
56  HANOI METROPOLITAN UNIVERSITY 

 

 

 

BOUNDS OF 𝒑-ADIC WEIGHTED BILINEAR HARDY-CESÀRO 

OPERATORS 66ON PRODUCT OF LEBESGUE SPACES 

Tran Van Anh, To Gia Can, Nguyen Thi Hong (*), Trinh Ngoc Mai 

Hanoi Metropolitan University 

 

Abstract: In this paper we aim to investigate the boundedness of 𝑈𝜓,𝑠
𝑝,2,𝑛

 on the product of 

𝑝-adic weighted Lebesgue spaces. We obtain the necessary and sufficient conditions on 

weight functions to ensure the boundedness of that operator on the product of 𝑝-adic 

weighted Lebesgue spaces. Moreover, we obtain the corresponding operator norms. 

Keywords: Lebesgue spaces, conditions.  

 

Received 27 November 2021 

Revised and accepted for publication 26 January 2022 

(*) Email: nthong@daihocthudo.edu.vn 

 

1. INTRODUCTION 

 Theories of functions from ℚ𝑝
𝑛 into ℂ play an important role in the theory of the 𝑝-adic 

quantum mechanics, the theory of 𝑝-adic probability. As far as we know, the studies of the 

𝑝-adic Hardy operators and 𝑝-adic Hausdorff operators are also useful for 𝑝-adic analysis 

[4,5,6,14,24,27,28]. 

 The weighted Hardy averaging operators are defined for measurable functions on ℚ𝑝 

by: 

𝑈𝜓
𝑝𝑓(𝑥) = ∫  

ℤ𝑝
⋆

𝑓(𝑡𝑥)𝜓(𝑡)𝑑𝑡,    𝑥 ∈ ℚ𝑝
𝑑 ,                     (1.1) 

here ℤ𝑝
⋆  is the ring of 𝑝-adic non-zero integers, and 𝑑𝑥 is the Haar measure on ℚ𝑝. Rim 

and Lee [24] considered the problem of characterizing function 𝜓 on ℤ𝑝
⋆ , so that we have 

inequalities: 

∥∥𝑈𝜓
𝑝𝑓∥∥

𝑋
≤ 𝐶 ∥ 𝑓 ∥𝑋 

where 𝑋 is 𝑝-adic Lebesgue or BMO space. The corresponding best constants 𝐶 are also 

obtained by these authors. 
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 Hung [14] considered a more general class of 𝑝 -adic weighted Hardy averaging 

operators, which are called 𝑝-adic Hardy-Cesaro operators, defined as: 

𝑈𝜓,𝑠
𝑝 𝑓(𝑥) = ∫  

ℤ𝑝
∗

𝑓(𝑠(𝑡)𝑥)𝜓(𝑡)𝑑𝑡,                           (1.2) 

where 𝑠: ℤ𝑝
∗ → ℚ𝑝 and 𝜓: ℤ𝑝

∗ → [0; ∞) are measurable funtions. 

The characterizations on funtion 𝜓(𝑡), under certain conditions on 𝑠(𝑡), so that: 

∥∥𝑈𝜓,𝑠
𝑝 𝑓∥∥

𝑋
≤ 𝐶 ∥ 𝑓 ∥𝑋 

for all 𝑓 ∈ 𝑋, where 𝑋 is 𝑝-adic Lebesgue space, are obtained. The best constants 𝐶 in 

the above inequalities are worked out too. It is interesting to notice that, by applying the 

boundedness of 𝑈𝜓,𝑠 on 𝑝-adic weighted Lebesgue spaces, Hung gives a relation between 

𝑝 − adic Hardy operators and discrete Hardy inequalities on the real field. 

