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2.4.4. Complex set 

In high school, a complex number is defined by giving its form (ᾀ =  ὥ +  ὦὭ;  ὥ, ὦ ∈
ℝ) with the appearance of an imaginary number Ὥ that satisfies Ὥ = −1. 

In algebraic structure, the complex set  ℂ  is constructed from the set ℝ =
{(ὥ, ὦ)|ὥ, ὦ ∈ ℝ}  with the addition and multiplication operations defined: For all 
(ὥ, ὦ), (ὧ, Ὠ) ∈ ℝ  we have  

(ὥ, ὦ) + (ὧ, Ὠ) = (ὥ + ὧ, ὦ + Ὠ);  (ὥ, ὦ). (ὧ, Ὠ) = (ὥὧ − ὦὨ; ὥὨ + ὦὧ).  

The set ℝ  together with the two operations is a field, which is called a complex field ℂ. 

It is clear that the map   Ὢ: ℝ → ℂ, ὥ ↦ (ὥ, 0). 

is a field monomorphism. Hence, we can identical element  ὥ ∈  ℝ  with element 
(ὥ, 0) ∈ ℂ. This leads to ℝ ⊂ ℂ .  

Let Ὥ = (0, 1) ∈ ℂ . We have Ὥ = (0, 1). (0, 1) = (−1, 0) = −1 and every ὼ =
(ὥ, ὦ) ∈ ℂ can be written ὼ = (ὥ, ὦ) = (ὥ, 0) + (0, ὦ) = (ὥ, 0) + (ὦ, 0). (0, 1) = ὥ + ὦ. Ὥ. 

From the perspective of field extension theory, ℂ  is a simple extension of ℝ  with 
algebraic element Ὥ on ℝ, that is, ℂ = ℝ(Ὥ). 
3. CONCLUSION 

In this article, I present an explanation for solutions to product equation with a variable, 
first-degree equation with an unknown, problems of finding differences between two 
numbers or construction of number sets from the perspective of algebraic structures. 
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XEM XÉT MỘT SỐ BÀI TOÁN SƠ CẤP DƯỚI GÓC NHÌN                        
CỦA CÁC CẤU TRÚC ĐẠI SỐ 

Tóm tắt: Bài viết này xem xét bản chất của một số bài toán sơ cấp dưới góc nhìn của cấu 
trúc đại số nhóm, vành, trường, từ đó giải thích cơ sở lí luận cho lời giải của bài toán đó. 
Từ khóa: Cấu trúc đại số, bài toán sơ cấp, mở rộng trường. 
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1. INTRODUCTION 

In recent years mathematicians have been interested in studying the application of 
probability models to Artificial Intelligence (AI). This is because of the probability of having 
great applications in AI and life. The main researching areas are generalizations of using 
probabilities in AI or using probabilities for specific issues of AI. For example, M. Kukacka 
[2] gave an overview of Bayesian Methods in Artificial Intelligence; Sunghae [6] has studied 
a probability learning model for constructing artificial minds; Credit risk analysis using 
machine and deep learning models was introduced by Peter and others [4],…  

In this paper, we have applied the probability for AI. This work is built as follow: in 
Section 2, Bayesian models for AI and their application are presented. The Linear regression 
models in prediction are established in Section 3. In the last Section, Section 4, conclusion 
is presented. 

2. CONTENT  

2.1. Bayesian models for AI 

2.1.1. Bayesian rule and applications 

 1. Bayesian rule 

 Assume that events {Ὄ }  form a partition of the sample space Ω, i.e.  
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Ω =  Ὄ ,  Ὄ ∩ Ὄ =  ∅, Ὥ ≠ Ὦ.  

 Then an event ὃ in Ω, we have 

ὖ(Ὄ |ὃ) =
ὖ(Ὄ )ὖ(ὃ|Ὄ )

∑ ὖ(Ὄ )ὖ(ὃ|Ὄ ) , Ὥ = 1, 2, … , ὲ.  

 Applying Bayesian rule, we can solve many problems of AI that have  applications in 
real-life. 

 2. Some examples 

 Example 1. In a factory machines (I), (II) and (III) are all producing springs of the same 
length. Of their production, machines (I), (II) and (III) produce 2%, 1% and 3% defective 
springs, respectively. Of the total production of springs in the factory, machine (I) producces 
35%, machine (II) producces 25%, machine (III) producces 40%.   

 If one of the factory's springs is randomly selected, the possibility of obtaining a spring 
is made by which machine. 

 Solution 

 Call A, B, C as random events to choose the spring made by machines (I), (II) and (III) 
produce. Then {A, B, C} form a complete system. 

Let H be an incident that selects a factory product. 

