transfering 
learning to build CNN model for orthognathic surgery on 3D face image gain high results (Lin 
et al., 2021). Besides general FAL, a survey about face hallucination presented a comprehensive 
review of DL techniques in face super-resolution (Jiang et al., 2021). 

Deep learning is a breakthrough in ML in general and AL in particular. The projects 
are diverse and plentiful, using traditional methods such as SVM, Bayesian to DL networks 
CNN, RNN, GAN and have combined the methods together and give high accuracy. 
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However, there are still challenges with learning facial attributes such as photos partially 
obscured, inner-group correlation, outer-group correlation, imbalanced data. Therefore, AL 
need to be studied for further improvement. The table II below will show survey of typical 
works with accuracy performance.  

Table 2. Deep learning methods for attribute learning 

Method Name Attribute Learning Datasets Accuracy 
(Avg %) 

PANDA CNN LFWA, CelebA 81, 85 
LNet+Anet  CNN, 40  CelebA, LFWA 87, 84  
Walk and Learn  CNN, 40  LFWA, CelebA 86.6, 88.7 
(Zhong et al., 2016) CNN+SVM, 40 CelebA, LFWA  89.80, 85.90  
ATNet_GT CNN, 40 CelebA 90.18 
AFFACT CNN, 40 CelebA 91.01 
(Kalayeh et al., 2017) CNN, 40 LFWA, CelebA 87.1, 91.2 
(Sun, & Yu, 2018) VGG-16, 40 LFWA, CelebA 87.1, 91.6 

AttGAN(He et al., 2018) GAN, Encoder-
Decoder, 40 CelebA 90.98 

Deep Attribute (Gupta et al. 2017) CNN, Gender LFW-S 71.2  
FATAUVA-Net(Chang et al. 2017) Deep, 10 CelebA 91.34 

FaceNet2ExpNet (Ding et al. 2017) Emotion Net: 2 stage, 
CNNs, 8 

TFD, CK+, OULU-
CAS 

88.9, 98.6, 
87.71 

FAAN(Chan et al. 2017) 
ResNet, gender, 
ethnicity, hair, 
eyeglasses 

MPIE, CASIA-
WebFace 91 

(Mahbub et al., 2018) CNN, 40 CelebA LFWA 90.72, 84.02 

AFFAIR(Li et al., 2018) CNN, 40 MTFL, LFWA, 
CelebA  

86.55,83.01, 
79.63 

D2AE(Liu et al., 2018) encoder-decoder, 40 LFWA, CelebA 83.16, 87.82 
FAb-Net (Wiles et al., 2019) GAN, 8 EmotioNet 76.4 
(Bozorgtabar et al., 2019) GAN, 7 Oulu-CASIA 87.40 
(Akbir et al. 2019) GAN, Race Celeb-A 91.00 

(Xiaohua et al., 2019) RNN, Valence, 
Arousal AffectNet 0.48 

RcGAN(Lee et al., 2019) GAN, emotions CK+, MMI 97.93,82.86 

SADAL (Penghui et al., 2019) GAN, Age FG-NET MORPH (MAE) 
3.67,2.75 

DLOB(Ahmed, & B, 2019), CNN, Bayesian, Age MORPH, FG-NET 
FERET 

MAE: 3.01, 
2.88, 1.3 

Age Estimation (Dornaika et al., 
2020) CNN, Age FG-NET MORPH II MAE:3.05 

2.74 

PrivacyNet (Mirjalili et al., 2020) SAN+GAN, gender, 
age, race 

CelebA, MORPH, 
MUCT, RaFD, 
UTK-face  

ERR: 10%-
20% 
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From the above survey, DL proves that it is the most attractive trend for AL. The top 
work is in (Sun et al., 2018). With high accuracy, it wins all in any approach from simple to 
complex AL in human face images.  

In section V, we will review AL based on Multi-task learning.  
4. Attribute learning based on deep multi-task learning  

Multi-Task Learning (MTL) is a learning paradigm in ML (Zhang et al., 2018) for 
leveraging and helping to improve the performance by decreasing number of parameters in 
the process learning and to exploit inner-group, outer-group correlations between attributes. 
It has two stages with (1) shared stage and (2) separated stage. Besides, parallel and 
distributed techniques can be used in MTL models.  