 In [15], Hung and Ky gave the definition of the weighted multilinear Hardy-Cesàro 

operators  𝑈𝜓,𝑠
𝑚,𝑛

 to be: 

Definition 1.1. Let 𝑚, 𝑛 ∈ ℕ, 𝜓: [0,1]𝑛 → [0, ∞), 𝑠1, … , 𝑠𝑚: [0,1]𝑛 → ℝ be measurable 

funtions. The weighted multilinear Hardy-Cesàro operators 𝑈𝜓,𝑠
𝑚,𝑛

 is defined by: 

𝑈𝜓,𝑠
𝑚,𝑛(𝑓)(𝑥) = ∫  

[0,1]𝑛

(∏  

𝑛

𝑘=1

 𝑓𝑘(𝑠𝑘(𝑡)𝑥)) 𝜓(𝑡)𝑑𝑡,                    (1.3) 

where  𝑓 = (𝑓1, … , 𝑓𝑚), 𝑠 = (𝑠1, … , 𝑠𝑚). 

 The authors obtain the sharp bounds of 𝑈𝜓,𝑠
𝑚,𝑛

 on the product of Lebesgue spaces and 

central Morrey spaces. In our paper, we define the 𝑝-adic weighted bilinear Hardy-Cesàro 

operators 𝑈𝜓,𝑠
𝑝,2,𝑛

 as follow: 

Definition 1.2.  Let 𝑛  be positive interger numbers and 𝜓: (ℤ𝑝
∗ )

𝑛
→ [  0; ∞), 𝑠 =

(𝑠1, 𝑠2): (ℤ𝑝
⋆ )

𝑛
→ ℚ𝑝

2  be measurable. The 𝑝-adic weighted bilinear Hardy-Cesàro operators 

𝑈𝜓,𝑠
𝑝,2,𝑛

, which define on  𝑓 = (𝑓1, 𝑓2) : ℚ𝑝
𝑑 → ℂ2 vector of measurable funtions, by 

𝑈𝜓,𝑠
𝑝,2,𝑛(𝑓1, 𝑓2)(𝑥) = ∫  

(ℤ𝑝
⋆ )

𝑛
(∏  

2

𝑘=1

 𝑓𝑘(𝑠𝑘(𝑡)𝑥)) 𝜓(𝑡)𝑑𝑡, 

 Our paper is organized as follow. In Section 2 we give the content of this paper including 

the notation and  definitions that we shall use in the sequel. We define the 𝑝-adic weighted 

Lebesgue spaces 𝐿𝜔
𝑞 (ℚ𝑝

𝑑).  We also state the main results on the boundedness of 𝑈𝜓,𝑠
𝑝,2,𝑛

 on 

the 𝑝-adic weighted Lebesgue space and work out the norms of 𝑈𝜓,𝑠
𝑝,2,𝑛

 on such space. In 

Section 3 we give the conclusion of this paper. 
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2. CONTENT 

2.1. Basic notions and lemmas 

 Let 𝑝 be a prime number and let 𝑟 ∈ ℚ⋆. Write 𝑟 = 𝑝𝛾 𝑎

𝑏
 where 𝑎 and 𝑏 are integers not 

divisible by 𝑝. Define the 𝑝-adic absolute value | ⋅ |𝑝 on ℚ by |𝑟|𝑝 = 𝑝−𝛾 and |0|𝑝 = 0. The 

absolute value | ⋅ |𝑝 gives a metric on ℚ defined by 𝑑𝑝(𝑥, 𝑦) = |𝑥 − 𝑦|𝑝. We denote by ℚ𝑝 

the completion of ℚ with respect to the metric 𝑑. ℚ𝑝 with natural operations and topology 

induced by the metric 𝑑𝑝  is a locally compact, non-discrete, complete and totally 

disconnected field. A non-zero element 𝑥 of ℚ𝑝, is uniquely represented as a canonical form 

𝑥 = 𝑝𝛾(𝑥0 + 𝑥1𝑝 + 𝑥2𝑝2 + ⋯ ) where 𝑥𝑗 ∈ ℤ/𝑝ℤ and 𝑥0 ≠ 0. We then have |𝑥|𝑝 = 𝑝−𝛾 . 

Define ℤ𝑝 = {𝑥 ∈ ℚ𝑝: |𝑥|𝑝 ≤ 1} and ℤ𝑝
⋆ = ℤ𝑝 ∖ {0}. 

