BOUNDS OF \boldsymbol{p}-ADIC WEIGHTED BILINEAR HARDY-CESÀRO OPERATORS 660N PRODUCT OF LEBESGUE SPACES

Tran Van Anh, To Gia Can, Nguyen Thi Hong ${ }^{(*)}$, Trinh Ngoc Mai
Hanoi Metropolitan University

Abstract

In this paper we aim to investigate the boundedness of $U_{\psi, \vec{s}}^{p, 2, n}$ on the product of p-adic weighted Lebesgue spaces. We obtain the necessary and sufficient conditions on weight functions to ensure the boundedness of that operator on the product of p-adic weighted Lebesgue spaces. Moreover, we obtain the corresponding operator norms.

Keywords: Lebesgue spaces, conditions.

Received 27 November 2021
Revised and accepted for publication 26 January 2022
(*) Email: nthong @daihocthudo.edu.vn

1. INTRODUCTION

Theories of functions from \mathbb{Q}_{p}^{n} into \mathbb{C} play an important role in the theory of the p-adic quantum mechanics, the theory of p-adic probability. As far as we know, the studies of the p-adic Hardy operators and p-adic Hausdorff operators are also useful for p-adic analysis [4,5,6,14,24,27,28].

The weighted Hardy averaging operators are defined for measurable functions on \mathbb{Q}_{p} by:

$$
\begin{equation*}
U_{\psi}^{p} f(x)=\int_{\mathbb{Z}_{p}^{*}} f(t x) \psi(t) d t, \quad x \in \mathbb{Q}_{p}^{d} \tag{1.1}
\end{equation*}
$$

here \mathbb{Z}_{p}^{\star} is the ring of p-adic non-zero integers, and $d x$ is the Haar measure on \mathbb{Q}_{p}. Rim and Lee [24] considered the problem of characterizing function ψ on \mathbb{Z}_{p}^{\star}, so that we have inequalities:

$$
\left\|U_{\psi}^{p} f\right\|_{X} \leq C\|f\|_{X}
$$

where X is p-adic Lebesgue or BMO space. The corresponding best constants C are also obtained by these authors.

Hung [14] considered a more general class of p-adic weighted Hardy averaging operators, which are called p-adic Hardy-Cesaro operators, defined as:

$$
\begin{equation*}
U_{\psi, s}^{p} f(x)=\int_{\mathbb{Z}_{p}^{*}} f(s(t) x) \psi(t) d t \tag{1.2}
\end{equation*}
$$

where $s: \mathbb{Z}_{p}^{*} \rightarrow \mathbb{Q}_{p}$ and $\psi: \mathbb{Z}_{p}^{*} \rightarrow[0 ; \infty)$ are measurable funtions.
The characterizations on funtion $\psi(t)$, under certain conditions on $s(t)$, so that:

$$
\left\|U_{\psi, S}^{p} f\right\|_{X} \leq C\|f\|_{X}
$$

for all $f \in X$, where X is p-adic Lebesgue space, are obtained. The best constants C in the above inequalities are worked out too. It is interesting to notice that, by applying the boundedness of $U_{\psi, s}$ on p-adic weighted Lebesgue spaces, Hung gives a relation between p - adic Hardy operators and discrete Hardy inequalities on the real field.

In [15], Hung and Ky gave the definition of the weighted multilinear Hardy-Cesàro operators $U_{\psi, \bar{s}}^{m, n}$ to be:

Definition 1.1. Let $m, n \in \mathbb{N}, \psi:[0,1]^{n} \rightarrow[0, \infty), s_{1}, \ldots, s_{m}:[0,1]^{n} \rightarrow \mathbb{R}$ be measurable funtions. The weighted multilinear Hardy-Cesàro operators $U_{\psi, \bar{s}}^{m, n}$ is defined by:

$$
\begin{equation*}
U_{\psi, s}^{m, n}(\vec{f})(x)=\int_{[0,1]^{n}}\left(\prod_{k=1}^{n} f_{k}\left(s_{k}(t) x\right)\right) \psi(t) d t \tag{1.3}
\end{equation*}
$$

where $\vec{f}=\left(f_{1}, \ldots, f_{m}\right), \vec{s}=\left(s_{1}, \ldots, s_{m}\right)$.
The authors obtain the sharp bounds of $U_{\psi, s}^{m, n}$ on the product of Lebesgue spaces and central Morrey spaces. In our paper, we define the p-adic weighted bilinear Hardy-Cesàro operators $U_{\psi, \bar{s}}^{p, 2, n}$ as follow:

