
TẠP CHÍ KHOA HỌC  SỐ 39/2020                                                    89                

 

 

 
Hoang Thi Phuong Thao 

University Of Languages And International Studies 

 

Abstract: The paper focuses on linear correlated fuzzy function space 
( )A

with its 

special properties . Firstly, we show some special properties of the norm operator on two 

spaces
( ) ( 2)1

,
A A

  with 2 1A kA , 1 2,A A  given fuzzy numbers. Besides, we study the 

fractional differential equation  in  the space 
( )A

. By combining the special properties 

of space with fractional order calculations and the fixed point theorem, we have built 
assumptions to ensure that the problem has unique solution. 
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1. INTRODUCTION 

 In mathematics, fuzzy sets (uncertain sets) are somewhat like sets whose elements have 
degrees of membership. Fuzzy sets were introduced independently by L.A. Zadeh [38] in 
1965 as an extension of the classical sets. But applications of fuzzy sets in inventory control 
problems were around 15-20 years back. Among these works, one can refer the works of 
Mandal and Maiti [24], Wee et al. [37].  In  [38], Zadeh defined operations on set of fuzzy 

numbers with the following subtraction Hu v w u v w    . It is well-known that this 

usual Hukuhara difference between two fuzzy numbers only exists under very restrictive 
conditions [12]. To fix it, L. Stefanini introduced the fuzzy gH-difference in [34,35].  The 
gH-difference of two fuzzy numbers exists under much less restrictive conditions, however 
it does not always exist [35]. This makes the space of fuzzy numbers not a Banach space. To 
overcome this difficulty, Estevão Esmi [4] presented a practical way to introduce the space 
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of linear correlated fuzzy numbers 
( )

2{ ( , ) / ( , ) }
A A q r q r  where A is the operator 

that associates each vector 2( , )q r   with a fuzzy number [ ]q A r   where [ ]A   stands 

for the  -level of a fuzzy number A  for all [0,1].  The set 
( )A

equipped with addition 

and and scalar product defined in naturally 3.7 in [4] is a Banach space. 

Hukuhara differentiability of fuzzy-valued functions is generalization of Hukuhara 
differentiability of set-valued functions. This differentiability is based on Hukuhara 
difference. Hukuhara introduced this difference (subtraction) of two sets in [10]. He 
introduced the notions of integral and derivative for set-valued mappings and considered the 
relationship between them. This derivative is widely studied and analysed by researchers for 
set-valued as well as fuzzy-valued functions. A wide range of applications of Hukuhara 
derivatives are studied in fuzzy differential equations and fuzzy optimization problems. 
Unfortunately, the derivative is very restrictive. Its existence is based on certain conditions. 
Estevão Esmi [4]  gave the concept of the derivative Fréchet. Accordingly, the derivative of 

function ( ) ( ( ), ( ))Af t q t r t  is calculated through the derivative of ( ), ( )q t r t . 

The concepts of fractional derivatives for a fuzzy valued function are either based on 
the notion of Hukuhara derivative (H-derivative) or on the notion of strongly generalized 
derivative (G-derivative). The concept of Hukuhara derivative is old and well known [10], 
Puri and Ralescu [31] and the concept of G-derivative was recently introduced by Bede and 
Gal [2]. The Fréchet derivative was introduced the first time by D. Behmardi and E. 
Dehghan, Nayeri in [8]. Since then, many research works about Fréchet derivative have been  
published in [36]. 

Fractional calculus and fractional differential equations arise naturally in a variety of 
fields such as rheology, viscoelasticity, electrochemistry, diffusion process etc [6,7,8,9]They 
are usually applied to replace the derivative time in a given evolution equation by a derivative 
of fractional order. One can find applications of fractional differential equations in signal 
processing and in the complex dynamic in biological tissues [23,24,25]. For a general 
overview, we refer the reader to the monographs of Samko et al. [33], Podlubny [32], Kilbas 
et.al [13,14] and the papers [15,16, 26, 33, 34].  Some new research results for the fractional  
equation can be mentioned as  [18,19,20,21,23,25,26] 

This paper has 3 main results: Firstly, based on Fréchet derivative given by E. Esmi [4] 
, we introduce the definition of Fréchet-Caputo fractional derivative. The paper focuses on 
exploiting the application of the Fréchet derivative to the system of fuzzy frational equations. 
Applying the Lipschitz fixed point theorem, we make assumptions about the system of 
equations to have solutions. Finally, we present an example to illustrate the result. 