ℚ𝑝
𝑛 = ℚ𝑝 × ⋯ × ℚ𝑝  contains all 𝑛 -tuples of ℚ𝑝 . The norm on ℚ𝑝

𝑛  is |𝑥|𝑝 =

max1≤𝑘≤𝑛  |𝑥𝑘|𝑝 for 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℚ𝑝
𝑛. The space ℚ𝑝

𝑛 is complete metric locally compact 

and totally disconnected space. For each 𝑎 ∈ ℚ𝑝  and 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℚ𝑝
𝑛 , we denote 

𝑎𝑥 = (𝑎𝑥1, … , 𝑎𝑥𝑛). For 𝛾 ∈ ℤ, we denote 𝐵𝛾 as a 𝛾-ball of ℚ𝑝
𝑛 with center at 0 , containing 

all 𝑥 with |𝑥|𝑝 ≤ 𝑝𝛾, and 𝑆𝛾 = 𝐵𝛾 ∖ 𝐵𝛾−1 its boundary. Also, for 𝑎 ∈ ℚ𝑝
𝑑 , 𝐵𝛾(𝑎) consists of 

all 𝑥 with 𝑥 − 𝑎 ∈ 𝐵𝛾, and 𝑆𝛾(𝑎) consists of all 𝑥 with 𝑥 − 𝑎 ∈ 𝑆𝛾. 

 Since ℚ𝑝
𝑑 is a locally-compact commutative group with respect to addition, there exists 

the Haar measure 𝑑𝑥 on the additive group of ℚ𝑝
𝑑 normalized by ∫

𝐵0
 𝑑𝑥 = 1. Then 𝑑(𝑎𝑥) =

|𝑎| 𝑝
𝑑𝑑𝑥 for all 𝑎 ∈ ℚ𝑝

⋆ , |𝐵𝛾(𝑥)| = 𝑝𝑑𝛾 and |𝑆𝛾(𝑥)| = 𝑝𝑑𝛾(1 − 𝑝−𝑑). 

 We shall consider the class of weights 𝒲𝛼, which consists of all nonnegative locally 

integrable function 𝜔 on ℚ𝑝
𝑑 so that 𝜔(𝑡𝑥) = |𝑡|𝑝

𝛼𝜔(𝑥) for all 𝑥 ∈ ℚ𝑝
𝑑 and 𝑡 ∈ ℚ𝑝

⋆  and 0 <

∫
𝑆0

 𝜔(𝑥)𝑑𝑥 < ∞. It is easy to see that 𝜔(𝑥) = |𝑥|𝑝
𝛼 is in 𝒲𝛼 if and only if 𝛼 > −𝑑. 

Definition 2.1. Let 𝜔  be any weight function on ℚ𝑝
𝑑 , that is a nonnegative, locally 

integrable function from ℚ𝑝
𝑑 into ℝ. Let 1 ≤ 𝑟 < ∞, the 𝑝-adic weighted Lebesgue spaces 

𝐿𝜔
𝑟 (ℚ𝑝

𝑑) be the space of complexvalued functions 𝑓 on ℚ𝑝
𝑑 so that 

∥ 𝑓 ∥𝐿𝜔
𝑟 (ℚ𝑝

𝑑)= (∫  
ℚ𝑝

𝑑
  |𝑓(𝑥)|𝑟𝜔(𝑥)𝑑𝑥)

1/𝑟

< ∞ 

 For further readings on 𝑝 -adic analysis, see [25,26] . Here, some often used 

computational principles are worth mentioning at the outset. First, if 𝑓 ∈ 𝐿𝜔
1 (ℚ𝑝) we can 

write 

∫  
ℚ𝑝

𝑑
𝑓(𝑥)𝜔(𝑥)𝑑𝑥 = ∑  

𝛾∈ℤ

∫  
𝑆𝛾

𝑓(𝑦)𝜔(𝑦)𝑑𝑦. 

Second, we also often use the fact that 
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∫  
ℚ𝑝

𝑑
𝑓(𝑎𝑥)𝑑𝑥 =

1

|𝑎|𝑝
𝑑 ∫  

ℚ𝑝
𝑑

𝑓(𝑥)𝑑𝑥, 

if 𝑎 ∈ ℚ𝑝
𝑑 ∖ {0} and 𝑓 ∈ 𝐿1(ℚ𝑝

𝑑). 

