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ABSTRACT 
It is well-known that some famous probability density functions (PDF) of random variables 

are associated with symmetries of these random variables. The Boltzmann and Gaussian PDFs that 
are invariant under translation and spherical transformations of their variables, respectively, are 
obvious and well-studied examples reflecting not only symmetries of many physical phenomena but 
also their underlying conservation laws. In physics and many other fields of interest of complexity, 
the transitions from the Boltzmann PDF to the Gaussian PDF, or at least from Boltzmann-like 
PDF to the Gaussian-like PDF, i.e from a sharp peak PDF to round peak PDF, are frequently 
observed. These observed phenomena might provide clues for a phase transition, namely second-
order phase transition, where the symmetry of given physical quantities in the system under 
consideration is broken and changed to another one. The purpose of this work is to study this kind 
of transition in the superconductivity by investigating the transformation of envelope functions of 
electron and Cooper pair wavefunctions in spatial representation which might correspond to the 
change of symmetrical behavior of the space from its normal to superconducting states near the 
phase transition critical temperature. 
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1. Introduction 
Originally observed in nature and then essentially used as the fundamental example 

of collective behavior of a complex system where system properties would be investigated 
and “understood only from a holistic description of the properties of the entire system 
rather than from a reductionist description of individual” elements (Bak, 1996), the 
problem of sandpile dynamics is reformulated in the terms of probability theory and 
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statistics that can map several similar phenomena in complex systems to single one that the 
shape of an initial probability distribution function or statistical density function of a given 
observable quantity concerning a random variable changes along with the evolution of time 
into the new one which is different from the initial. These phenomena appear quite often in 
many observable processes of complexity, from physical systems to social systems where 
the short-time data set provides a typical statistical weight function and the long time data 
set with the same variable provides another typical statistical weight function. 

On the one hand, it is not easy to explicitly mechanically explain these phenomena 
due to the nature of the complexity of the system under consideration and uselessness of 
physically microscopic laws for the individuals within the system. However, in another 
hand, it is believed that there is at least a universal explanation for all kinds of transitions 
due to the universality of these phenomena. Many experimental and theoretical 
investigations, especially in econophysics focusing on various datasets of financial markets 
(Mantegna and Stanley, 1994, 1995, 1997; Bouchaud, 1999; Anh et al., 2013, 2014b,a, 
2015, 2016), have been performed to find out a possible explanation providing deep insight 
for universality of the phenomenon and in theoretical aspect, the model of external 
fluctuations or noises originally introduced in (Anh et al., 2014a) would be a potentially 
promised approach. 

The physical idea of the proposed approach is of the modeling all the external factors 
affecting on the given system by two kinds of effective fluctuations, in-space, and 
orthogonal ones. As it has been expected from physical reasoning, the in-space fluctuations 
would cause the expansion of initial probability distribution function to whole space, and 
fat and semi-fat tails of the final probability distribution function, while the orthogonal 
ones are associated to symmetry broken processes in the given system. 

The purpose of this paper is twofold: first is to extend the formalism introduced in 
(Anh et al., 2014a) to consider the whole family of phenomena of probability distribution 
functions transition, including observable transitions and decay transitions of Gaussian 
probability distribution function. Second, by investigating the invariance of probability 
distribution functions, a kind of observable transitions is connected to the symmetry 
broken in superconductivity utilizing coordinate representation of wavefunctions in 
superconducting phase and normal phase to provide another insight into understanding the 
statistics of order parameters in a phase transition. The paper would be organized as 
follows. Sec. 2 introduces a general mathematical description for probability distribution 
functions transition under the influence of noises and their corresponding parameters. The 
probability distribution function transition under orthogonal noises is developed in Sec. 3.. 
The relationship between the probability distribution functions transition and 
superconducting phase transition is established in Sec. 4. And Sec. 5 contains some 
concluding remarks. 
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2. Mathematical Description of Fluctuation Contributions in Probability 
Distribution Functions 

Provided a probability distribution function in form  such that 

   (1) 

where the probability distribution function  is well-defined and continuous 

function determined in a finite interval  of a random variable . In most cases of 

present consideration, the interval  is expanded in whole space , otherwise the 

integrand of eq. (1) can be rewritten as 

   (2) 

to expand the integral to the whole space  of the random variable. However, it should be 

emphasized that the interval  bounded by hard (close) or soft (open) boundaries is 

more interesting in identifying and analyzing asymptotical behaviors of final probability 
distribution function obtained by integrating over all additional degrees of freedom 
characterizing random fluctuations, such as the phenomenon of fat and semi-fat tails 
observed in complexity. Furthermore, due to the left-right symmetry of the most 
phenomena in complexity (Kleinert and Chen, 2007), the probability distribution function 

 could belong to a class of symmetric functions as 

   (3) 

where  is the symmetric point of the random variable . And for the sake of simplicity, 

the point  can be chosen as zero. 
2.1. Contributions of Fluctuations on the Random Variable and its Distribution 
Functions 