Definition 1.2. Let n be positive interger numbers and $\psi:\left(\mathbb{Z}_{p}^{*}\right)^{n} \rightarrow[0 ; \infty), \vec{s}=$ $\left(s_{1}, s_{2}\right):\left(\mathbb{Z}_{p}^{\star}\right)^{n} \rightarrow \mathbb{Q}_{p}^{2}$ be measurable. The p-adic weighted bilinear Hardy-Cesàro operators $U_{\psi, \vec{s}}^{p, 2, n}$, which define on $\vec{f}=\left(f_{1}, f_{2}\right): \mathbb{Q}_{p}^{d} \rightarrow \mathbb{C}^{2}$ vector of measurable funtions, by

$$
U_{\psi, \vec{s}}^{p, 2, n}\left(f_{1}, f_{2}\right)(x)=\int_{\left(\mathbb{Z}_{p}^{\star}\right)^{n}}\left(\prod_{k=1}^{2} f_{k}\left(s_{k}(t) x\right)\right) \psi(t) d t
$$

Our paper is organized as follow. In Section 2 we give the content of this paper including the notation and definitions that we shall use in the sequel. We define the p-adic weighted Lebesgue spaces $L_{\omega}^{q}\left(\mathbb{Q}_{p}^{d}\right)$. We also state the main results on the boundedness of $U_{\psi, \dot{s}}^{p, 2, n}$ on the p-adic weighted Lebesgue space and work out the norms of $U_{\psi, \dot{s}}^{p, 2, n}$ on such space. In Section 3 we give the conclusion of this paper.

2. CONTENT

2.1. Basic notions and lemmas

Let p be a prime number and let $r \in \mathbb{Q}^{\star}$. Write $r=p^{\gamma} \frac{a}{b}$ where a and b are integers not divisible by p. Define the p-adic absolute value $|\cdot|_{p}$ on \mathbb{Q} by $|r|_{p}=p^{-\gamma}$ and $|0|_{p}=0$. The absolute value $|\cdot|_{p}$ gives a metric on \mathbb{Q} defined by $d_{p}(x, y)=|x-y|_{p}$. We denote by \mathbb{Q}_{p} the completion of \mathbb{Q} with respect to the metric $d . \mathbb{Q}_{p}$ with natural operations and topology induced by the metric d_{p} is a locally compact, non-discrete, complete and totally disconnected field. A non-zero element x of \mathbb{Q}_{p}, is uniquely represented as a canonical form $x=p^{\gamma}\left(x_{0}+x_{1} p+x_{2} p^{2}+\cdots\right)$ where $x_{j} \in \mathbb{Z} / p \mathbb{Z}$ and $x_{0} \neq 0$. We then have $|x|_{p}=p^{-\gamma}$. Define $\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\}$ and $\mathbb{Z}_{p}^{\star}=\mathbb{Z}_{p} \backslash\{0\}$.
$\mathbb{Q}_{p}^{n}=\mathbb{Q}_{p} \times \cdots \times \mathbb{Q}_{p}$ contains all n-tuples of \mathbb{Q}_{p}. The norm on \mathbb{Q}_{p}^{n} is $|x|_{p}=$ $\max _{1 \leq k \leq n}\left|x_{k}\right|_{p}$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}_{p}^{n}$. The space \mathbb{Q}_{p}^{n} is complete metric locally compact and totally disconnected space. For each $a \in \mathbb{Q}_{p}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}_{p}^{n}$, we denote $a x=\left(a x_{1}, \ldots, a x_{n}\right)$. For $\gamma \in \mathbb{Z}$, we denote B_{γ} as a γ-ball of \mathbb{Q}_{p}^{n} with center at 0 , containing all x with $|x|_{p} \leq p^{\gamma}$, and $S_{\gamma}=B_{\gamma} \backslash B_{\gamma-1}$ its boundary. Also, for $a \in \mathbb{Q}_{p}^{d}, B_{\gamma}(a)$ consists of all x with $x-a \in B_{\gamma}$, and $S_{\gamma}(a)$ consists of all x with $x-a \in S_{\gamma}$.

Since \mathbb{Q}_{p}^{d} is a locally-compact commutative group with respect to addition, there exists the Haar measure $d x$ on the additive group of \mathbb{Q}_{p}^{d} normalized by $\int_{B_{0}} d x=1$. Then $d(a x)=$ $|a|{ }_{p}^{d} d x$ for all $a \in \mathbb{Q}_{p}^{\star},\left|B_{\gamma}(x)\right|=p^{d \gamma}$ and $\left|S_{\gamma}(x)\right|=p^{d \gamma}\left(1-p^{-d}\right)$.

We shall consider the class of weights \mathcal{W}_{α}, which consists of all nonnegative locally integrable function ω on \mathbb{Q}_{p}^{d} so that $\omega(t x)=|t|_{p}^{\alpha} \omega(x)$ for all $x \in \mathbb{Q}_{p}^{d}$ and $t \in \mathbb{Q}_{p}^{*}$ and $0<$ $\int_{S_{0}} \omega(x) d x<\infty$. It is easy to see that $\omega(x)=|x|_{p}^{\alpha}$ is in \mathcal{W}_{α} if and only if $\alpha>-d$.