 In order to prove the main theorem, we need the following lemma. 

Lemma 2.2. Let 𝜔 ∈ 𝒲𝛼, 𝛼 > −𝑑 and 𝛾 > 0. Then, the funtions 

𝑓𝑟,𝛾(𝑥) = {

0  if |𝑥|𝑝 < 1

|𝑥|𝑝

−
𝑑+𝛼

𝑟
−

1
𝛾2

 if |𝑥|𝑝 ≥ 1
 

belong to 𝐿𝜔
𝑟 (ℚ𝑝

𝑑) and ∥∥𝑓𝑟,𝛾∥∥
𝐿𝜔

𝑟 (ℚ𝑝
𝑑)

= (
𝜔(𝑆0)

1−𝑝−𝑟/𝛾2)
1/𝑟

> 0 

 

 Proof. From the formula for 𝑓𝑟,𝛾, we see that 

∥∥𝑓𝑟,𝛾∥∥
𝐿𝜔

𝑟 (ℚ𝑝
𝑑)

𝑟
 = ∫  

ℚ𝑝
𝑑

  |𝑓𝑟,𝛾|
𝑟
𝜔(𝑥)𝑑𝑥

 = ∫  
|𝑥|𝑝≥1

  |𝑥|𝑝

−(𝑑+𝛼+
𝑟

𝛾2)

𝜔(𝑥)𝑑𝑥

 = ∑  

∞

𝑘=0

 ∫  
𝑆𝑘

 𝑝
−𝑘(𝑑+𝛼+

𝑟
𝛾2)

𝜔(𝑥)𝑑𝑥

 = ∑  

∞

𝑘=0

 ∫  
𝑆0

 𝑝
−𝑘(𝑑+𝛼+

𝑟
𝛾2)

𝑝𝑘𝛼+𝑘𝑑𝜔(𝑦)𝑑𝑦

 = ∑  

∞

𝑘=0

 𝑝
−

𝑘𝑟
𝛾2𝜔(𝑆0)

 =
1

1 − 𝑝
−

𝑟
𝛾2

𝜔(𝑆0)

 < ∞

 

Thus 𝑓𝑟,𝛾 ∈ 𝐿𝜔
𝑟 (ℚ𝑝

𝑑) for each 𝛾 and ∥∥𝑓𝑟,𝛾∥∥
𝐿𝜔

𝑟 (ℚ𝑝
𝑑)

= (
𝜔(𝑆0)

1−𝑝−𝑟/𝛾2)
1/𝑟

> 0. 

 

2.2 . Bounds of 𝑼𝝍,�⃗⃗�
𝒑,𝟐,𝒏

 on the product of weighted Lebesgue spaces 

 Let 𝑋  be 𝐿𝜔
𝑞 (ℚ𝑝

𝑑) . Our aim is to characterize condition on functions 𝜓(𝑡)  and 

𝑠1(𝑡), 𝑠2(𝑡) such that 

∥
∥𝑈𝜓,𝑠

𝑝,2,𝑛(𝑓1, 𝑓2)∥
∥

𝑋×𝑋
≤ 𝐶∥∥𝑓1∥∥𝑋

⋅ ∥∥𝑓2∥∥𝑋
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holds for any 𝑓1, 𝑓2 and the best constant 𝐶 is obtained. The main result of this section 

is Theorem 3.2. 

 In this section, if not explicitly stated otherwise, 𝑞, 𝛼, 𝑞1, 𝑞2, 𝛼1, 𝛼2 are real numbers, 

1 ≤ 𝑞 < ∞, 1 ≤ 𝑞1 < ∞, 1 ≤ 𝑞2 < ∞, 𝛼1 > −𝑑, 𝛼2 > −𝑑 so that 

1

𝑞
=

1

𝑞1
+

1

𝑞2
, 

and 

𝛼 =
𝑞𝛼1

𝑞1
+

𝑞𝛼2

𝑞2
. 