 We have ὖ(ὃ) = 0.35;  ὖ(ὃ) = 0.35;  ὖ(ὃ) = 0.35;  ὖ(Ὄ|ὃ) = 0.02;  ὖ(Ὄ|ὃ) =
0.02;  ὖ(Ὄ|ὃ) = 0.02. 

If one spring is selected at random from the total springs, the propability that it is 
defected equals: 

ὖ(Ὄ) = ὖ(ὃ)ὖ(Ὄ|ὃ) +  ὖ(ὄ)ὖ(Ὄ|ὄ) +  ὖ(ὅ)ὖ(Ὄ|ὅ) = 0.0218.  

Applying Baysian rule, we get 

ὖ(ὃ|Ὄ) =  
ὖ(ὃ)ὖ(Ὄ|ὃ)

ὖ(Ὄ) =
70

215 ; 

ὖ(ὄ|Ὄ) =  
ὖ(ὄ)ὖ(Ὄ|ὄ)

ὖ(Ὄ) =
25

215 ; 

ὖ(ὅ|Ὄ) =  
ὖ(ὅ)ὖ(Ὄ|ὅ)

ὖ(Ὄ) =
120
215. 

 

So most likely the spring obtained by the machine (III). 
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Example 2. The probability of a certain medical test being positive is 90%, if a patient has 
flu. 1% of the population has the disease, and the test records a false positive 5% of the time. If 
a man in that region received a positive test, how much is his probability of having flu? 

Solution. 

Let H be the event of selecting a person who has the flu in that area. 

Let A be the positive test event for a person with the flu in that area. 

By hypothesis, we have  

ὖ(Ὄ) = 0.01; ὖ(ὃ|Ὄ) = 0.90;  ὖ(ὃ|Ὄ) = 0.05.   

Because events {Ὄ }  form a partition of the space Ω, so we get: 

ὖ(ὃ) = ὖ(Ὄ)ὖ(ὃ|Ὄ) + ὖ(Ὄ)ὖ(ὃ|Ὄ) =  0.0585.  

Applying Bayesian rule, we have 

ὖ(Ὄ|ὃ) =
ὖ(Ὄ)ὖ(ὃ|Ὄ)

ὖ(ὃ) =
0.01 × 0.9

0.0585 = 0.15  

So if a man in that region received a positive test, then his probability of having flu is 0.15. 

2.2. Bayesian netwwork 

Bayes networks have many applications in AI. Here, we present some basis for Bayes 
networks application in AI. 

1. Definition. A Bayesian network (BN) is defined by the following elements [2]: 

• A set of nodes, where each node represents a single variable;  
• A set of directed connections on these nodes, forming a directed acyclic graph, where 

a link specifies a dependence relationship between variables;  

• A conditional probability table (CPT) for each node in the graph, specifying a 
probability distribution of the corresponding variable conditioned by its parents in the graph 
(i.e. ὖ(ὢ |ὖὥὶὩὲὸί (ὢ ))).  

We can retrieve the probability of any event in a system described by a Bayesian 
network using the following formula: 

ὖ(ὼ , … , ὼ ) = (ὼ |Parents(ὢ )),  

where parents(ὢ ) denotes the specific values of the ὢ  ’s parent variables. This implies that 
the Bayesian network fully describes the full joint distribution of the system. 

 2. Some rules of Bayesian networks 
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Let ὃ, ὄ, ὅ are random variables. We say that  ὃ and ὄ independent with given ὅ, if we 
know ὅ, evidence of ὄ does not change the likelihood of ὃ. 

If  ὃ and ὄ independent given ὅ then  ὖ(ὃ|ὄ, ὅ) =  ὖ(ὃ|ὅ).  When we have 

i) ὖ(ὄ|ὃ, ὅ) =  ὖ(ὄ|ὅ); 
ii) ὖ(ὃ, ὄ, ὅ) =  ὖ(ὃ|ὅ)ὖ(ὄ|ὅ)ὖ(ὅ); 
iii) Graphs of  ὃ, ὄ and ὅ as following: 

+ Undirected graphs 

 

+ Directed acyclic graphs  

 

3. Example of causal models 

We can use graphical to represent causal models. Let Ὁ, ὅ, Ὂ, Ὓ, Ὄ are random variables, 
where E: electric; C: cigaratte; F: fire; S: smoke; H: heat.  

We know that, fire can be caused by an electrical problem or by a cigarette. Smoke and 
Heat are results of firing. 

Smoke and Heat is the consequence of burning. Therefore, we have the following causal 
model: 

 

Now we consider a problem: Let we have a graphical model: 

C

BA

F

S H

CE

C

BA

C

BA
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Each factor is described by a conditional probability table 

 

Calculate the probability of fire when smoke has occurred. 

Solution. 