Definition 2.1. Let ω be any weight function on \mathbb{Q}_{p}^{d}, that is a nonnegative, locally integrable function from \mathbb{Q}_{p}^{d} into \mathbb{R}. Let $1 \leq r<\infty$, the p-adic weighted Lebesgue spaces $L_{\omega}^{r}\left(\mathbb{Q}_{p}^{d}\right)$ be the space of complexvalued functions f on \mathbb{Q}_{p}^{d} so that

$$
\|f\|_{L_{\omega}^{r}\left(\mathbb{Q}_{p}^{d}\right)}=\left(\int_{\mathbb{Q}_{p}^{d}}|f(x)|^{r} \omega(x) d x\right)^{1 / r}<\infty
$$

For further readings on p-adic analysis, see [25,26]. Here, some often used computational principles are worth mentioning at the outset. First, if $f \in L_{\omega}^{1}\left(\mathbb{Q}_{p}\right)$ we can write

$$
\int_{\mathbb{Q}_{p}^{d}} f(x) \omega(x) d x=\sum_{\gamma \in \mathbb{Z}} \int_{S_{\gamma}} f(y) \omega(y) d y .
$$

Second, we also often use the fact that

$$
\int_{\mathbb{Q}_{p}^{d}} f(a x) d x=\frac{1}{|a|_{p}^{d}} \int_{\mathbb{Q}_{p}^{d}} f(x) d x
$$

if $a \in \mathbb{Q}_{p}^{d} \backslash\{0\}$ and $f \in L^{1}\left(\mathbb{Q}_{p}^{d}\right)$.
In order to prove the main theorem, we need the following lemma.
Lemma 2.2. Let $\omega \in \mathcal{W}_{\alpha}, \alpha>-d$ and $\gamma>0$. Then, the funtions

$$
f_{r, \gamma}(x)= \begin{cases}0 & \text { if }|x|_{p}<1 \\ |x|_{p}^{-\frac{d+\alpha}{r}-\frac{1}{\gamma^{2}}} & \text { if }|x|_{p} \geq 1\end{cases}
$$

belong to $L_{\omega}^{r}\left(\mathbb{Q}_{p}^{d}\right)$ and $\left\|f_{r, \gamma}\right\|_{L_{\omega}^{r}\left(\mathbb{Q}_{p}^{d}\right)}=\left(\frac{\omega\left(S_{0}\right)}{1-p^{-r / \gamma^{2}}}\right)^{1 / r}>0$

Proof. From the formula for $f_{r, \gamma}$, we see that

$$
\begin{aligned}
\left\|f_{r, \gamma}\right\|_{L_{\omega}^{r}\left(\mathbb{Q}_{p}^{d}\right)}^{r} & =\int_{\mathbb{Q}_{p}^{d}}\left|f_{r, \gamma}\right|^{r} \omega(x) d x \\
& =\int_{|x| p \geq 1}|x|_{p}^{-\left(d+\alpha+\frac{r}{\gamma^{2}}\right)} \omega(x) d x \\
& =\sum_{k=0}^{\infty} \int_{S_{k}} p^{-k\left(d+\alpha+\frac{r}{\gamma^{2}}\right)} \omega(x) d x \\
& =\sum_{k=0}^{\infty} \int_{S_{0}} p^{-k\left(d+\alpha+\frac{r}{\gamma^{2}}\right)} p^{k \alpha+k d} \omega(y) d y \\
& =\sum_{k=0}^{\infty} p^{-\frac{k r}{\gamma^{2}}} \omega\left(S_{0}\right) \\
& =\frac{1}{1-p^{-\frac{r}{\gamma^{2}}}} \omega\left(S_{0}\right) \\
& <\infty
\end{aligned}
$$

Thus $f_{r, \gamma} \in L_{\omega}^{r}\left(\mathbb{Q}_{p}^{d}\right)$ for each γ and $\left\|f_{r, \gamma}\right\|_{L_{\omega}^{r}\left(\mathbb{Q}_{p}^{d}\right)}=\left(\frac{\omega\left(S_{0}\right)}{1-p^{-r / \gamma^{2}}}\right)^{1 / r}>0$.

2.2 . Bounds of $\boldsymbol{U}_{\psi, \stackrel{s}{x}}^{p, 2, n}$ on the product of weighted Lebesgue spaces

Let X be $L_{\omega}^{q}\left(\mathbb{Q}_{p}^{d}\right)$. Our aim is to characterize condition on functions $\psi(t)$ and $s_{1}(t), s_{2}(t)$ such that

$$
\left\|U_{\psi, \vec{s}}^{p, 2, n}\left(f_{1}, f_{2}\right)\right\|_{X \times X} \leq C\left\|f_{1}\right\|_{X} \cdot\left\|f_{2}\right\|_{X}
$$

holds for any f_{1}, f_{2} and the best constant C is obtained. The main result of this section is Theorem 3.2.