2. CONTENT 
2.1. Preliminaries 
2.1.1. The space of linear correlated fuzzy numbers 
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 Denote by the space of all fuzzy numbers on the real line. According to [1], the 

characteristic properties of a fuzzy number u  are presented via its   -cuts or level sets, 
which are defined by  

ࢻ[࢛] = ൜
࢞} ∈ ℝ: (࢞)࢛ ≥ ࢻ if {ࢻ ∈ (૙, ૚]

࢞} ∈ ℝ: (࢞)࢛ > ૙}തതതതതതതതതതതതതതതതതതതതതതത if ࢻ = ૙.  

 In addition, it is well-known that the level sets of $u$ can be rewritten in the parametric 
form [࢛]ࢻ = ࢻ࢛]

ି, ࢻ࢛
ା]and the diameter of [࢛]ࢻis given by len[࢛]ࢻ = ࢻ࢛

ା − ࢻ࢛
ିfor each ࢻ ∈

[૙, ૚] 
The space (ℝℱ, ݀ஶ)endowed with the supremum metric  

  ݀ஶ(ݑ, (ݒ = sup
଴ஸఈஸଵ

݀ு([ݑ]ఈ, ,ݑ ఈ)  for all[ݒ] ݒ ∈ ℝℱ, is a complete metric 

space (see [1]). 

 Definition 2.1.1 [4] 

 For each࡭ ∈ ℝऐ , define a mapping ࡭࣒: ℝ × ℝ → ℝऐby (ࢗ, (࢘ ↦ ,ࢗ)࡭࣒  where the(࢘
level sets of ࢗ)࡭࣒, ,ࢗ)࡭࣒] are(࢘ ࢻ[(࢘ = ࢇࢗ} + :࢘ ࢇ ∈  For convenience, denote the .{ࢻ[࡭]
fuzzy number ࢗ)࡭࣒, ࡭ࢗ by(࢘ + ,ࢗ)࡭࣒ and the range of࢘   .(࡭)byℝऐ (࢘

Definition 2.1.2 

 A fuzzy number u said to be symmetric w.r.t. x if ( ) ( )u x y u x y   for all y  . 

The fuzzy number u  is non-symmetric if there doesn't exist x  such that u   is symmetric. 

 From the results in [4], if ࡭ ∈ ℝऐis non-symmetric fuzzy number then the arithmetic 

operations on the space  ( )A such as addition, subtraction and scalar product are well-

defined. Indeed, let us recall that for each ࡯ ,࡮ ∈ ℝऐ(࡭) and ࣅ ∈ ℝit yields  

(i) ܤ+஺ܥ = ߰஺(߰஺
ିଵ(ܤ) + ߰஺

ିଵ(ܥ))   
(ii) ܤߣ = ߰஺(߰ߣ஺

ିଵ(ܤ))  
(iii) ܤ−஺ܥ = ܥ஺(−1)+ܤ = ߰஺(߰஺

ିଵ(ܤ) + (−1)߰஺
ିଵ(ܥ)).  

 In addition, the distance between elements of ( )A can be measured by the metric Ad

of the fuzzy number space. In particular, with  ݑ = ߰஺(ݍ௨, ,(௨ݎ ݒ =
߰஺(ݍ௩, ,(௩ݎ ,௨ݍ) ,(௨ݎ ,௩ݍ) (௩ݎ ∈ ℝଶ, we have ݀஺(ݑ, (ݒ = ௨ݍ| − |௩ݍ + ௨ݎ| − ,ݑ ௩|for allݎ ݒ ∈
ℝℱ(஺).  

 It is well-known that (ℝℱ(ಲ), ݀஺)is a complete metric space. Moreover, for each ݑ =
߰஺(ݍ௨,  ௨)due to the fact that the space ℝℱ(஺)is isometric to the space ℝଶ it implies that theݎ

space (ℝℱ(ಲ), +஺, .஺ , ‖. ‖టಲ)  with the induced norm  is a Banach space since ℝℱ(ಲ) is 

isometric to ℝଶ with the norm ‖ݑ‖టಲ = ‖߰஺
ିଵ(ݑ)‖ℝమ = |௨ݍ| +  .|௨ݎ|

  Lemma 2.1.1  
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 If ܣଵ, ଶܣ  be two non-symmetric fuzzy numbers such that ܣଶ = ଵܣ݇  with ݇ ∈ ℝ\
{0}then two norms ‖ ⋅ ‖஺భand ‖ ⋅ ‖஺మ are equivalent. 