From the hypothesis, we have 

ὖ(Ὂ) = 0.1
ὖ Ὂ = 0.9,     

ừ
Ử
Ừ

Ử
ứὖ Ὓ Ὂ = 0.01

ὖ Ὓ Ὂ = 0.99
ὖ(Ὓ|Ὂ) = 0.9
ὖ Ὓ Ὂ = 0.1,

  

ừ
Ử
Ừ

Ử
ứὖ Ὄ Ὂ = 0.001

ὖ Ὄ Ὂ = 0.999
ὖ(Ὄ|Ὂ) = 0.99
ὖ Ὄ Ὂ = 0.01.

 

The probability of fire and smoke is 

ὖ(Ὓ, Ὄ) = ὖ(Ὂ, Ὓ, Ὄ) =  ὖ(Ὄ|Ὂ)ὖ(Ὓ|Ὂ)ὖ(Ὂ)  

    = ὖ(Ὄ|Ὂ)ὖ(Ὓ|Ὂ)ὖ(Ὂ) +  ὖ Ὄ Ὂ ὖ(Ὓ|Ὂ)ὖ(Ὂ) 

    = 0.9 × 0.99 × 0.1 + 0.90 × 0.01 × 0.1 

    = 0.09. 

 The probability of seeing smoke is 

ὖ(Ὓ) = ὖ(Ὂ, Ὓ, Ὄ) =  ὖ (Ὄ|Ὂ)ὖ(Ὓ|Ὂ)ὖ(Ὂ) 

           = ὖ(Ὄ|Ὂ)ὖ(Ὓ|Ὂ)ὖ(Ὂ) +  ὖ Ὄ Ὂ ὖ(Ὓ|Ὂ)ὖ(Ὂ) +   

                         + ὖ Ὄ Ὂ ὖ Ὓ Ὂ ὖ Ὂ +  ὖ Ὄ Ὂ ὖ Ὓ Ὂ ὖ Ὂ =  0.99 × 0.9 × 0.1 +
0.01 × 0.9 × 0.1 + 0.001 × 0.01 × 0.9 + 0.999 × 0.01 × 0.9 = 0.099. 

  So the probability of fire if we see smoke it is defined 

HS

F
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ὖ(Ὂ|Ὓ) =
ὖ(Ὂ, Ὓ)

ὖ(Ὓ) =  
0.09

0.099 = 0.92 

2.3. Some linear regression models for AI 

Linear regression can be applied in AI [6]. In this section we will build linear regression 
models and get some illustrative examples. 

2.3.1. Linear regression models for AI 

 We observe paired data points {(ὼ , ώ  )} , where assume that as a function of ὼ , each 
ώ  is generated by using some true underlying line ὣ =  +  ὢ  that is evalute at ὼ . 
Formally, 

ώ =   +  ὼ + ‐ , Ὥ = 1, … , ὲ. (3.1) 

 We will model ‐  as being Gaussian: ‐~ὔ(0, „ ).  We find  ,   by solving the 
following optimization problem: 

άὭὲ , [ώ − ( +   ὼ )] . (3.2) 

 Given a set of points {(ὼ , ώ  )} , the solution is [6]: 

 =
ὢὣ − ὢ ὣ

ὢ − (ὢ)
= ὶ

ὓὛ
ὓὛ

, 

 = ὣ −  ὢ, 

 

where 

ὓὛ = ὢ − ὢ , ὓὛ = ὣ − ὣ , ὢὣ =
∑ ὼ ώ

ὲ , ὢ =  
∑ ὼ

ὲ , ὣ =  
∑ ώ

ὲ .  

 Example 1. On 100 field plots of the same size, people apply different amounts of 
fertilizer. Then, study the relationship between fertilizer and yield. The result is given in the 
table below (X is the amount of fertilizer, Y is the yield). 

            X 
Y 
 

1 2 3 4 5 

14 10 8    
15  12 7   
16   28 6  
17    8 9 
18     12 

a) If the amount of manure is 3.44, what is the estimate yield? 

b) Estimate yield if the amount of fertilizer is 5.65. 
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Solution. We have 

ὼ = 1 × 10 + (8 + 12) × 2 + (7 + 28) × 3 + (6 + 8) × 4 + (9 + 12) × 5 = 316. 

ὢ =
∑ ὼ

ὲ =
316
100 = 3.16. 

ώ  = (1 + 8) × 14 + (12 + 7) × 15 + (6 + 28) × 16 + (8 + 9) × 17 + 12 × 8

= 1586. 

ώ =
∑ ώ

ὲ =
1586
100 = 15.86. 

ὼ = 1154; ώ = 25308; ὼ ώ = 5156; 

100 ὼ ώ −  ὼ ώ = 14424; 

ὓὛ = 100 ∑ ὼ − ∑ ὼ =124.67; 

ὓὛ = 100 ∑ ώ − ∑ ώ =124.11; 

Ὓ Ὅὶ =
14424

124.67 × 124.11 = 0.93. 