In this section, if not explicitly stated otherwise, $q, \alpha, q_{1}, q_{2}, \alpha_{1}, \alpha_{2}$ are real numbers, $1 \leq q<\infty, 1 \leq q_{1}<\infty, 1 \leq q_{2}<\infty, \alpha_{1}>-d, \alpha_{2}>-d$ so that

$$
\frac{1}{q}=\frac{1}{q_{1}}+\frac{1}{q_{2}},
$$

and

$$
\alpha=\frac{q \alpha_{1}}{q_{1}}+\frac{q \alpha_{2}}{q_{2}} .
$$

The weights $\omega_{1} \in \mathcal{W}_{\alpha_{1}}, \omega_{2} \in \mathcal{W}_{\alpha_{2}}$, set

$$
\omega(x)=\omega_{1}^{\frac{q}{q_{1}}}(x) \cdot \omega_{2}^{\frac{q}{q_{2}}}(x)
$$

It is obvious that $\omega \in \mathcal{W}_{\alpha}$
Definition 3.1. We say that $\left(\omega_{1}, \omega_{2}\right)$ satisfies the $\mathcal{W}_{\vec{\alpha}}$ condition if

$$
\omega\left(S_{0}\right) \geq \omega_{1}\left(S_{0}\right)^{\frac{q}{q_{1}}} \omega_{2}\left(S_{0}\right)^{\frac{q}{q_{2}}}
$$

For example, $\left(\omega_{1}, \omega_{2}\right)$ where $\omega_{1}(x)=|x|_{p}^{\alpha_{1}}, \omega_{2}(x)=|x|_{p}^{\alpha_{2}}$ is satisfies the $\mathcal{W}_{\vec{\alpha}}$ condition.

Through out this paper, s_{1}, s_{2} are measurable functions from $\left(\mathbb{Z}_{p}^{\star}\right)^{n}$ into \mathbb{Q}_{p} and we denote by \vec{s} the vector $\left(s_{1}, s_{2}\right)$.

Theorem 3.2. Assume that $\left(\omega_{1}, \omega_{2}\right)$ satisfies $\mathcal{W}_{\vec{\alpha}}$ condition and there exits constant $\beta>0 \quad$ such that $\left|s_{1}\left(t_{1}, \ldots, t_{n}\right)\right|_{p} \geq \min \left\{\left|t_{1}\right|_{p}^{\beta}, \ldots,\left|t_{n}\right|_{p}^{\beta}\right\} \quad$ and $\quad\left|s_{2}\left(t_{1}, \ldots, t_{n}\right)\right|_{p} \geq$ $\min \left\{\left|t_{1}\right|_{p}^{\beta}, \ldots,\left|t_{n}\right|_{p}^{\beta}\right\}$ and for almost everywhere $\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{Z}_{p}^{\star}\right)^{n}$. Then there exists a constant C such that the inequality

$$
\left\|U_{\psi, s}^{p, 2, n}\left(f_{1}, f_{2}\right)\right\|_{L_{\omega}^{q}\left(\mathbb{Q}_{p}^{d}\right)} \leq C\left\|f_{1}\right\|_{L_{\omega_{1}}^{q_{1}}\left(\mathbb{Q}_{p}^{d}\right)} \cdot\left\|f_{2}\right\|_{L_{\omega_{2}}^{q_{2}}\left(\mathbb{Q}_{p}^{d}\right)}
$$

holds for any measurable f_{1}, f_{2} if and only if

$$
\mathcal{A}:=\int_{\left(\mathbb{Z}_{p}^{\star}\right)^{n}}\left|s_{1}(t)\right|_{p}^{-\frac{d+\alpha_{1}}{q_{1}}} \cdot\left|s_{2}(t)\right|_{p}^{-\frac{d+\alpha_{2}}{q_{2}}} \psi(t) d t<\infty
$$

Moreover, if (3.7) holds then \mathcal{A} is the norm of $U_{v, s}^{p, 2, n}$ from $L_{\omega_{1}}^{q_{1}}\left(\mathbb{Q}_{p}^{d}\right) \times L_{\omega_{2}}^{q_{2}}\left(\mathbb{Q}_{p}^{d}\right)$ to $L_{\omega}^{q}\left(\mathbb{Q}_{p}^{d}\right)$.