 Proof 

 Because ݑ ∈ ℝℱ(஺భ) then ݑ  also belongs to the space ℝℱ(஺మ) , there exist two pairs 

(ଵݍ௨,ଵ ,(௨ݎ (ଶݍ௨,ଶ (௨ݎ ∈ ℝଶ such that ݑ = ߰஺భ(ଵݍ௨,ଵ (௨ݎ = ߰஺మ(ଶݍ௨,ଶ ,(௨ݎ  which follows 

that߰஺భ(ଵݍ௨,ଵ (௨ݎ = ߰஺భ(݇ଶݍ௨,ଶ   .(௨ݎ

 Our aim is to prove that two norms ‖ ⋅ ‖஺భand ‖ ⋅ ‖஺మare equivalent, which means that 

there exist , 0m M  such that ݉‖ݑ‖஺భ ≤ ஺మ‖ݑ‖ ≤ ݑ ஺భfor all‖ݑ‖ܯ ∈ ℝℱ(஺భ). 

 Indeed, since  1A  is a non-symmetric fuzzy number then 
1A is an injection and hence, 

we directly obtain൜
ଵݍ௨ =ଶ ௨݇ݍ

ଵݎ௨ =ଶ ௨ݎ
. 

 By the definition of norm, we have 

ቐ
஺భ‖ݑ‖ = |ଵݍ௨| + |ଵݎ௨|,

஺మ‖ݑ‖ = |ଶݍ௨| + |ଶݎ௨| = ቤ
ଵݍ௨
݇ ቤ + |ଵݎ௨|.

 

 Now, we consider some following cases: 

 Case 1: If | | 1k   then it implies that   

ଵ
|௞|

(|ଵݍ௨| + |ଵݎ௨|) ≤ ஺మ‖ݑ‖ ≤ |ଵݍ௨| + |ଵݎ௨| or equivalently 
ଵ

|௞|
஺భ‖ݑ‖ ≤ ஺మ‖ݑ‖ ≤

‖  ஺భwhich proves that‖ݑ‖ ⋅ ‖஺భ~‖ ⋅ ‖஺మ. 

 Case 2: If | | 1k  then it implies that  

|ଵݍ௨| + |ଵݎ௨| ≤ ஺మ‖ݑ‖ ≤
1

|݇|
(|ଵݍ௨| + |ଵݎ௨|) 

or equivalently, ‖ݑ‖஺భ ≤ ஺మ‖ݑ‖ ≤ ଵ
|௞|

‖ ஺భwhich proves that‖ݑ‖ ⋅ ‖஺భ~‖ ⋅ ‖஺మ. 

 Case 3: If | | 1k  then it is obvious that ‖ݑ‖஺భ = ݑ ஺మfor all‖ݑ‖ ∈ ℝℱ(஺) 

 Hence, the proof is completed. 

 Remark 2.1.1  

 However, if 1 2,A A  are symmetry fuzzy numbers  then the similar conclusion as in 

Lemma 2. 1 can't be obtained. Indeed, since ܣଶ = ଵ if 1Aܣ݇  is a symmetric fuzzy number 

w.r.t. x  then so is 2A . Next, by using Theorem 3.15 in \cite{este}, our proof is divided 

into following cases: 
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 Case 1:  If 
1 2

u uq q k and 
1 2

u ur r   then by similar arguments as in Lemma 2.1.1 , we 

have ‖ ⋅ ‖஺భ~‖ ⋅ ‖஺మ. 

 Case 2:  If 
1 2

u uq q k  and 
1 2 22u u ur q x r  then it implies that ቐ

ଶݍ௨ = −
భ௤ೠ
௞

ଶݎ௨ = 2
భ௤ೠ௫
௞

+ଵݎ௨.
 

 Therefore, we have 

஺మ‖ݑ‖ = |ଶݍ௨| + |ଶݎ௨| ≤ ቤ
ଵݍ௨
݇ ቤ + ฬ

ݔ2
݇ ฬ |ଵݍ௨| + |ଵݎ௨| ≤ ൬

1
|݇| + ฬ

ݔ2
݇ ฬ൰ |ଵݍ௨| + |ଵݎ௨|. 