The weights 𝜔1 ∈ 𝒲𝛼1
, 𝜔2 ∈ 𝒲𝛼2

, set 

𝜔(𝑥) = 𝜔1

𝑞
𝑞1(𝑥) ⋅ 𝜔2

𝑞
𝑞2(𝑥) 

It is obvious that 𝜔 ∈ 𝒲𝛼 

Definition 3.1. We say that (𝜔1, 𝜔2) satisfies the 𝒲�⃗⃗⃗� condition if 

𝜔(𝑆0) ≥ 𝜔1(𝑆0)
𝑞

𝑞1𝜔2(𝑆0)
𝑞

𝑞2 

 For example, (𝜔1, 𝜔2)  where 𝜔1(𝑥) = |𝑥|𝑝
𝛼1 , 𝜔2(𝑥) = |𝑥|𝑝

𝛼2  is satisfies the 𝒲�⃗⃗⃗� 

condition. 

 Through out this paper, 𝑠1, 𝑠2  are measurable functions from (ℤ𝑝
⋆ )

𝑛
 into ℚ𝑝  and we 

denote by 𝑠 the vector (𝑠1, 𝑠2). 

Theorem 3.2. Assume that (𝜔1, 𝜔2) satisfies 𝒲�⃗⃗⃗�  condition and there exits constant 

𝛽 > 0  such that |𝑠1(𝑡1, … , 𝑡𝑛)|𝑝 ≥ min{|𝑡1|𝑝
𝛽

, … , |𝑡𝑛|𝑝
𝛽

}  and |𝑠2(𝑡1, … , 𝑡𝑛)|𝑝 ≥

min{|𝑡1|𝑝
𝛽

, … , |𝑡𝑛|𝑝
𝛽

} and for almost everywhere (𝑡1, … , 𝑡𝑛) ∈ (ℤ𝑝
⋆ )

𝑛
. Then there exists a 

constant 𝐶 such that the inequality 

∥
∥𝑈𝜓,𝑠

𝑝,2,𝑛(𝑓1, 𝑓2)∥
∥

𝐿𝜔
𝑞

(ℚ𝑝
𝑑)

≤ 𝐶∥∥𝑓1∥∥𝐿𝜔1

𝑞1 (ℚ𝑝
𝑑)

⋅ ∥∥𝑓2∥∥𝐿𝜔2

𝑞2 (ℚ𝑝
𝑑)

 

holds for any measurable 𝑓1, 𝑓2 if and only if 

𝒜: = ∫  
(ℤ𝑝

⋆ )
𝑛

|𝑠1(𝑡)|𝑝

−
𝑑+𝛼1

𝑞1 ⋅ |𝑠2(𝑡)|𝑝

−
𝑑+𝛼2

𝑞2 𝜓(𝑡)𝑑𝑡 < ∞ 

Moreover, if (3.7) holds then 𝒜  is the norm of 𝑈𝑣,𝑠
𝑝,2,𝑛

 from 𝐿𝜔1

𝑞1 (ℚ𝑝
𝑑) × 𝐿𝜔2

𝑞2 (ℚ𝑝
𝑑) to 

𝐿𝜔
𝑞 (ℚ𝑝

𝑑). 

Proof. As we note above, 𝜔 ∈ 𝒲�⃗⃗⃗� . Firstly, suppose that 𝒜  is finite. Let 𝑓1 ∈

𝐿𝜔1

𝑞1 (ℚ𝑝
𝑑), 𝑓2 ∈ 𝐿𝜔2

𝑞2 (ℚ𝑝
𝑑) . Using Minkowski's inequality, Hölder's inequality and 𝑝 -adic 

change of variable (2.2), we have 
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∥
∥𝑈𝜓,𝑠

𝑝,2,𝑛(𝑓1, 𝑓2)∥
∥

𝐿𝜔
𝑞

(ℚ𝑝
𝑑)

≤ ∬  
ℚ𝑝

𝑑
 (∫  

(ℤ𝑝
⋆ )

𝑛
  (|𝑓1(𝑠1(𝑡)𝑥)𝑓2(𝑠2(𝑡)𝑥)|)𝜓(𝑡)𝑑𝑡)