Proof. As we note above, $\omega \in \mathcal{W}_{\vec{\alpha}}$. Firstly, suppose that \mathcal{A} is finite. Let $f_{1} \in$ $L_{\omega_{1}}^{q_{1}}\left(\mathbb{Q}_{p}^{d}\right), f_{2} \in L_{\omega_{2}}^{q_{2}}\left(\mathbb{Q}_{p}^{d}\right)$. Using Minkowski's inequality, Hölder's inequality and p-adic change of variable (2.2), we have

$$
\begin{aligned}
& \left\|U_{\psi, s}^{p, 2, n}\left(f_{1}, f_{2}\right)\right\|_{L_{\omega}^{q}\left(\mathbb{Q}_{p}^{d}\right)} \\
\leq & \left.\iint_{\mathbb{Q}_{p}^{d}}\left(\int_{\left(\mathbb{Z}_{p}^{\star}\right)^{n}}\left(\left|f_{1}\left(s_{1}(t) x\right) f_{2}\left(s_{2}(t) x\right)\right|\right) \psi(t) d t\right)^{q} \omega(x) d x\right)^{\frac{1}{q}} \\
\leq & \int_{\left(\mathbb{Z}_{p}^{\star}\right)^{n}}\left(\int_{\mathbb{Q}_{p}^{d}}\left|f_{1}\left(s_{1}(t) x\right) f_{2}\left(s_{2}(t) x\right)\right|^{q} \omega(x) d x\right)^{\frac{1}{q}} \psi(t) d t \\
\leq & \int_{\left(\mathbb{Z}_{p}^{\star}\right)^{n}} \prod_{k=1}^{2}\left(\int_{\mathbb{Q}_{p}^{d}}\left|f_{k}\left(s_{k}(t) x\right)\right|^{q_{k}} \omega_{k}(x) d x\right)^{\frac{1}{q_{k}}} \psi(t) d t \\
= & \mathcal{A}\left(\prod_{k=1}^{2}\left\|f_{k}\right\|_{L_{\omega_{k}}^{q_{k}}\left(\mathbb{Q}_{p}^{d}\right)}\right)<\infty .
\end{aligned}
$$

Thus, $U_{\psi, s}^{p, 2, n}$ is bounded from $L_{\omega_{1}}^{q_{1}}\left(\mathbb{Q}_{p}^{d}\right) \times L_{\omega_{2}}^{q_{2}}\left(\mathbb{Q}_{p}^{d}\right)$ to $L_{\omega}^{q}\left(\mathbb{Q}_{p}^{d}\right)$ and the best constant C in (3.6) satisfies

$$
C \leq \mathcal{A}
$$

For the converse, assuming that $U_{\psi, \bar{s}}^{p, 2, n}$ is defined as a bounded operator from $L_{\omega_{1}}^{q_{1}}\left(\mathbb{Q}_{p}^{d}\right) \times L_{\omega_{2}}^{q_{2}}\left(\mathbb{Q}_{p}^{d}\right)$ to $L_{\omega}^{q}\left(\mathbb{Q}_{p}^{d}\right)$. Let γ be an arbitrary positive number and we set

$$
\gamma_{1}:=\sqrt{\frac{q_{1}}{q}} \gamma \text { and } \gamma_{2}:=\sqrt{\frac{q_{2}}{q}} \gamma
$$

and

$$
\begin{aligned}
& f_{q_{1}, \gamma_{1}}= \begin{cases}0 & \text { if }|x|_{p} \leq 1 \\
|x|_{p}^{-\frac{d+\alpha_{1}}{q_{1}}-\frac{1}{\gamma_{1}^{2}}} & \text { if }|x|_{p} \geq 1\end{cases} \\
& f_{q_{2}, \gamma_{2}}= \begin{cases}0 & \text { if }|x|_{p} \leq 1 \\
|x|_{p}^{-\frac{d+\alpha_{1}}{q_{1}}-\frac{1}{\gamma_{2}^{2}}} & \text { if }|x|_{p} \geq 1\end{cases}
\end{aligned}
$$

From Lemma 2.2, we get that $f_{q_{1}, \gamma_{1}} \in L_{\omega_{1}}^{q_{1}}\left(\mathbb{Q}_{p}^{d}\right), f_{q_{2}, \gamma_{2}} \in L_{\omega_{2}}^{q_{2}}\left(\mathbb{Q}_{p}^{d}\right)$ and $\left\|f_{q_{1}, \gamma_{1}}\right\|_{L_{\omega_{1}}^{q_{1}}\left(\mathbb{Q}_{p}^{d}\right)}=\left(\frac{\omega_{1}\left(s_{0}\right)}{1-p^{-\frac{q_{1}}{\gamma_{1}^{2}}}}\right)^{\frac{1}{q_{1}}}>0,\left\|f_{q_{2}, \gamma_{2}}\right\|_{L_{\omega_{2}}^{q_{2}}\left(\mathbb{Q}_{p}^{d}\right)}=\left(\frac{\omega_{2}\left(S_{0}\right)}{1-p^{-\frac{q_{2}}{\gamma_{2}}}}\right)^{\frac{1}{q_{2}}}>0$.