 Then, by denoting 
1 2

max ;1
| |

x
M

k k

 
  

 
, we directly get that 

2 1A Au M u‖ ‖ ‖ ‖ . For 

each 
1( )Au , we have 

F(‖ݑ‖): = ஺మ‖ݑ‖
ଶ − ݉ଶ‖ݑ‖஺భ

ଶ

= ቆቤ
ଵݍ௨
݇ ቤ + ቤ

ݔ2
݇

ଵ
௨ቤቇݎ௨+ଵݍ

ଶ

− ݉ଶ(|ଵݍ௨| + |ଵݎ௨|)ଶ. 
(1) 

 Subcase 2.1: If 
1 1 0u uq r  and 

1 12
0u uq q x

r
k k

 
  

 
then the expression (1)  becomes 

஺మ‖ݑ‖
ଶ − ݉ଶ‖ݑ‖஺భ

ଶ

= ቈ൬
ݔ2 + 1

݇ ൰
ଶ

− ݉ଶ቉
ଵ

௨ݍ
ଶ + ቆ

௨ݎଵݔ4
݇ +

2ଵݎ௨
݇ − 2ଵݎ௨݉ଶቇ

ଵ

௨ݎ௨+ଵݍ
ଶ(1

− ݉ଶ) 

 If the above expression is known as a quadratic function of variable 
1

uq then the delta 

discriminant  of the quadratic equation F( ) 0u ‖ ‖ is given by  

2
1 2 2 2 1

1 0,
x

r m
k

     
 

 

 which means that the solution set of the quadratic equation F( ) 0u ‖ ‖ is nonempty. 

 Subcase 2.2:   If 
1 1 0u uq r  and 

1 12
0u uq q x

r
k k

 
  

 
then the expression (1) becomes 
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2 1

1 12 1 1
2 2 2 2 2 21 1 2 24 22 1

2 (1 )u u
A A u u u u

x r rx
u m u m q m r q r m

k k k

               
     

‖ ‖ ‖ ‖  

If the above expression is known as a quadratic function of variable 
1

uq  then the 

delta discriminant   of the quadratic equation F( ) 0u ‖ ‖ is given by 
2

1 2 2 2 1
1 0

x
r m

k

     
 

 

which means that the solution set of the quadratic equation F( ) 0u ‖ ‖ is nonempty. 

Subcase 2.3 If 
1 1 0u uq r  and 

1 12
0u uq q x

r
k k

 
  

 
then the expression (1) becomes 

2 1

1 12 1 1
2 2 2 2 2 21 1 2 24 22 1

2 (1 )u u
A A u u u u

x r rx
u m u m q m r q r m

k k k

               
     

‖ ‖ ‖ ‖  

If the above expression is known as a quadratic function of 
1

uq then the delta 

discriminant  of the quadratic equation F( ) 0u ‖ ‖ is given by 
2

1 2 2 1
1 0

x
r

k

     
 

 

which means that the solution set of the quadratic equation F( ) 0u ‖ ‖ is nonempty. 

We can conclude that there always exists an element 
1( )Au or equivalently, a 

pair 
1 1 2( , )u uq r  such that the inequality ‖ݑ‖஺మ

ଶ ≤ ݉ଶ‖ݑ‖஺భ
ଶ  doesn't hold. Therefore, it 

implies that two norms ‖ ⋅ ‖஺భܽ݊݀‖ ⋅ ‖஺మ are not equivalent.  

2.2.2. Fréchet-Caputo fractional derivative 

 Let ,E F  be normed spaces and denote ( , )E F  by the space of all continuous 

mappings.  

 Definition 2.2.1 

Let A  

and 
݂ ∈ ℒ(ܬ, ℝℱ(஺)), (ݐ)݂ = ߰஺((ݐ)ݍ,   ((ݐ)ݎ
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with 
,(ݐ)ݍ (ݐ)ݎ ∈ ,ܬ)ଵܮ ℝ) ∩ ,ܬ)ܥ ℝ) 

. 