𝑞

𝜔(𝑥)𝑑𝑥)

1
𝑞

≤  ∫  
(ℤ𝑝

⋆ )
𝑛

 (∫  
ℚ𝑝

𝑑
  |𝑓1(𝑠1(𝑡)𝑥)𝑓2(𝑠2(𝑡)𝑥)|𝑞𝜔(𝑥)𝑑𝑥)

1
𝑞

𝜓(𝑡)𝑑𝑡

≤  ∫  
(ℤ𝑝

⋆ )
𝑛

 ∏  

2

𝑘=1

 (∫  
ℚ𝑝

𝑑
  |𝑓𝑘(𝑠𝑘(𝑡)𝑥)|𝑞𝑘𝜔𝑘(𝑥)𝑑𝑥)

1
𝑞𝑘

𝜓(𝑡)𝑑𝑡

= 𝒜 (∏  

2

𝑘=1

  ∥∥𝑓𝑘∥∥
𝐿𝜔𝑘

𝑞𝑘 (ℚ𝑝
𝑑)

) < ∞.

 

Thus, 𝑈𝜓,𝑠
𝑝,2,𝑛

 is bounded from 𝐿𝜔1

𝑞1 (ℚ𝑝
𝑑) × 𝐿𝜔2

𝑞2 (ℚ𝑝
𝑑) to 𝐿𝜔

𝑞 (ℚ𝑝
𝑑) and the best constant 𝐶 

in (3.6) satisfies 

𝐶 ≤ 𝒜. 

 For the converse, assuming that 𝑈𝜓,𝑠
𝑝,2,𝑛

 is defined as a bounded operator from 

𝐿𝜔1

𝑞1 (ℚ𝑝
𝑑) × 𝐿𝜔2

𝑞2 (ℚ𝑝
𝑑) to 𝐿𝜔

𝑞 (ℚ𝑝
𝑑). Let 𝛾 be an arbitrary positive number and we set 

𝛾1: = √
𝑞1

𝑞
𝛾  and  𝛾2: = √

𝑞2

𝑞
𝛾 

and 

𝑓𝑞1,𝛾1
= {

0  if |𝑥|𝑝 ≤ 1

|𝑥|𝑝

−
𝑑+𝛼1

𝑞1
−

1

𝛾1
2

 if |𝑥|𝑝 ≥ 1.

𝑓𝑞2,𝛾2
= {

0  if |𝑥|𝑝 ≤ 1

|𝑥|𝑝

−
𝑑+𝛼1

𝑞1
−

1

𝛾2
2

 if |𝑥|𝑝 ≥ 1.

 

From Lemma 2.2, we get that 𝑓𝑞1,𝛾1
∈ 𝐿𝜔1

𝑞1 (ℚ𝑝
𝑑), 𝑓𝑞2,𝛾2

∈ 𝐿𝜔2

𝑞2 (ℚ𝑝
𝑑)  and 

∥∥𝑓𝑞1,𝛾1∥∥
𝐿𝜔1

𝑞1 (ℚ𝑝
𝑑)

= (
𝜔1(𝑆0)

1−𝑝
−

𝑞1
𝛾1

2
)

1

𝑞1

> 0, ∥∥𝑓𝑞2,𝛾2∥∥
𝐿𝜔2

𝑞2 (ℚ𝑝
𝑑)

= (
𝜔2(𝑆0)

1−𝑝
−

𝑞2
𝛾2

)

1

𝑞2

> 0. 