We fix $x \in \mathbb{Q}_{p}^{d}$ which $|x|_{p} \geq 1$ and set

$$
S_{x}=\left\{t \in\left(\mathbb{Z}_{p}^{\star}\right)^{n}:\left|s_{1}(t) x\right|_{p}>1\right\} \cap\left\{t \in\left(\mathbb{Z}_{p}^{\star}\right)^{n}:\left|s_{2}(t) x\right|_{p}>1\right\} .
$$

From the assumption $\left|s_{1}\left(t_{1}, \ldots, t_{n}\right)\right|_{p} \geq \min \left\{\left|t_{1}\right|_{p}^{\beta}, \ldots,\left|t_{n}\right|_{p}^{\beta}\right\},\left|s_{2}\left(t_{1}, \ldots, t_{n}\right)\right|_{p} \geq$ $\min \left\{\left|t_{1}\right|_{p}^{\beta}, \ldots,\left|t_{n}\right|_{p}^{\beta}\right\}$ a.e $t=\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{Z}_{p}^{\star}\right)^{n}$, there exist a subset E of $\left(\mathbb{Z}_{p}^{\star}\right)^{n}$ has measure zero and S_{x} is contained in

$$
\left\{t \in\left(\mathbb{Z}_{p}^{\star}\right)^{n}:|t|_{p} \geq|x|_{p}^{-1 / \beta}\right\} \backslash E .
$$

Consequently, we have

$$
\begin{aligned}
& \left\|U_{\psi, \bar{s}}^{p, 2, n}\left(f_{q_{1}, \gamma_{1}}, f_{q_{2}, \gamma_{2}}\right)\right\|_{L_{\omega}^{q}\left(\mathbb{Q}_{p}^{d}\right)}^{q} \\
& =\int_{\left(\mathbb{Q}_{p}^{d}\right)}\left|\int_{\left(\mathbb{Z}_{p}^{\star}\right)^{n}}\left(f_{q_{1}, \gamma_{1}}\left(s_{1}(t) x\right) \cdot f_{q_{2}, \gamma_{2}}\left(s_{2}(t) x\right)\right) \psi(t) d t\right|^{q} \omega(x) d x \\
& =\int_{|x|_{p \geq 1}}\left(|x|_{p}^{-\frac{d+\alpha_{1}}{q_{1}}-\frac{1}{\gamma_{1}^{2}}} \cdot|x|_{p}^{-\frac{d+\alpha_{2}}{q_{2}}-\frac{1}{\gamma_{2}^{2}}}\right)^{q} \times \\
& \times\left.\left.\left|\int_{S_{x}}\right| s_{1}(t)\right|_{p} ^{-\frac{d+\alpha_{1}}{q_{1}}-\frac{1}{\gamma_{1}^{2}}} \cdot\left|s_{2}(t)\right|_{p}^{-\frac{d+\alpha_{2}}{q_{2}}-\frac{1}{\gamma_{2}^{2}}} \psi(t) d t\right|^{q} \omega(x) d x \\
& \geq \int_{|x|_{p} \geq 1}|x|_{p}^{-d-\alpha-\frac{q}{\gamma^{2}}}\left(\int_{S_{x}}\left|s_{1}(t)\right|_{p}^{-\frac{d+\alpha_{1}}{q_{1}}-\frac{1}{\gamma_{1}^{2}}} \cdot\left|s_{2}(t)\right|_{p}^{-\frac{d+\alpha_{2}}{q_{2}}-\frac{1}{\gamma_{2}^{2}}} \psi(t) d t\right)^{q} \omega(x) d x \\
& \geq \int_{|x|_{p} \geq p^{\gamma}}|x|_{p}^{-d-\alpha-\frac{q}{\gamma^{2}}} \omega(x) d x\left(\int_{S_{x}}\left|s_{1}(t)\right|_{p}^{-\frac{d+\alpha_{1}}{q_{1}}}-\frac{1}{\gamma_{1}^{2}} \cdot\left|s_{2}(t)\right|_{p}^{-\frac{d+\alpha_{2}}{q_{2}}-\frac{1}{\gamma_{2}^{2}}} \psi(t) d t\right)^{q} \\
& =p^{-\frac{q}{\gamma}}\left\|f_{q, \gamma}\right\|_{L_{\omega}^{q}\left(\mathbb{Q}_{p}^{d}\right)}\left(\int_{S_{x}}\left|s_{1}(t)\right|_{p}^{-\frac{d+\alpha_{1}}{q_{1}}-\frac{1}{\gamma_{1}^{2}}} \cdot\left|s_{2}(t)\right|_{p}^{-\frac{d+\alpha_{2}}{q_{2}}-\frac{1}{\gamma_{2}^{2}}} \psi(t) d t\right)^{q}
\end{aligned}
$$

Here we denote F by the set $\left\{t \in\left(\mathbb{Z}_{p}^{\star}\right)^{n}:|t|_{p} \geq p^{-\gamma / \beta}\right\}$. Since $\left|s_{1}\left(t_{1}, \ldots, t_{n}\right)\right|_{p} \geq$ $\min \left\{\left|t_{1}\right|_{p}^{\beta}, \ldots,\left|t_{n}\right|_{p}^{\beta}\right\},\left|s_{2}\left(t_{1}, \ldots, t_{n}\right)\right|_{p} \geq \min \left\{\left|t_{1}\right|_{p}^{\beta}, \ldots,\left|t_{n}\right|_{p}^{\beta}\right\}$ a.e $t=\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{Z}_{p}^{\star}\right)^{n}$, imply that $S_{x} \supset F$.