 Then the Riemann-Liouville (RL) fractional integral of order (0,1]p of function f  is 

defined by  

ி
ோ௅ℐ଴శ

௣ (ݐ)݂ = ߰஺൫ܫ଴శ
௣ ,(ݐ)ݍ ଴శܫ

௣  ,൯(ݐ)ݎ

 where  ܫ଴శ
௣ (ݐ)ݍ = ଵ

௰(௣) ∫ ݐ) − ௣ିଵ௧(ݏ
଴ ,ݏ݀(ݏ)ݍ ଴శܫ

௣ (ݐ)ݎ = ଵ
௰(௣) ∫ ݐ) − ௣ିଵ௧(ݏ

଴  .ݏ݀(ݏ)ݎ

 Definition 2.2.2 

Let A  

And ݂ ∈ ℒ(ܬ, ℝℱ(஺)), (ݐ)݂ = ߰஺((ݐ)ݍ,   ((ݐ)ݎ

 Let A and ݂ ∈ ℒ(ܬ, ℝℱ(஺)), (ݐ)݂ = ߰஺((ݐ)ݍ,  ((ݐ)ݎ with. The Fréchet-Caputo 

fractional derivative of order of the function (0,1]p  of function f   is defined by 

 1 1 1

0 0 0 0
( ) ( ) ( ), ( ) .C p RL p p p

F F Af t f t I q t I r t    
      

 Definition 2.2.3 

 Let A  be non-symetric fuzzy number and ݂ ∈ ℒ(ܬ, ℝℱ(஺)), (ݐ)݂ =

߰஺((ݐ)ݍ,  ((ݐ)ݎ with 1( ), ( ) ( , ) ( , )q t r t L J C J  . The Fréchet-Riemann-Liouville 

fractional derivative of order (0,1]p  of the function f is defined by 

 1 1 1

0 0 0 0
( ) ( ) ( ) ( ( )) , ( ( )) .RL p RL p p p

F F Af t f t I q t I r t    
       

 Definition 2.2.4 

 Let A and ݂ ∈ ℒ(ܬ, ℝℱ(஺)), (ݐ)݂ = ߰஺((ݐ)ݍ,  ((ݐ)ݎ with ,(ݐ)ݍ (ݐ)ݎ ∈ ,ܬ)ଵܮ ℝ) ∩
,ܬ)ܥ ℝ) . The Fréchet-Riemann-Liouville fractional derivative of order (0,1]p  of the 

function f is defined by 

 1 1 1

0 0 0 0
( ) ( ) ( ) ( ( )) , ( ( )) .RL p RL p p p

F F Af t f t I q t I r t    
       

2.2.3. Application of  the Fréchet -Caputo derivative 

 Consider following fuzzy intitial value problem (FIVP) for fractional differential 
equation 
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ቊ ி
஼ࣞ଴శ

௣ (ݐ)ߤ = ,ݐ)݂ ((ݐ)ߤ
(0)ߤ = ,଴ߤ

 (1) 

 where ி
஼ࣞ଴శ

௣ .)ߤ )is the Fréchet-Caputo derivative of order (0,1]p of the continuous 

function ߤ(. ), ଴ߤ ∈ ℝℱ(ಲ) with A is a fuzzy number and the function ݂: ܬ × ,ܬ)ܥ ℝℱ(ಲ)) →
ℝℱ(ಲ)is continous function with [0; ].J b  

2.3. Existence of solution 

 If A  is a fuzzy number and 
( )A

  is a solution to the problem (2) then it satisfies the 

following integral equation 

(ݐ)ߤ = ଴+஺ߤ ℱ
ோ௅ℐ଴శ

௣ ,ݐ)݂ ݐ ,((ݐ)ߤ ∈  (2) .ܬ

 Proof 

 Because ݂(ݐ, ((ݐ)ߤ ∈ ℝℱ(ಲ), there exists ݍ௙ఓ, :௙ఓݎ ܬ → ℝsuch that  

( , ( )) ( ( ), ( )).A f tf t t q t r t     

 Assume that  is a solution of (2). 

 From ℱ
஼ ࣞ଴శ

௣ (ݐ)ߤ = ,ݐ)݂ ((ݐ)ߤ , we have ℱ
ோ௅ℐ଴శ

ଵି௣ߤᇱ(ݐ) = ,ݐ)݂ ((ݐ)ߤ  wher (ݐ)ᇱߤ =
߰஺(ݍᇱ

௙ఓ(ݐ), ᇱݎ
௙ఓ(ݐ)).  