In general, it is impossible to explicitly take into account all the external factors 
affecting the system under consideration or on the dataset of a given observable of the 
system because of their unclear collective mechanism and also their complexity. However, 
it is still possible to model their effects in the terms of a random fluctuation consisted of 
two components, an in-space  and an orthogonal  ones of which the mean value  and 
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standard variances  would be associated with macroscopic effects of the fluctuations on 
the system. 

The contributions of these fluctuations to variable should be written as 

   (4) 

The expression eq. (4) implies that an orthogonal fluctuation  should be considered 

as an additional dimension which extends  to , while in-space fluctuations  would 
make a shift of variable  within  having the same dimensionality as a random variable 

. Below, the physical significance of these two kinds of fluctuations will be discussed by 
associating them with changes from initial to final probability distribution functions. 

Under the effects of fluctuations  and , the probability distribution function 

 will be changed, and a new distribution function  would be obtained by 

integrating over all fluctuation degrees of freedom, which are unseen in the process of 

transition. The observable final distribution function  should satisfy 

  (5) 

where is  is some renormalized constant 

  (6) 

and  and  are probability distribution functions of in-space and orthogonal 

fluctuations, respectively. 
2.1.1. Fourier Transformation and Cumulant Generating Function 

For an arbitrary function , the Fourier transformations are written as 

   (7) 

   (8) 

Fourier image  of the probability distribution function  can be calculated 

explicitly in the terms of cumulants as 

  (9) 
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where the function  is cumulant generating function, which is sometimes 

also called the second characteristic function and plays a similar role as the Hamiltonian in 

quantum statistical mechanics, and  denotes -th order cumulant of a random 

variable  concerning the probability distribution function  

   (10) 

Inserting eq. (8) into eq. (5) to obtain explicit expression of the resulting probability 
distribution function is a simple and straightforward task as 

  (11) 

where immediate function  denotes the integration overall degrees of freedom of 

fluctuations 

  (12) 

and normalized constant  is 

   (13) 

In general, it is hard to find a universal analytical solution for the immediate function 

 even with very simple but meaningful probability distribution functions of both 

fluctuations,  and , such as the Gaussian distribution function. 

3. Analytical Properties of Final Probability Distribution Function  

To investigate the analytical properties of the final probability distribution function 

, it would be useful to recall it in the most abstract form as eq. (5). Its first-order 

derivative is 
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  (14) 

It is not easy to draw the whole picture of the analytical properties of the final 

probability distribution function  from its first derivative. However, by considering 

separated contributions of each kind of fluctuation, it can show the effects of fluctuations 

on the final probability distribution function . The detailed analysis of total 

contributions of both fluctuations is out of the scope of present work and will be discussed 
in another work where the full framework would be studied. As the purpose of the present 
work, the contribution of orthogonal fluctuations constituting the symmetry breaking is 
analyzed below. 
3.1. The orthogonal fluctuation 

In the case where the in-space fluctuation is off, the eq. (14) should read 

  (15) 

The second line of eq. (15) implies that the first derivative of the final probability 

distribution function  tends to zero when  goes to zero, i.e. at , the function 

 gets a local extremum. Therefore, the direct consequence of this result is that an 

orthogonal fluctuation will cause any symmetric probability distribution function at , 

i.e.  to transform to a new one having local extremum at ,  i.e. 

 and 

   (16) 

This primary conclusion confirms that the transition from Boltzmann distribution 

function  to Gaussian distribution function  is 

undertaken by the mechanism of an orthogonal fluctuation. 
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Figure 1. Graphical representation of the transition from initial symmetric Boltzmann distribution function 

 to Gaussian distribution function  in which under an orthogonal 

fluctuation the sharp peak of the initial distribution, i.e.  transforms to round 

peak of final distribution  

4. The transition of Envelop Function of Cooper Pair Wavefunction in 
Superconducting-Normal Phase Transition 

In the long history of the BCS theory, the Cooper pair and its wavefunction as 

   (17) 

have been usually analyzed in the momentum-space. The role of the Fermi sea, 
, is to Pauli-block states below the Fermi energy  (Ortiz and 

