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A LIOUVILLE TYPE THEOREM FOR KIRCHHOFF ELLIPTIC
EQUATIONS INVOLVING A; OPERATORS
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Abstract: In this paper, we study the Kirchhoff elliptic equations
—M( ||V,1u||2) Aju=—u"Pw(x) in RV,

where A, is the degenerate A; operator in RN, N > 3, the exponent p > 0, and w(x) is a
weight function. We establish a Liouville type theorem for the class of continuous positive
stable solutions. In particular, our results improve existing results in [11] and [13].
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1. INTRODUCTION
In this paper, we are interested in the classification of stable classical solutions of the
following elliptic equations of Kirchhoff type

—M( ||Vlu||2)Alu = —u"Pw(x) in RY, (1.1)

where the exponent p > 0, N > 3, ||V,1u||2 = [ovIVaul?dx, and the function M(t): R* - R is
a smooth monotone function such that

tM(2) < (1.2)
= Su C0, .
PR M©
The weight w(x) = 0(]x|%) as x — oo for some real number a. Here A, is the degenerate
elliptic operator of the form
N
d (- 0

where x = (x1,..,xy) €RY and the functions A;:RY —» R satisfies certain further
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conditions, see Section 2. We denote by Q the homogeneous dimension of R¥Nwith respect
to the group of dilation {6;};~0, Q = €; + -+ + €y, Where ¢; is homogeneous degree of 4;
with respect to the group of dilation §;.

Let us first recall the existing results concerning this class of equations. In the case A; =
1forall 1 <j < N, the operator A, is the classical Laplace operator A. Particularly, when
the Kirchhoff function M = 1, Problem (1.1) reduces to

—Au(x) = —u(x)Pw(x),x € R". (1.4)
The equation (1.4) arises in many branches of applied sciences and has been studied in a
number of recent works, see [11], [4] and the references therein. The nonexistence of positive
stable classical solutions of the problem (1.4) was obtained in [11] with the weight w = 1.
This result was then generalized in [4] for positive stable weak solutions of a weighted
equation. More precisely, the authors in [4] figured out the critical exponent and established
an optimal Liouville type theorem for this class of solutions.

When M # 1, the Kirchhoff equation containing the term M([ |Vu|?dx) has
importantly meaningful applications. In the one dimensional case, the nonstationary equation

<P0+ E le |2d > 0
putt_ - o u Xlu =

describes the nonlinear vibration of a string when considering the effects of the changes in
the length of the string. Moreover, Kirchhoff type equations also appear in other fields as,
for example, biological systems where u describes a process depending on the average of
itself (for instance, population density).

When studying the Kirchhoff equation with a nonlinearity with weights, based on
Farina's approach in [7] and the technique in [2], Y. Wei and his collaborators in [10] assume
a power lower bound near infinity for the weight w(x) as follows

(W) The function w € C(R") is non-negative and there exists constant a > —2;
Ry, ¢ > 0 such that

w(x) = colx|* forall x € RY, |x| > R,.
Consider a special case of Kirchhoff operator:
M:[0,0) > R,t —» M(t) =a+ bt,a>0,b > 0.
Wei and his collaborators proved the nonexistence of stable solutions as stated below.

Theorem 1. [13, Theorem 1.2] Assume that the weight w satisfies (W) and one of the
following conditions

(A))a>0,b=0and2< N<10+4a, p>1;

(A,)a>0,b=0andN >10+4d,1 <p < ay;

(A3)a>0,b>0and2< N<4+ap>3;
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4(2+a)

(A4)a>0,b>0and4+a<N<2+ p > Bo;
(A4s)a>0,b>0andN =2 +*Z2 p >4,
(Aﬁ)a>0b>0and2+4(2+0‘)<oc<2+m By <P < B
where
2(2+a)[N—4—a+J(2+a)(2(N—1)+a)]
@ =1+ (N —2)(N — 10 — 4a)
2(2+a)[N—4—a+J(N—4—a)2—(N—2)(3N—14—4a)]
Po=1+ (N —2)(3N — 14 — 4a)
2(2+a)[N—4—aiJ(N—4—a)2—(N—2)(31v—14—4a)]
Prz= 1+

(N—-2)(3N — 14 — 4a)
Then the equation
(—a - b||V,1u||2 )Alu = [u|” " luw(x) in RV,
has no nontrivial stable solution.