 We fix 𝑥 ∈ ℚ𝑝
𝑑 which |𝑥|𝑝 ≥ 1 and set 

𝑆𝑥 = {𝑡 ∈ (ℤ𝑝
⋆ )

𝑛
: |𝑠1(𝑡)𝑥|𝑝 > 1} ∩ {𝑡 ∈ (ℤ𝑝

⋆ )
𝑛

: |𝑠2(𝑡)𝑥|𝑝 > 1}. 
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 From the assumption |𝑠1(𝑡1, … , 𝑡𝑛)|𝑝 ≥ min{|𝑡1|𝑝
𝛽

, … , |𝑡𝑛|𝑝
𝛽

}, |𝑠2(𝑡1, … , 𝑡𝑛)|𝑝  ≥

min{|𝑡1|𝑝
𝛽

, … , |𝑡𝑛|𝑝
𝛽

}  a.e 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ (ℤ𝑝
⋆ )

𝑛
, there exist a subset 𝐸  of (ℤ𝑝

⋆ )
𝑛

 has 

measure zero and 𝑆𝑥 is contained in 

{𝑡 ∈ (ℤ𝑝
⋆ )

𝑛
: |𝑡|𝑝 ≥ |𝑥|𝑝

−1/𝛽
} ∖ 𝐸. 

Consequently, we have 

∥∥𝑈𝜓,𝑠‾
𝑝,2,𝑛(𝑓𝑞1,𝛾1

, 𝑓𝑞2,𝛾2
)∥∥

𝐿𝜔
𝑞

(ℚ𝑝
𝑑)

𝑞

 = ∫  
(ℚ𝑝

𝑑)

  | ∫ (𝑓𝑞1,𝛾1
(𝑠1(𝑡)𝑥) ⋅ 𝑓𝑞2,𝛾2

(𝑠2(𝑡)𝑥)) 𝜓(𝑡)𝑑𝑡

 

(ℤ𝑝
⋆ )

𝑛

 |

𝑞

𝜔(𝑥)𝑑𝑥

 = ∫  
|𝑥|𝑝≥1

 (|𝑥|𝑝

−
𝑑+𝛼1

𝑞1
−

1

𝛾1
2

⋅ |𝑥|𝑝

−
𝑑+𝛼2

𝑞2
−

1

𝛾2
2

)

𝑞

×

 × |∫  
𝑆𝑥

 | 𝑠1(𝑡)|
𝑝

−
𝑑+𝛼1

𝑞1
−

1

𝛾1
2

⋅ |𝑠2(𝑡)|𝑝

−
𝑑+𝛼2

𝑞2
−

1

𝛾2
2

𝜓(𝑡)𝑑𝑡|

𝑞

𝜔(𝑥)𝑑𝑥

 ≥ ∫  
|𝑥|𝑝≥1

  |𝑥|𝑝

−𝑑−𝛼−
𝑞

𝛾2
(∫  

𝑆𝑥

  |𝑠1(𝑡)|𝑝

−
𝑑+𝛼1

𝑞1
−

1

𝛾1
2

⋅ |𝑠2(𝑡)|𝑝

−
𝑑+𝛼2

𝑞2
−

1

𝛾2
2

𝜓(𝑡)𝑑𝑡)

𝑞

𝜔(𝑥)𝑑𝑥

 ≥ ∫  
|𝑥|𝑝≥𝑝𝛾

  |𝑥|𝑝

−𝑑−𝛼−
𝑞

𝛾2
𝜔(𝑥)𝑑𝑥 (∫  

𝑆𝑥

  |𝑠1(𝑡)|𝑝

−
𝑑+𝛼1

𝑞1 −
1

𝛾1
2 ⋅ |𝑠2(𝑡)|𝑝

−
𝑑+𝛼2

𝑞2
−

1

𝛾2
2

𝜓(𝑡)𝑑𝑡)

𝑞

 = 𝑝
−

𝑞
𝛾∥∥𝑓𝑞,𝛾∥∥

𝐿𝜔
𝑞

(ℚ𝑝
𝑑)

(∫  
𝑆𝑥

  |𝑠1(𝑡)|𝑝

−
𝑑+𝛼1

𝑞1
−

1

𝛾1
2

⋅ |𝑠2(𝑡)|𝑝

−
𝑑+𝛼2

𝑞2
−

1

𝛾2
2

𝜓(𝑡)𝑑𝑡)

𝑞

 

 Here we denote 𝐹  by the set {𝑡 ∈ (ℤ𝑝
⋆ )

𝑛
: |𝑡|𝑝 ≥ 𝑝−𝛾/𝛽} . Since |𝑠1(𝑡1, … , 𝑡𝑛)|𝑝 ≥

min{|𝑡1|𝑝
𝛽

, … , |𝑡𝑛|𝑝
𝛽

}, |𝑠2(𝑡1, … , 𝑡𝑛)|𝑝 ≥ min{|𝑡1|𝑝
𝛽

, … , |𝑡𝑛|𝑝
𝛽

}  a.e 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ (ℤ𝑝
⋆ )

𝑛
, 

imply that 𝑆𝑥 ⊃ 𝐹.  