Dukelsky, 2006; Waldram, 1996). The first investigation of Cooper pair in coordinate-
space 

   (18) 
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was implemented in the work (Kadin, 2007), where it was shown that this leads to an 
internal spherically symmetrical quasi-atomic wavefunction, with an identical “onion-like” 
layered structure for each of the electrons constituting the Cooper pair. In the expression 

eq. (18), the sum is taking over all --states near , , where  and 

 are the free electron kinetic energy and the Fermi energy, and  is the BCS 

superconducting energy gap. The functions  and  are the standard variational 

parameters of the BCS theory, such that , and the  is the density 

of states for a single electron spin per unit energy at the Fermi level. 

  
(a) Graphical representation of an internal 
spherically symmetrical quasi-atomic 
wavefunction of Cooper pair 𝜓𝐶(𝑥) in 
coordinate-space 

(b) Graphical representation of an internal 
spherically symmetrical quasi-atomic 
wavefunction of Cooper pair density |𝜓𝐶(𝑥)|2 
in coordinate-space 

Figure 2. Graphical representation of Cooper pair and its density in coordinate-space 
4.1. Cooper Pair Wavefunction in Coordinate Presentation 

Follow the standard routine of calculus manipulation (Kadin, 2007), the internal 
structure of Cooper pair wavefunction which is also called the singlet pairing function or 
the Gorkov’s wavefunction is obtained and given by 

   (19) 

426 



HCMUE Journal of Science Chu Thuy Anh et al. 

 
where  is the normalized constant,  is the complete elliptic integral of the first 

kind,  is the Fermi wavevector at the surface of the Fermi sea and  is the zero-

order modified Bessel function with an asymptotic form that is similar to an exponential 

 for large . The function  has a weak divergence 

, which must be cut off by choosing a cutoff energy scale. In the BCS theory, this 
cutoff is usually given by an energy comparable to the Debye energy , which is much 
larger than the energy gap . 

Denoting dimensionless variable   

   (20) 

and parameter  

   (21) 
the Cooper pair wavefunction is rewritten as 

   (22) 

in which normalized constant  is now exactly obtained in term of  as 

   (23) 

  
(a) Graphical representation of Cooper pair 
wavefunction  in coordinate-space with 

 

(b) Graphical representation of Cooper 

pair density  in coordinate-space. 

Figure 3. Graphical representation of Cooper pair and its density in coordinate-space with  

427 



HCMUE Journal of Science Vol. 17, No. 3 (2020): 419-432 

 
The Cooper pair wavefunction in coordinate representation corresponds to the 

standing wave, with a spatial modulation . Typically, the values of the superconducting 
system are approximately 

   (24) 

and these waves rapidly oscillate around , modulated by slowly varying envelope 

function with a characteristic scale off . For graphical representation which is shown in 
fig. 3, it would take an empirical value 

   (25) 

or 
   (26) 

and corresponding normalized constant 

   (27) 

It is not difficult to realize that the envelop function of Cooper pair wavefunction 

  is very similar to Boltzmann function for large . In superconducting state, both 

electrons of the Cooper pair would be expected to have the same spatial wavefunction, and 
hence the same quasi-static charge distribution. This corresponds to a spherical layered 

charge distribution of the Cooper pair, with periodic layers spaced by (Kadin, 2007), 
as shown in the fig. 2. 
4.2. The Contribution of The Orthogonal Fluctuations to Cooper Pair Wavefunction in 
Coordinate Presentation 

In superconductivity, the thermal fluctuations   are the most considerable 

ones causing the superconductivity - normal phase transition when the system temperature 
is nearby critical . The contribution of thermal fluctuation in Cooper pair wavefunction 
is naturally of the orthogonal fluctuations since they appear in the energy equation in 
square form as 

   (28) 
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Using the immediate expression eq. (16), it would be seen that the weak singularity 

of the envelope function  at  z = 0 (Kadin, 2007) of Cooper pair 

wavefunction should be canceled to take finite value reflecting the finiteness of quasi-static 
charge distribution. It is a great work of an orthogonal fluctuation without a cutoff of 
energy scale as it is usually done in BCS theory. 

To study the contribution of the orthogonal fluctuation  to Cooper pair 
wavefunction in detail, the characteristic parameters of BCS superconducting state in the 
last subsection are taken into account and the whole calculating procedure in (Kadin, 2007) 
is carefully repeated. In this stage of consideration, due to the non-analyticity of the 
integrals, some numerical calculations are performed. 