Let us remark that, Theorem 1 describes the critical phenomenon, namely, the dimension
is bounded by some constant determined by the weights.

To the best of our knowledge, the problem (1.1) involving more general Kirchhoff
function corresponding the degenerate V; structure has not been investigated in the
literature. Therefore, in this paper we aim at generalizing the known results in [2], [3], [11]
to the problem (1.1).

The main result if the present work is the nonexistence of continuous stable positive
solutions of the equation (1.1).

Theorem 2. Assume that Q > 2,p > 0 and the conditions (W), (1.2) hold. If

2(2
a+ (Zy;_(;l D (p +p?+ (L + ZV)p). (L5)

then Equation (1.1) has no nontrivial continuous positive stable weak solutions.

Our result generalizes the case 4;(x) =1,1< j < N, and the Kirchhoff function
M(t) =a+ bt,a>0,b = 0in Theorem 1.

As a special case, when M(t) =1 (y =0)andw (x) =1 (a« = 0), we obtain the
following corollary of Theorem 2.

Corollary 3. Assume that Q > 2,p > 0. If

Q<2+—(p+,/ 24p), (1.6)

then Equation (1.1) has no nontrivial continuous positive stable weak solutions.

Q<2+
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We recover the results in [5, Corollary 1.3] and [11, Theorem 6].
2. PRELIMINARIES

2.1. The A,-operators and related functional setting

Following [9], A, is the second order differential operators associated with the
continuous functions 1;: RY — R which satisfies

(H,) There exists a group of dilation {5;} ;~, such that

5 RN = RN, 8,(xq, ..., xy) = (€14, ..., tNxy).

where 1 < e€; < -+ < €y.

The dilation induces the pullback on functions §; ¢(x) = @(6:x), V. The function A;
is 8,-homogeneous of degree €; — 1, i.e.,

A;(6:x) = t&i712;(x),forallx e RN, t > 0,i = 1,2, ..., N.
(H,) The functions A; satisfy 1,(x) =1 and A;(x) = 4;(xy, ., Xj—1),j = 2, ..., N .

Moreover, the functions A; are continuous on RY, strictly positive and of class €2 on RM \
IT with

N
=1 (x1,%p..,xy5) € RN;l_[xi = 0}.

i=1

(H3) There is a constant r > 0 such that

94, (x)
Xk

forall1<k<j—1,i=23,..,Nand x € (R})".

0<xk

These assumptions allow us to write
—A, = V3V,
where the A-gradient which consists of N —vector fields
V= (A (0)0y,, 22(X) 0., ..., Ay () By, ).
Consequently, A; is homogeneous of degree 2 with respect to §; in the sense that
A (8Fu) = t268) (Au),Vu € C*(RM).

We define W;"*(RN) the closure of C°(RM) with respect to the norm

ull? 12 = f (IVaul|? + u?)dx.
A RN
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The rest of this paper is devoted to the proof of our main result.
2.2. Stable solutions

We recall the concept of stable solutions of an equation with general nonlinearity
f(x,u).

Definition 4. A function u € W,"*(R") is called a weak solution to the equation
—M( ||V,1u||2)A,1u = —u"Pw(x) in R", (2.1)

if it satisfies

M (Ivadl?) [ | 7w vsgdx— [ | ferwpdr=0, 22)

forall € CX(RM).

Definition 5. ([2], [10]) A weak solution u of the equation (2.1) is said to be stable if the
following inequality holds

2
2 2
M(||v Vapl2dx +2M' ( ||V < V-Vd) ! (xx, u)pdx = 0 (2.3)
(hesll®) [ 1vaotax + 2o (dl") ([ v vagax ) [ ficeapax

forall ¢ € C}(RV).