  By taking fractional integration of order  p of two sides, we obtain  

1 1

0 0 0
( ) ( , ( )).RL p RL p RL pt f t t   

     

 This imlies  
00

( ) ( , ( ))
t RL ps ds f t t   . Therefore 0 0

( ) ( , ( )),RL p
At f t t t J     . 

       Definition 3.1.1 

 
( )

( )
A

t  is called an intergral solution of the problem (2) if it satifies integral 

equation 0 0
( ) ( , ( ))RL p

At f t t    . 

 On space 
( )

( , )
A

C J we defined the supremum metric and weighted metric r d as 

follows   ( , ) sup ( ( ), ( ))A
t J

d t t 


 and sup{ ( ( ), ( ))}r r
A

t J

d t d t t


 . 

 Theorem 3.1.1 

 Assume that A  is a fuzzy number, the fuzzy-valued function f  is jointly continuous 

and satisfies the Lipschitz condition w.r.t. the last argument, i.e., there exists a constant 0L 
so that   
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( ( , ( )), ( , ( ))) ( ( ), ( ))A Ad f t t f t t Ld t t  .  

for  ( ), , , .Aall t J C J   

 Then, the fuzzy initial value problem (2) has a unique integral solution defined on J . 

 Proof:  Let us define an operator     ( ) ( ): , ,A AC J C J by 

0[ ]( ) ( , ( )).RL p
AFt f t t     

 Assume that  ( ( ), ( )) , ( ( ), ( ))f f f fq t r t q t r t      such that  

( , ( )) ( ( ), ( )), ( , ( )) ( ( ), ( )).A f f A f ff t t q t r t f t t q t r t       

 For each  ( ), , ,At J and C J  we have     

 [ ]( ), [ ]( )Ad t t = ݀஺(ி
ோ௅ℐ௣݂(ݐ, ிோ௅,((ݐ)ߤ ℐ௣݂(ݐ,⋎  (((ݐ)

଴శܫ| = 
௣ (ݐ)௙௨ݍ) − |((ݐ)௙௩ݍ + ଴శܫ|

௣ (ݐ)௙௨ݎ) −  |((ݐ)௙௩ݎ

 = ଴శܫ|
௣ (ݐ)௙ఓݍ) − |((ݐ)⋎௙ݍ + ଴శܫ|

௣ (ݐ)௙ఓݎ) −  |((ݐ)⋎௙ݎ

 
≤

1
(݌)߁ න ݐ) − ௣ିଵ(ݏ

௧

଴
(หݍ௙௨(ݏ) − ห(ݏ)௙௩ݍ + หݎ௙௨(ݏ) −  ݏ݀(ห(ݏ)௙௩ݎ

 
≤

1
(݌)߁ න ݐ) − ௣ିଵ(ߛ

௧

଴
݀஺(݂(ߛ, ,((ߛ)ߤ ⋎,ߛ)݂  ߛ݀(((ߛ)

 
≤

1
(݌)߁ න ݐ) − ௣ିଵ(ߛ

௧

଴
(หݍ௙ఓ(ߛ) − ห(ߛ)⋎௙ݍ

+ หݎ௙ఓ(ݏ) −  ߛ݀(ห(ߛ)⋎௙ݎ

 ≤ ௅௰(௣)
௰(ଶ௣)

 .(⋎,ߤ)ଶ௣ିଵ ଵି௣݀஺ݐ

This implies 

,[ߤ]࣡)ଵି௣݀஺ݐ ࣡[⋎]) ≤
(݌)߁௣ݐܮ

(݌2)߁

ଵି௣

݀஺(ߤ,⋎) (3) 

The operator n is defined by 

࣡௡[ߤ](ݐ) = ࣡(࣡௡ିଵ[ߤ](ݐ))  for all ݊ ∈ ℕ, ݐ ∈  .ܬ
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Then, we will show that n is a contraction mapping for a big enough n . To this 
end, by induction principle, we will show that the following estimation holds for all 

 ( ), .AC J We have   

݀஺(࣡௡[ߤ](ݐ), ࣡௡[⋎](ݐ)) ≤
(݌)߁௡௣ା௣ିଵݐ௡ܮ

݊))߁ + (݌(1
( ଵି௣݀஺(ߤ,⋎)). (4) 

 Indeed, if 1n   then we gain the estimation (3) from the inequality (4). Moreover, let 
us assume that the estimation (3) is true for n k  and then, we will prove that (3) holds for 