In (Zhang et al., 2018), the survey about MTL separated two main approaches for MTL 
methods: (1) feature-based approach and (2) parameter-based approach. The feature-based 
approach included feature transformation and feature selection approach. The parameter-
based approach can be classified as: low-rank approach, task clustering approach, task 
relation learning approach, and decomposition approach. In DL, however, the overview of 
(Sebastian et al., 2017) divided MTL methods into two kinds: (1) hard-parameter sharing and 
(2) soft-parameter sharing.  

In AL, most of MTL methods have followed the feature-based approach and some are 
using parameter-sharing approach. MTL has devoted many contributions for AL by reducing 
parameters in learning. In (Rudd et al., 2016), Rudd et al. built a MOON is the typical example 
for this approach in AL model, based on combining CNN and objective optimization with 
imbalanced training data and supporting domain adaptation. 

Difference from MOON method (Rudd et al., 2016), without using CNN, Max Ehrlich 
et al. (Ehrlich et al., 2016) used RBM for building a deep neural network by combining RBM 
and PCA methods. Their experiment achieved state-of-the-art performance with 40 attributes 
on the CelebA dataset. Most of works have used feature learning in shared stage. (Hand et 
al., 2016) proposed MCNN-AUX, using a multi-tasking deep neural network (MCNN) in 
conjunction with an auxiliary network (AUX) to achieve the state-of-the-art performance on 
the CelebA and LFWA with high accuracy on CelebA dataset. Modifying AlexNet, (Han et 
al., 2017) built DMTL (deep multi-tasking learning) based on CNN to estimate heterogeneous 
facial attributes. The network is not only success on 40 facial attributes but also obtaining high 
results on age, race, and gender attributes on the CelebA, MORPH II, and FotW datasets. Trying 
to optimizing weighted loss function, in (Wang et al., 2017) and (He, et al., 2017) proposed a 
framework for facial attribute prediction based adaptively weighted loss on Mega dataset by 
using MTL on CNN. (Wang et al., 2017) also used MTCNN for AL on imbalanced data. 

Using many networks for building AL system, in (Cao et al., 2018), Jiajiong Cao et al. 
suggested a method for attribute representation, PS-MCNN (Partially Shared Multi-task 
Convolutional Neural Network), including four Task Specific Networks (TSNets) and one 
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Shared Network (SNet) are connected by Partially Shared (PS) for boost the performance on 
CelebA and LFWA datasets. Using cascade net to build method for predicting face attributes, 
(Li et al., 2017) proposed a deep multi-task cascaded network by using CNN and stochastic 
gradient descent (SGD). Following curriculum learning, (Fanhe et al., 2019) suggested KL-
MTL combining curriculum learning, MTL and Inception V3 for AL on CelebA. With 74 
facial attributes learning, (Luigi Celona et al., 2018) built the method based multi-task 
learning and convolutional neural network to estimate attributes. The net included a gating 
mechanism effectively for gaining high results. Only focusing smile and gender attributes, 
(Fan et al., 2019) suggested a face attributes prediction method using multi-task learning 
architecture to boost the performance and gained the state-of-the-art methods on FotW and 
LFWA datasets. Focus on age, gender, and race attributes, (Hsieh et al., 2017) used MTL and 
CNN for building a method for human attributes learning, with training on CASIA-Webface 
dataset and testing on LFW. In (Wang et al., 2021), based on adversarial learning, authors 
built a Multi-task network with two modules (1) recognizer R and (2) discriminator D for 
face analyses and gain State-of-the-art on LFWA and celebA with 40 attributes. Some typical 
AL methods based on MTL are showed as follows:  

Table 3. Deep Multitask learning methods for attribute learning 

 Method Name Attribute Learning Datasets Accuracy Avg 
(%) 

MCNN-AUX CNN, 40 CelebA, LFWA 91.29 
MT-RBM PCA  RBM, PCA, 40 CelebA 86.98 
MOON (Rudd et al., 2016) CNN CelebA 90.94 

DMTL (Han et al., 2017) CNN, age, gender, 
race CelebA, LFWA 92.60 

(Hsieh et al., 2017) CNN, Gender, age LFW (gender, age), 
Adience 

93.66, 93.48, 
86.7 

(He, & Wang, et al., 2017) CNN CelebA, LFW 91.80, 73.07 
Ya Li (Li et al., 2017) CNN,40 LFWA, CelebA 87.8, 90.2 
(Taherkhani et al. 2018) CNN, MTL, 40 CelebA, MegaFace 88.98, 78.82 
KT-MTL(Fanhe et al., 2019) Inception v3, 40 CelebA 92.19 