In the regime of small fluctuation   where its variance  is assumed much smaller 
than the BCS energy gap , the envelop function of Cooper pair wavefunction transforms 
from weak singularity Boltzmann-like function to round peak Boltzmann-like function in 
large values of distance. By increasing  to approach to its physical maximum, BCS 
energy gap , the envelope function under consideration becomes more Gaussian-like 
function. 

The integration over all the possibles  in the range from zero to BCS energy gap 
 delivers a final picture of enveloping function of Cooper pair under influence of thermal 

orthogonal fluctuations in the superconducting state nearby critical temperature  in fig. 4. 

 
Figure 4. Graphical representation of Cooper pair wavefunction and its envelop function 𝜓𝐶(𝑥) 

(sharp peak in x=0) and 𝜓𝐺(𝑥) (round peak when x=0) without and with the contributions of 
thermal orthogonal fluctuations, respectively 

In the last picture fig. 4, the round peak enveloped wavefunction is very similar to 
Gaussian wave packet 
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   (29) 

describing a standing wave of electrons which requires the spherical invariance of the 
space. The parameter  would be chosen to be fitted to characteristic parameters of a 
given superconducting state, in the case, . 

Fig. 4 provides that the contribution of thermal orthogonal fluctuations around 
critical temperature  forces the envelop function of Cooper pair to transform from 
Boltzmann-like function to Gaussian ones, i.e. the symmetry of the system changes from 
the translation-like invariance to the spherical invariance. This means the happening of 
superconductivity - normal phase transition. 
5. Conclusion 

In this work, we have attempted to finger out why and how the envelope function of 
Cooper pairs of superconductivity would change to the Gaussian wave packet utilizing 
orthogonal thermal fluctuations. 

The analytical and numerical results done in the work show that the contribution of 
an orthogonal fluctuation eliminates the mathematical artifacts of singularity in quasi-static 
charge distribution, which are not enabled in the BCS theory without the cutoff of energy 
scale, also the integration of all possible contributions of thermal orthogonal fluctuations 
supplies a possible transition of Cooper pair envelop function in the phase transition from 
superconducting phase to normal conducting phase. 

We suppose a possible connection between geometrical invariant of space and 
envelope functions. The Boltzmann-like form of envelope function of Cooper pair 
corresponds to the free moving with plan wavefronts, and the symmetry property of space 
is translation invariant. The Gaussian form of envelope function of the Cooper pair 
corresponds to the bound state with spherical wavefronts near some fixed point, and the 
symmetry property of space is spherical invariant. 

The transformation of envelope functions might correspond to the changing of 
symmetrical behavior in the space of a Cooper pair from its normal to superconducting 
states near the phase transition critical temperature . In the superconducting state, the 
Cooper pair can move as free quasiparticles without resistance, i.e. translation symmetry of 
the space has occurred. The normal state, where electrons can not move freely, will be 
corresponded the spherical symmetry of the space. 
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TÓM TẮT 
Một số hàm phân bố mật độ xác suất (probability density function – PDF) của biến ngẫu 

nhiên liên hệ chặt chẽ với tính đối xứng của biến ngẫu nhiên. Các hàm phân bố mật độ xác suất 
Boltzmann và Gaussian bất biến dưới phép biến đổi tịnh tiến và cầu tương ứng của biến số, là 
những ví dụ đã được nghiên cứu đầy đủ, phản ánh không chỉ tính đối xứng của nhiều hiện tượng 
vật lí mà cả các định luật bảo toàn tiềm ẩn. Trong vật lí thống kê và nhiều lĩnh vực của hệ phức 
hợp, sự biến đổi từ phân bố mật độ xác suất từ dạng Boltzmann sang dạng Gaussian xuất hiện khá 
phổ biến. Những hiện tượng quan sát được này cung cấp bằng chứng về sự chuyển pha, cụ thể là 
chuyển pha loại hai, xuất hiện khi tính đối xứng của một đại lượng vật lí trong hệ bị phá vỡ. Mục 
đích của bài báo này là nghiên cứu loại dịch chuyển trên trong siêu dẫn thông qua khảo sát sự 
chuyển từ hàm bao của hàm sóng điện tử và cặp Cooper trong không gian tọa độ tương ứng với sự 
biến đổi hành vy đối xứng của không gian từ trạng thái dẫn sang trạng thái siêu dẫn tại vùng gần 
nhiệt độ chuyển pha 

Keywords: siêu dẫn; chuyển pha; thăng giáng vuông góc 
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