Thus we have the following inequality 

∫ 
𝐹

  |𝑠1(𝑡)|𝑝

−
𝑑+𝛼1

𝑞1
−

1

𝛾1
2

⋅ |𝑠2(𝑡)|𝑝

−
𝑑+𝛼2

𝑞2
−

1

𝛾2
2

𝜓(𝑡)𝑑𝑡  ≤ 𝑝
1
𝛾

∥
∥𝑈𝜓,𝑠

𝑝,2,𝑛
(𝑓𝑞1,𝛾1

, 𝑓𝑞2,𝛾2
)∥

∥

∥∥𝑓𝑞1,𝛾1∥∥
𝐿𝜔1

𝑞1 (ℚ𝑝
𝑑)

⋅ ∥∥𝑓𝑞2,𝛾2∥∥
𝐿𝜔2

𝑞2 (ℚ𝑝
𝑑)

 ≤ 𝐶𝑝
1
𝛾.

 

Here 𝐶  is the constant in (3.6). Letting 𝛾  to infinity, by Lebesgue's dominated 

convergence Theorem, we obtain 
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∫  
(ℤ𝑝

⋆ )
𝑛 |𝑠1(𝑡)|𝑝

−
𝑑+𝛼1

𝑞1 ⋅ |𝑠2(𝑡)|𝑝

−
𝑑+𝛼2

𝑞2 𝜓(𝑡)𝑑𝑡 ≤ 𝐶. 

From (3.7) and (3.9), we obtain ∥
∥𝑈𝜓,𝑠

𝑝,2,𝑛
∥
∥

𝐿𝜔1

𝑞1 (ℚ𝑝
𝑑)×𝐿𝜔2

𝑞2 (ℚ𝑝
𝑑)→𝐿𝜔

𝑞
(ℚ𝑝

𝑑)
= 𝒜. 

 

3. CONCLUSION 

 In this paper, we find out the norm of 𝑝-adic weighted bilinear Hardy-Cesàro operator 

on product of 𝑝-adic weighted Lebesgue spaces as following: 

∥
∥𝑈𝜓,𝑠

𝑝,2,𝑛
∥
∥

𝐿𝜔1

𝑞1 (ℚ𝑝
𝑑)×𝐿𝜔2

𝑞2 (ℚ𝑝
𝑑)→𝐿𝜔

𝑞
(ℚ𝑝

𝑑)
= ∫  

(ℤ𝑝
⋆ )

𝑛
|𝑠1(𝑡)|𝑝

−
𝑑+𝛼1

𝑞1 ⋅ |𝑠2(𝑡)|𝑝

−
𝑑+𝛼2

𝑞2 𝜓(𝑡)𝑑𝑡 < ∞. 
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CHUẨN CỦA TOÁN TỬ SONG TUYẾN TÍNH 𝒑-ADIC HARDY-

CESÀRO CÓ TRỌNG TRÊN TÍCH CÁC KHÔNG GIAN LEBESGUE  

Tóm tắt:  Trong bài báo này, mục đích của chúng tôi là nghiên cứu tính bị chặn của toán 

tử 𝑈𝜓,𝑠
𝑝,2,𝑛

 trên tích của các không gian p-adic Lebesgue có trọng. Chúng tôi tìm ra được 

điều kiện cần và đủ cho các hàm trọng để toán tử này bị chặn trên tích các không gian 𝑝-

adic Lebesgue có trọng. Hơn nữa, chúng tôi cũng tìm ra chuẩn của toán tử song tuyến tính 

p-adic Hardy-cesàro tương ứng. 

Từ khoá: Không gian Lebesgue, điều kiện.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