(Fan et al., 2019) CNN, Smile, gender LFWA Smile:91.13 
gender:92.49 

(Celona et al., 2018) ResNet-101, LSTM, 
74, Age, gender 

Adience, LFWA, 
CelebA  90.7 ± 1.7 

(Wang et al., 2021) CNN, GAN, 40 LFWA, CelebA 91, 96 
In the table above, using deep multi task learning for AL approach,(Wang et al., 2021) 

is the best method for AL on CelebA dataset. But DMTL (Han et al., 2017) is the best method 
on both datasets LFWA and CelebA with 40 facial attributes. 
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5. Imbalanced data solver for attribute learning  
In survey on imbalance data solver (He et al., 2009) divided it into 4 groups: (1) 

sampling methods, (2) cost-sensitive learning methods, (3) kernel-based learning methods, 
and (4) active learning methods. But by difference of naming, in survey on DL with class 
imbalance (Johnson et al., 2019), Justin M. Johnson presented two method groups: (1) data 
level methods and (2) algorithm level methods, each group with traditional algorithm and 
deep algorithm.  

Typical works about imbalance data learning with fashion image (Ly, Do, & Nguyen, 
2019), for face recognition (Wang et al., 2019), and for facial attribute learning MOON(Rudd 
et al., 2016), LMLE-KNN (Loy et al. 2017), CRL (Dong et al. 2017), Selective Learning 
(Hand et al., 2018), CLMLE (Huang et al., 2018), DCL (Wang et al., 2019). 

In (Rudd et al., 2016), Rudd et al. built a MOON attribute learning model based on 
CNN with imbalanced training data based on weighted loss function on each attribute 
learning, and achieved high accuracy on the CelebA dataset. In (Loy et al., 2017), C. Huang 
et al. suggested LMLE-KNN with learning deep approach by using LMLE for feature 
representation and KNN for classification on imbalanced data. Using triplet-header hinge loss 
in learning is to margin intra-class and inter-class. In (Dong et al., 2017), Qi Dong et al. built 
CRL (Class Rectification Loss) to improve minority class learning by using deep features 
with updated batch-balance in imbalanced multi-label attributes. CRL gained high accuracy 
on the CelebA data set in cost-sensitive learning approach. In (Hand et al., 2018) Emily M. 
Hand et al. proposed Selective Learning for imbalance learning by using AttCNN. With 
sampling the data in order to balance the positive and negative labels, it achieved high result 
on CelebA, LFWA in facial attribute prediction with multi-labels. In (Huang et al., 2018), 
Chen Huang et al. suggested CLMLE (Cluster-based Large Margin Local Embedding), a deep 
imbalanced learning for face recognition and attribute prediction, by using LMLE and KNN 
algorithm. In (Wang et al., 2019), Yiru Wang et al. proposed DCL (Dynamic Curriculum 
Learning), a unified framework for human attribute analysis. With two-level curriculum 
schedulers: sampling scheduler and loss scheduler, it gained state-of-the-art performance on 
CelebA dataset. In (Hupont, & Fernández, 2019), Isabelle Hupont et al. suggested 
DemogPairs for race and gender recognition on imbalanced dataset with a new validation set 
with 10.8K facial images and 58.3M identity verification pairs for Asian, Black and White 
females and males. The experiments gained the state-of-the-art on deep face recognition 
models (such as SphereFace, FaceNet and ResNet50).  

Beside accuracy, recall, precision, and F1-score, Matthews correlation coefficient 
(MCC) is a measurement for binary classification proposed by Matthews (Matthews, 1975). 
In data imbalance context, MCC is strong tool for imbalanced learning. Especially, with 
applying AL on Fashion dataset, in (Ly et al., 2019), the authors have proposed the 
imbalanced data solver based on MCC to address imbalanced data that has contributed 
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effectively to increasing the quality of linking object ontology to raw data without adjusting 
network architecture and data augmentation. Using MCC for FAL (Xiao et al., 2019). The 
table IV showed some typical works for AL methods deal to imbalanced data. 