1n k  . For each ߤ,⋎∈ ,ܬ൫ܥ ℝℱ(஺)൯ and  t J , we have 

݀஺(࣡௞ାଵ[ݑ](ݐ), ࣡௞ାଵ[⋎](ݐ)) = ݀஺(࣡(࣡௞[ݑ](ݐ)), ࣡(࣡௞[ݑ](ݐ))) 
 ≤ ݀஺൫ ி

ோ௅ℐ଴శ
௣ ,ݐ)݂ ࣡௞[ߤ](ݐ)),ிோ௅ ℐ଴శ

௣ ,ݐ)݂ ࣡௞[⋎](ݐ))൯ 

 
≤

1
(݌)߁ න ݐ) − ௣ିଵ(ߛ

௧

଴
݀஺(݂(ݏ, ࣡௞[ߤ](ߛ), ,ݏ)݂  ߛ݀((ߛ)[ߤ]

 ≤ ௅
௰(௣) ∫ ݐ) − ௣ିଵ௧(ߛ

଴ ݀஺(࣡௞[ߤ](ߛ), ࣡௞[⋎](ߛ))݀ߛ. 

By employing the induction hypothesis, we have 

݀஺(࣡௞ାଵ[ߤ](ݐ), ࣡௞ାଵ[⋎](ݐ)) 
≤

௞ାଵܮ ଵି௣݀஺(ߤ,⋎)
݇))߁ + (݌(1 න ݐ) − ௣ିଵ(ߛ

௧

଴
 ߛ௞௣ା௣ିଵ݀ߛ

 
≤

௣ିଵ(௞ାଶ)ݐ௞ାଵܮ

݇))߁ + (݌(2 ,݌)ܤ (݇ + )(݌(1 ଵି௣݀஺(ߤ,⋎)) 

 
≤

(݌)߁௣ିଵ(௞ାଶ)ݐ௞ାଵܮ
݇))߁ + (݌(2

( ଵି௣݀஺(ߤ,⋎)), 

where ( , )B p q  is Beta function [14]. Therefore, the inequality (3) holds for 1n k  . 

From the inequality (3), we have 

,(ݐ)[ߤ]ଵି௣݀஺(࣡௡ݐ ࣡௡[⋎](ݐ)) ≤
(݌)߁௡௣ݐ௡ܮ

݊))߁ + (݌(1
( ଵି௣݀஺(ߤ,⋎)).  

Then, by taking supremum both sides, we obtain  ଵି௣݀஺(࣡௡[ߤ], ࣡௡[⋎]) ≤
௅௕೙೛௰(௣)
௰((௡ାଵ)௣)

( ଵି௣݀஺(ߤ,⋎)) → 0 as ݊ → ∞.  

It implies that the operator n is a contraction when n  is big enough. Applying 

contraction principle, we guarantee the unique existence of fixed point  of the operator n

, that is the unique integral solution of the problem (2). The proof is complete. 

2.4. Example 

 In this example, we consider the equation of the mass-Spring-DamperSystem as 
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݉
ଶ(ଵିఊ)ிߪ

஼
ࣞ଴శ

ଶఊ(ݐ)ߤ +
ߚ

ଵିఊߪ +஺݇(ݐ)ߤ = 0  (ݐ)ܨ < ߛ ≤ 1  

 where A  is a fuzzy number, (ݐ)ߤ, (ݐ)ܨ ∈ ℝℱ(ࣛ)the mass is m, the damping coefficient 

is  the spring costant is k  anf ( )F t  represent the forcing function, an auxilary parameter 

 is introduced into the fractional tenporal operator: 

݀
ݐ݀ →

1
ଵିఊߪ .

݀ఊ

ఊݐ݀ ,  ݉ − 1 ≤ ߛ ≤ ݉, ݉ ∈ ܯ = 1,2,3, . ..  

݀ଶ

ଶݐ݀ →
1

ଶ(ଵିఊ)ߪ .
݀ଶఊ

ଶఊݐ݀ ,  ݉ − 1 ≤ ߛ ≤ ݉, ݉ ∈ ܯ = 1,2,3, . ..  