Thus we have the following inequality

$$
\begin{aligned}
\int_{F}\left|s_{1}(t)\right|_{p}^{-\frac{d+\alpha_{1}}{q_{1}}-\frac{1}{\gamma_{1}^{2}}} \cdot\left|s_{2}(t)\right|_{p}^{-\frac{d+\alpha_{2}}{q_{2}}-\frac{1}{\gamma_{2}^{2}}} \psi(t) d t & \leq p^{\frac{1}{\gamma}} \frac{\left\|U_{\psi, s}^{p, 2, n}\left(f_{q_{1}, \gamma_{1}}, f_{q_{2}, \gamma_{2}}\right)\right\|}{\left\|f_{q_{1}, \gamma_{1}}\right\|_{L_{\omega_{1}} q_{1}\left(\mathbb{Q}_{p}^{d}\right)} \cdot\left\|f_{q_{2}, \gamma_{2}}\right\|_{L_{\omega_{2}}^{q_{2}}\left(\mathbb{Q}_{p}^{d}\right)}} \\
& \leq C p^{\frac{1}{\gamma}} .
\end{aligned}
$$

Here C is the constant in (3.6). Letting γ to infinity, by Lebesgue's dominated convergence Theorem, we obtain
$\int_{\left(\mathbb{Z}_{p}^{*}\right)^{n}}\left|s_{1}(t)\right|_{p}^{-\frac{d+\alpha_{1}}{q_{1}}} \cdot\left|s_{2}(t)\right|_{p}^{-\frac{d+\alpha_{2}}{q_{2}}} \psi(t) d t \leq C$.
From (3.7) and (3.9), we obtain $\left\|U_{\psi, \vec{s}}^{p, 2, n}\right\|_{L_{\omega_{1}}^{q_{1}}\left(\mathbb{Q}_{p}^{d}\right) \times L_{\omega_{2}}^{q_{2}}\left(\mathbb{Q}_{p}^{d}\right) \rightarrow L_{\omega}^{q}\left(\mathbb{Q}_{p}^{d}\right)}=\mathcal{A}$.

3. CONCLUSION

In this paper, we find out the norm of p-adic weighted bilinear Hardy-Cesàro operator on product of p-adic weighted Lebesgue spaces as following:

$$
\left\|U_{\psi, \vec{s}}^{p, 2, n}\right\|_{L_{\omega_{1}}^{q_{1}}\left(\mathbb{Q}_{p}^{d}\right) \times L_{\omega_{2}}^{q_{2}}\left(\mathbb{Q}_{p}^{d}\right) \rightarrow L_{\omega}^{q}\left(\mathbb{Q}_{p}^{d}\right)}=\int_{\left(\mathbb{Z}_{p}^{\star}\right)^{n}}\left|s_{1}(t)\right|_{p}^{-\frac{d+\alpha_{1}}{q_{1}}} \cdot\left|s_{2}(t)\right|_{p}^{-\frac{d+\alpha_{2}}{q_{2}}} \psi(t) d t<\infty
$$