Table 4. Attribute learning methods deal to imbalanced data 

Method Name 
Attribute 
Learning 

Dataset Accuracy (%) 

MOON  VGG-16 CelebA, LFW 90.94, 84.73 ± 1.99  
(Loy et al., 2017) CNN, KNN CelebA 84.00 
(Dong et al., 2017) CNN CelebA 85-86 
SL (Hand et al., 2018) AttCNN LFWA, CelebA 73.03, 90.97  
(Huang et al., 2018) LMLE, KNN CelebA  88.78  
(Wang et al., 2019) ResNet50 CelebA 89.05 

(Hupont et al.  2019) 
CNN, Race, 
gender 

CWF, VGGFace 
VGGFace2 

94.00 

In the table above, MOON (Rudd et al., 2016) is the best method on LFW dataset and 
SL (Hand et al., 2018) is the best method on CelebA dataset. 
6. Using ontology for attribute learning 

Ontology is a tool to represent knowledge for sharing and reusing (Gruber, 1993). 
Especially, it is useful to support semantic of images in building applications about image 
retrieval and image interpretation (Ly et al., 2019) (Hudelot, 2008; Maillot, 2005; Mezaris, 
Kompatsiaris, & Strintzis, 2004). In AL, ontology supports to build the hierarchical semantic 
tree for facial attributes (Contreras et al. 2010), (Nguyen, Ly, & Phung, 2018), (Bashar et al. 
2007). In (Contreras et al., 2010), Garcıa-Rojas et al. built an ontology for facial 
representation for emotional face expression profiles. 

Combining deep imbalanced data learning and ontology, Hung M Nguyen et al. 
(Nguyen et al., 2018) proposed a facial attribute ontology (FAO) for AL and achieved high 
accuracy with 40 facial attributes on CelebA and LFWA datasets.  

Focusing aesthetics, (Xu et al., 2018) suggested Bio-FAO (Bio-inspired Facial 
Aesthetic Ontology) and combined with CNN to predict facial aesthetic. Using fuzzy 
reasoning, (Contreras et al., 2010) proposed an emotion recognition method based on 
ontology. Some popular works about AL based on ontology presented as follows: 

Table 5. Attribute learning based on ontology 
Method Name AttributeLearning Dataset Accuracy 

FAO (Nguyen et al., 2018) CNN, ontology, 40 CelebA, LFWA 85.68% 
Bio-FAO(Xu et al., 2018) CNN, aesthetics JAFFE, FaceWarehouse 72.1% 

(Contreras et al., 2010) fuzzy reasoning, MMI (FDPs,5 Emotion) 70-90% 
The next section will review some popular datasets used in the AL methods.  
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7. Datasets 
Most of the work on AL has been experimented on LFW and CelebA datasets. In 

addition, there are Fgnet, Morph and CACD datasets for some works on human face 
detection. 

Table 6. Datasets for attribute learning 
No. Name of datasets No. of images No. of Candidates 
1 LFW/LFWA 13,233 5,749 
2 CelebA 202,599 10,177 
3 Pubfig 58,797 200 
4 FGNet 1,002 82 
5 MORPH 55,134 13,618 
6 CACD 163,446 2,000 

8. Results 
The best method in traditional learning is the work of Kumar (Kumar et al., 2011) with 

SVM, Hog, and Color feature to learn 73 attributes with high performance. However, it also 
shows a disadvantage of using hand-crafted features, which is not good in automatic learning. 
The best with DL, MTL, imbalance data solver and ontology on CelebA dataset with 40 facial 
attributes will be presented in the table below: 

Table 7. Top attribute learning methods 

Method Name 
Attribute 
Learning 

Datasets 
Accuracy 

Avg % 
group 

Face Tracer  
SVM, 73 
attributes 

LFW, LFWA, 
CelebA 

83.62, 73.9, 
81.1 

Traditional 
learning 

(Sun, & Yu, 2018) VGG-16 CelebA 91.6 Deep learning 
(Kalayeh et al., 2017) CNN LFWA, CelebA 87.1, 91.2 Deep learning 
DMTL(Han et al., 2017) CNN CelebA, LFWA 92.60 MTL 
(Wang et al., 2021) CNN, GAN LFWA, CelebA 91, 96 MTL 
MOON (Rudd et al., 2016) VGG-16 CelebA, LFW 90.94,84.73 

% ± 1.99 
Imbalanced data 

SL (Hand et al., 2018) AttCNN LFWA, CelebA 73.03,90.97 Imbalanced data 

FAO (Nguyen et al., 2018) 
CNN, 

Ontology 
CelebA, LFWA 85.68 Ontology 

The table VII shows that deep multitask learning is the best method for attribute 
learning on LFWA and CelebA datasets.  