Because C2(R") is dense in Wll’Z(RN), the equality and inequality above are also
satisfied for all ¢ € W;"*(RV).

Our equation has a natural variational structure, therefore, we can introduce the energy
functional

E) =2 M (|I7ul]") = fun FOxwpdx, (2.4)
where F(x,u) = fouf(x, s)ds and M (t) = fOtM(s)ds.
It is easy to check, E (u) € C2 (Wf’2 (]RN)) and

E'w)(9) =M ([I7]") [y Vo Vi = [y £, w)gdx.

2

E"We, ) = M([I7ul]) f 17, gl2dx + 2n (17201) U 7272 0x)
RN

- f]RN fu’ (x, u)(pdx

Hence, a weak solution u is a critical point of E(u) and the stability of u means the
energy functional is definitely semi-positive.
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3. PROOF OF THE MAIN RESULT

For simplicity, we denote by [ the integral [,y dx and M the term M( ||\7,1u||2). Let
us begin by establishing a key estimate.
3.1. Proof of Theorem 2

Lemma 6. If u is a stable solution of Equation (2.1) then one has

-+ 20m(|Ivall’) [0l = [ fiwe.vee c2an, (3D
Since u is a weak stable solution, for every ¢ € C}(R") one has

f fu(x, W dx < M( ||Vau||2) j Va0]? + on 17l )( Pauws002 (3.2)
By Cauchy-Schwarz inequality, it implies

M ([17ul]”) (71, V290)? < M (172l |*) [173l | 1720l | <
M ([172ul]*) [I7301]°,

where the last inequalities follows from the assumption (1.2).
Substituting in (3.2) we obtain (3.1).
Lemma7.Let N > 3,p > 0 and assume that (1.2) holds. If u is a continuous positive

stable solution of (1.1), then for t < % there exists a positive constant C depending on t such
that

2
<1f Zy_1i2t>f WYt < © [ An@AO+ YR 63

forall p € CP(RN).

Proof. The proof of this proposition is based on that of [2, Proposition 1] where the author
exploited the generalized Hardy inequality, see [1,3]. Let us also mention that the inequality
of type (3.3) for the nonvariational case was first established in [3]. Let us now prove Lemma 7.

Suppose that u is a positive stable solution of (1.1). We first use the stability condition
(3.1) with f(u) = —u Pw(x) and ¢ = ufy.

p f W= iytw < (1 +20)M ([7ul]) f 17, ()| (3.4)

By direct computation, one has



TAP CHf KHOA HOC — G 46/2021 | 35

f IV, (uty)|? = f (w2 TP + 2002w - U + w2 | Tpl?). (35)

To estimate the first term on the right hand side of (3.5), we use the weak form of (1.1)
with the test function u?*~11)? to get

M( |||7,1u||2)f V-V, (uZt—1¢2) = —fu‘p”t‘ll,bzw

= (2t - 1)Mf |\7/1u|2u2t—2¢2 = —fuZt""ll,l)ZW— 2Mfu2t‘11/1|7,1u- V. (3.6)
Combining (3.5) and (3.6), one gains
M 17 Q)P = T [Pt - MEER [y g+
M [ u?t| 7).
Combining (3.4), (3.7) and integrating the first term on the right hand side below, one

gets
p t? j 2t-p—1,7,2
(1 T2y 1- 2t> L ¢

< %f wr Y- iy + Mfu2t|\7,ﬂ/)|2 (3.8)
M(t - 1) 2 2 2 2
= LG KRl

Once u is known, the right hand side of (3.8) is bounded from above by

¢ j W2 (10,0 + [V, 912,

we obtain the estimate (3.3).

End of the proof of Theorem 2. Suppose that u is a positive stable solution of (1.1).
Recall that

M/
Y = SuP¢zo {%} = 0.