REFERENCES

1. J. Alvarez, J. Lakey and M. Guzmán-Partida (2000), Space of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math Duke Math. J. 51, 1-47.
2. C. Carton-Lebrun and M. Fosset (1984), Moyennes et quotients de Taylor dans BMO, Bull. Soc. Roy. Sci. Liége. (2) 53, 85-87.
3. Y. Z. Chen and K. S. Lau (1989), Some new classes of Hardy spaces, J. Funct. Anal. 84, 255-278.
4. N.M. Chuong, Yu V. Egorov, A. Khrennikov, Y. Meyer, D. Mumford (2007), Harmonic, wavelet and p-adic analysis, World Scientific.
5. N. M. Chuong and H. D. Hung (2010), Maximal functions and weighted norm inequalities on Local Fields, Appl. Comput. Harmon. Anal. 29, 272-286.
6. N. M. Chuong and H. D. Hung (2010), A Muckenhoupt's weight problem and vector valued maximal inequalities over local fields, p - Adic Numbers Ultrametric Anal. Appl. 2, 305-321.
7. N. M. Chuong and H. D. Hung (2014), Bounds of weighted Hardy-Cesàro operators on weighted Lebesgue and BMO spaces, Integral Transforms Spec. Funct. (9) 25, 697-710.
8. N.M. Chuong, H. D. Hung and N. T. Hong, Bounds of p-adic HardyCesàro operators and their commutators on p-adic weighted spaces of Morrey types, Submitted
9. R. R. Coifman, R. Rochberg and G. Weiss (1976), Factorization theorems for Hardy spaces in several variables, Annals of Math. (2) 103, 611-635.
10. Z. W. Fu, Z. G. Liu, and S. Z. Lu (2009), Commutators of weighted Hardy operators on \mathbb{R}^{n}, Proc. Amer. Math. Soc. (10) 137,3319-3328.
11. Z. W. Fu, S. L. Gong, S. Z. Lu and W. Yuan (2014), Weighted multilinear Hardy operators and commutators, Forum Math. 2014, DOI: 10.1515/forum 2013-0064.
12. J. García-Cuerva (1989), Hardy spaces and Beurling algebras, J. London Math. Soc. 39(2), 499513.
13. G. H. Hardy, J. E. Littlewood, G. Pólya (1952), Inequalities. $2 d$ ed. Cambridge, at the University Press. MR0046395 (13,727e)
14. H. D. Hung (2014), P-adic weighted Hardy - Cesaro operator and an application to discrete Hardy Inequalities, J. Math. Anal. Appl. 409, 868-879.
15. H. D. Hung and L. D. Ky (2015), New weighted multilinear operators and commutators of Hardy-Cesaro type, Acta Math.Sci., Ser. B, Engl. Ed., 35N(6),1411-1425.
16. Y. C. Kim (2009), Carleson measures and the BMO space on the p-adic vector space, Math. Nachr., 282, 1278-1304.
17. A. N. Kochubei (2001), Pseudodifferential equations and stochastics over nonArchimedean fields, Marcel Dekker, Inc. New York-Basel, MR 2003 b:35220.
18. Yasuo Komori and Satoru Shirai (2009), Weighted Morrey spaces and a singular integral operator, Math. Nachr. (2) 282. 219-231.
19. S.V. Kozyrev (2002), Wavelet analysis as a p-adic spectral analysis, Izvestia Akademii Nauk, Seria Math. (2) 66, 149-158.
20. S.V. Kozyrev, A.Yu. Khrennikov (2005), Pseudodifferential operators on ultrametric spaces and ultrametric wavelets, Izv. Ross. Akad. Nauk Ser. Mat. (5) 69, 133-148.
21. J. Igusa (2000), Introduction to the theory of local zeta functions. Studies in Advanced Mathematics 14.
22. S.Z. Lu, D.C. Yang (1995), The central BMO spaces and Littlewood-Paley operators, Approx. Theory Appl. 11, 72-94.
23. C. B. Morrey (1938), On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43, 126-166.
24. K.S. Rim and J. Lee (2006), Estimates of weighted Hardy-Littlewood averages on the p-adic vector space, J. Math. Anal. Appl. 324, 1470-1477.
25. Mitchell Taibleson (1975), Fourier analysis on local fields, Princeton University Press, Princeton.
26. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov (1994), P-adic analysis and mathematical physics, World Scientific.
27. S. S. Volosivets (2011), Hausdorff operator of special kind on p-adic field and BMO-type spaces, p-adic Numbers, Ultrametric Anal. Appl., 3, 149-156.
28. S. S. Volosivets (2012), Hausdorff operator of special kind in Morrey and Herz p-adic spaces, p-adic Numbers, Ultrametric Anal. Appl., 4, 222-230.
29. J. Xiao (2001), L_{p} and BMO bounds of weighted Hardy-Littlewood Averages, J. Math. Anal. Appl. 262, 660-666.
30. A. Weil (1971), Basic number theory. Academic Press.
31. Q. Y. Wu and Z. W. Fu , Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces, Submitted.
32. Q. Y. Wu, L. Mi and Z. W. Fu (2013), Boundedness of p-adic Hardy operattors and their commutators on p-adic central Morrey and BMO spaces, J. Funct. Spaces Appl., 2013, 10 pages.
33. Q. Y. Wu, L. Mi and Z. W. Fu (2012), Boundedness for commutators of fractional p-adic Hardy operators, J. Inequal. Appl. 2012:293.

CHUÂN CỦA TOÁN TỦ̉ SONG TUYẾN TÍNH p-ADIC HARDYCESÀRO CÓ TRỌNG TRÊN TÍCH CÁC KHÔNG GIAN LEBESGUE

Tóm tắt: Trong bài báo này, mục đích của chúng tôi là nghiên cứu tính bị chặn của toán tủ̉ $U_{\psi, \stackrel{s}{c}}^{p, 2, n}$ trên tích của các không gian p-adic Lebesgue có trọng. Chúng tôi tìm ra được điều kiện cần và đủ cho các hàm trọng để toán tử này bị chặn trên tích các không gian p adic Lebesgue có trọng. Hơn nũa, chúng tôi cũng tìm ra chuẩn của toán tử song tuyến tính p-adic Hardy-cesàro tưong úng.
Tù khoá: Không gian Lebesgue, điều kiện.