It is the determination that MTL is the best effective and efficient method for FAL on 
LFWA and CelebA datasets with 40 attributes. 
9.  Summary and conclusion 

In this article, we have tried to examine typical works of AL with the approaches: 
traditional learning, deep single task learning, deep multi-task learning, imbalance data 
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solver, and Ontology-based. The results of the works have revealed table VII, SVM is the 
best method among traditional learning approaches, and CNN is the most important 
architecture at other approaches. 

With the purpose is to increase the accuracy, there are some ideas for future trends of AL. 
First, it is to try to improve learning methods from traditional learning to DL such as inferring 
analogous attributes by one-shot method (Chen, & Grauman, 2014), using training and test 
augmentation techniques (Günther et al., 2017), using multi-modal (the 2-D texture and 3-D 
shape) and Attributed Relational Graph (ARG) for recognize faces with expressions (Mahoor 
et al., 2008), investigating challenges such as illumination, pose normalization, and automatic 
attribute category for efficient attribute prediction (Wang et al., 2017), solving challenges such 
as lighting conditions or direction, eye gaze, hair features, facial expression, mouth opening, 
sharpness and group portraits (Davis, 2014), using ontology and GAN on massive datasets 
(Nguyen et al., 2018). Second, it is to investigate relationships of attributes such as discovering 
automatically relative attributes (Parikh, & Grauman, 2011), exploiting facial attributes 
dependencies for robust gender recognition and analyzing the best features for multi-view and 
multi-attribute facial demography estimation (Ryu et al., 2017), discovering the relationship 
among different attributes (Zheng et al., 2018), being interested in exploring the kind of 
attributes that are useful for improving face recognition (Jadhav et al., 2016). 
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TÓM TẮT 

Thuộc tính mặt người là thông tin hữu ích cho việc xây dựng các ứng dụng như nhận dạng, 
tìm kiếm và giám sát khuôn mặt người. Do đó, chúng rất quan trọng đối với các nhiệm vụ phân tích 
khuôn mặt khác nhau. Nhiều thuật toán học thuộc tính khuôn mặt người đã và đang được phát triển 
để tự động phát hiện các thuộc tính trong nhiều năm qua. Trong bài báo này, chúng tôi khảo sát một 
số phương pháp điển hình về học thuộc tính khuôn mặt người. Chúng tôi chia ra năm loại chính của 
các phương pháp: (1) Học truyền thống, (2) Học sâu đơn nhiệm, (3) Học sâu đa nhiệm, (4) Giải 
quyết vấn đề mất cân bằng dữ liệu và (5) Thuộc tính khuôn mặt dựa vào phả hệ tri thức. Các phương 
pháp bao gồm từ học truyền thống đến học sâu, cùng với các phương pháp hỗ trợ giải quyết bài toán 
lỗ hổng ngữ nghĩa dựa trên phả hệ tri thức và giải quyết sự mất cân bằng dữ liệu. Đối với mỗi phương 
pháp trong mỗi loại, chúng tôi thảo luận về các lí thuyết cơ bản cũng như điểm mạnh, điểm yếu và 
sự khác biệt của chúng. Chúng tôi cũng so sánh hiệu suất của chúng trên bộ dữ liệu tiêu chuẩn. Cuối 
cùng, dựa trên đặc điểm và đóng góp của các phương pháp, chúng tôi đưa ra kết luận và hướng 
nghiên cứu trong tương lai để giải quyết vấn đề học thuộc tính khuôn mặt. bài khảo sát này sẽ giúp 
các nhà nghiên cứu có góc nhìn tổng quan nhanh để xây dựng các ứng dụng khuôn mặt người trong 
tương lai cũng như các nghiên cứu mới. 

Từ khóa: học sâu; học thuộc tính mặt người; học đa nhiệm; sự mất cân bằng dữ liệu; phả hệ tri thức 
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