It is easy to see that, if

PP+ +2p)p
1+ 2y

<t<0, (3.9)

then
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tZ
P — >
1+2y 1-2t

0.

Thus, for any t in the range (3.9), we obtain from (3.3) that there exists a positive
constant C depending on t, p, N and y which satisfies

[t < ¢ [artamani+ v g, (310)

Let us consider a function y € CZ°(R;[0,1]) such that y =1on [—-1,1] and y =0
outside [—2,2]. For € > 0 small enough, we set ¢(x) = y(6.x). By homogeneity, we have

Sup (|18 (@D + |V, ¢|?) < C€?, (3.11)

x€RN
here and in what follows C denotes a generic positive constant which may change from line
to line and is independent of €.

We now replace i in (3.10) by ¢™, where m > 1 is chosen later, we induce that

[wrtorme < ¢ [w Qa1 + 9™ (312)
By simple computation
IVale™)|? = m?@*" 2|V, (3.13)
And
18, (@*™)] < 2m(2m — 1)@*™2|V;0[? + me®™ 2|85 (p?)]. (3.14)
From (3.12), one gets
JurPlePmw < € [ut@?™ 2 (1M ()] + IVagl?). (3.15)

Apply
fuZt—p—l(pZmW
< cfuthozm‘z(IAx(qoz)l + IVMIZ)-fuZtsozm‘z(IAx(fpz)l
+ |[Val?)
2t

(m-1)(2t-p—-1) 2t—-p—1
< (J u?t-r-1y t W(x)) P

2t—p-1 2t >72t_p_1

x ([ (81001 + W30 T wipet

(3.16)
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Let us choose m sufficiently large such that (m-D)@t=p-1)

(3.15) and (3.11), we obtain

> 2m. Hence, from (3.16),

2t—p—1 2t

f WPy (x) < C f (80D + [V3012) T w(x)P*T

2(2t-p-1) 2ta
< (Ce —p-1 p+1,

(3.17)

Now, we choose t in the interval (3.9) such that the exponent on the right hand side of
(3.17) is positive. Indeed,

2(2t-p-1) 2ta 2(2+a)
T—Q—E>O®Q—2<(—t)ﬁ.
2
We can choose ¢ sufficiently close to — 22T -T2VP ”01::(21;2’/)” which satisfies such a condition,

because

Q_2<p+\/p2+(1+2y)p 22+ a) (3.18)
1+ 2y T p+1

which is just the condition (1.5).

For such t, letting e — 0% in (3.17), we get a contradiction. Hence, there does not exists
a nontrivial continuous positive stable solutions of Equation (1.1).

4. CONCLUSION

In the present work, we prove the nonexistence of continuous positive stable weak
solutions of a class of Kirchhoff equations involving the A; operator. Our main achievement
improves the result in Ma and Wei [11] for degenerate elliptic equations involving A; and
nonlinearities with weights. At the same time, our result concerning nonlinearity with
negative exponents and more general Kirchhoff function complements the recent results of
Wei and collaborators [13], which contribute to the classification of solutions of Kirchhoff
type equations with power nonlinearities.
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PINH LY KIEU LIOUVILLE CHO PHUONG TRINH KIRCHHOFF
LOAI ELIP CHUA TOAN TU A,

T6m tit: Trong bai bao, ching t6i nghién cizu phirong trinh Kirchhoff logi elip
—M( ||V,1u||2) Aju=—u"Pw(x)inRY,
trong d6 A; 1atodn tik suy bién trén RN,N > 3,86 mii p > 0,va w(x) la ham trong. Chiing

16i chitng minh mét dinh 1y kiéu Liouville cho 16p nghiém 6n dinh dwong lién tuc. N6i riéng,
két qua ciia chiing téi mé rong két qua trong [11] va [13].

Tir khoa: Binh Iy kiéu Liouville, todn tir Ay, nghiém én dinh, phwong trinh Kirchhoff,