 Consider a constant source, (ݐ)ܨ = ଴݂, (0)ߤ = ,଴ߤ ௗఓ
ௗ௧

(0) = 0, we have equation (2), 

may be writen as follow: 

ி
஼ࣞ଴శ

ଶఊ(ݐ)ߤ =
ଶߟ

݇ ଴݂−஺ߟଶ(ݐ)ߤ  

where ߟଶ = ௞ఙమ(భషം)

௠
. 

 We can see that ݂(ݐ, ((ݐ)ߤ = ఎమ

௞ ଴݂−஺ߟଶ(ݐ)ߤis jointly continous function and satisfies  

the Lipschitz condition. So, we obtain the solution of problem is   

(ݐ)ߤ = ൬ߤ଴−஺
଴݂

݇ ൰ . ஺+{ߛଶݐଶߟ−}ଶఊܧ
଴݂

݇ .  

where the Mittag-Leffler function ( )aE t is defined by a power as: ܧ௔(ݐ) =

෍ ௧೘

௰(௔௠ାଵ)

ஶ

௠ୀ଴
. 

3. CONCLUSION 

Firstly, in this paper, we introduced a new concept of fractional differentiability for a 
class of linear correlated fuzzy valued function namely the Fréchet-Caputo fractional 
derivative. 

After that, we studied fuzzy fractional PDEs under Fréchet- Caputo differentiability. By 
using the fixed point theorem, we have proved some new results on the existence and 
uniqueness of fuzzy solution for the fuzzy intitial value problem. Fréchet derivative makes 
this problems have only a unique solution instead of having two different types of solutions 
such as the usual gH derivative . 
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BÀI TOÁN VỀ GIÁ TRỊ CỦA BIẾN MỜ CHO CÁC PHƯƠNG 
TRÌNH VI PHÂN PHÂN SỐ TRÊN KHÔNG GIAN TUYẾN TÍNH  

Tóm tắt: Bài báo tập trung vào không gian hàm mờ tương quan tuyến tính với các tính 
chất đặc biệt của nó ℝℱ(ಲ) Đầu tiên, chúng tôi hiển thị một số thuộc tính đặc biệt của toán 

tử chuẩn trên hai không gian với ℝℱ(ಲభ), ℝℱ(ಲమ)  withܣଶ = ,1ܣ ,ଵܣ݇  mang lại các giá 2ܣ

trị mờ. Bên cạnh đó, chúng tôi nghiên cứu phương trình vi phân phân số trong không gian 
ℝℱ(ಲ)bằng cách kết hợp các tính chất đặc biệt của không gian với các phép tính bậc phân 

số và định lý điểm cố định, chúng tôi đã xây dựng các giả thiết để đảm bảo rằng bài toán 
có nghiệm duy nhất. 

Từ khoá: Phương trình vi phân, đạo hàm Fréchet, đạo hàm Caputo-Fréchet.  

 



102  TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI 

 

 

Mai Hong Hanh 

University of Science, Vietnam National University 

 

Abstact: In the recent years there has been a huge development on the detection devices 
using smartphone that are reliable, easy-to-use, and low cost. In this work, a smartphone 
based optical sensor is constructed by implementing an external light source, a collimating 
lens, a diffraction grating, and a CMOS chip of a smartphone as a detector. The 
construction allows the device to function with an optical bandwidth of 300 nm (from 400 
to 700 nm) and its resolution of 0.26 nm/pixel. It can be used both for measuring the 
absorption, transmission emission spectrum. As a proof of concept, the optical sensor 
using smartphone is then applied to investigate concentration of methylene blue (MB), a 
reactive dye in wastewater from textile industry. Despite of its cost-effectiveness, the 
sensor exhibits reliable results, which can be considerably comparable with that of 
laboratory instrument. 

Keywords: Optical sensor, smartphone, absorption, methylene blue. 
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1. INTRODUCTION 

In recent years, there has been an increased interest in the development of simple, light- 
weight, low-cost, portable and rapid detection devices for applications related to clinical 
diagnosis, health care and environmental monitoring 1–3. The combinations of portable 
mobile devices with internet connectivity, touch screen displays, high resolution cameras, 
and high-performance CPUs have facilitated the development of a new device generation. 
These kinds of devices are not only suited for scientific research but also for daily work 
which normally does not require dedicated instruments and laboratory conditions for 
sensing, detection and analysis. Since smart phones are ubiquitous, thus, integrating 
detecting smart phones into devices is a promising approach for the creation of a detection 
device for public health and environmental protection. As a result, many research groups 