So we get 

ὣ =  +   ὢ ⇒  ὣ = 12.93 + 0.93ὢ. 

a) If  ὢ = 3.44 then  ὣ = 16.13; 
b) If  ὢ = 5.65 then  ὣ = 18.19. 
Example 2. The same pill was given to 5 patients of different ages. Study the time to 

completely disintegrate the drug in each person's body. Specific results are as follows: 

ὢ: age  
(year) 

ὣ: Decomposition time 
(minute) 

30 15 
25 28 
65 30 
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50 22 
40 24 

a) What conclusions can be drawn about the relationship between the time of drug 
decomposition and ages. 

b) What is the time predict for drug decomposition by 42 years old? 

Solution. 

 We have 

ὼ = 210; ὼ = 119; ὼ ώ = 5160; ὼ = 9850. 

 =
ὲ ∑ ὼ − ∑ ὼ ∑ ώ

ὲ ∑ ὼ − (∑ ὼ ) =
5 × 5160 −  210 × 119

5.9850 −  210 = 0.16; 

 =
∑ ώ −  ∑ ὼ

ὲ =
5 × 5160 −  210 × 119

5.9850 − 210 = 17.08. 

  So we get 

ὣ = 17.08 + 0.16ὢ. (3.3) 

 By (3.3) we say that 

a) Every 10 years of age, the decomposition time will increase by 1.6 minutes. 

b) The time for decomposition of 42-year-old patient is 23.8 minutes. 

2.3.2. Multiple linear regressions 

 Let ὣ, ὢ , … , ὢ  are ὴ radom variables, where ὴ ∈ ╝∗, ὴ > 2.  We find linear model of 

ὣ for ὢ , … , ὢ  as following: 

Ὢ (ὢ , … , ὢ ) =   +   ὢ + ⋯ +   ὢ , 

which observation matrix 

ὣ  
ὣ  
…
ὣ

 
ὢ
ὢ
…

  ὢ
  

ὢ
ὢ  

…
 ὢ

…
…
……

  ὢ
  ὢ

…
  ὢ

. 

We get regression model 

ὣ =   +  ὢ + ⋯ +  ὢ +  ‐ , (3.4) 

where ‐ ~ὔ(0, „ ). 
 Let 
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ὣ =  [ὣ , … , ὣ  ] ;  ὢ =  
1
1
…
1

 
ὢ
ὢ
…

  ὢ
  

ὢ
ὢ  

…
 ὢ

…
…
……

  ὢ
  ὢ

…
  ὢ

; ὢ =  ὢ , … , ὢ  , Ὦ

= 2, … , ὴ; 

(3.5) 

 =   , … ,   ;  ‐ =  [‐ , … , ‐  ] .                                                                             

ὣ =  [ὣ , … , ὣ  ] ;  ὢ =  
1
1
…
1

 
ὢ
ὢ
…

  ὢ
  

ὢ
ὢ  

…
 ὢ

…
…
……

  ὢ
  ὢ

…
  ὢ

; ὢ =  ὢ , … , ὢ  , Ὦ = 2, … , ὴ; 

Using notations (3.5) and (3.6), we can write model (3.4) as following: 

ὣ = ὢ +  ‐.  

To determine   we have to solve the optimization problem 

άὭὲ (ώ − ὢ )  (3.7) 

We can use some basic linear algebra to solve this problem and find the result: 

  = (ὢ ὢ) ὢ ὣ.  (3.8) 

Example 3. A Corporation has 21 stores in provinces and cities. Let ὣ be the revenue of 
the Corporations (103USD), ὢ  is the population (thousand), ὢ  is the average income per 
person (103 USD) in the provinces and cities where the business is located. Assume the 
following table of business data is available: 

Provinces and 
cities 

ὢ  
(Thousand)  

ὢ  
(103USD) 

ὣ 
(103USD) 

1.  68.5 16.7 174.4 
2.  45.2 16.8 164.4 
3.  91.3 18.2 224.2 
4.  47.8 16.3 154.6 
5.  46.9 17.3 181.6 
6.  66.1 10.2 207.5 
7.  49.5 15.9 152.8 
8.  52.0 17.2 163.2 
9.  48.9 16.6 145.4 
10.  38.4 16.0 137.2 
11.  87.9 18.3 241.9 
12.  72.8 17.1 191.1 
13.  88.4 17.4 232.0 
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14.  42.9 15.8 145.3 
15.  52.5 17.8 161.1 
16.  85.7 18.4 209.7 
17.  43.1 16.5 146.4 
18.  51.7 16.3 144.0 
19.  89.6 18.1 232.6 
20.  82.7 19.1 224.1 
21.  52.3 16.0 166.5 

Predict the revenue of this Corporation. 

Solution. 

Use model (3.4) which ὴ = 3 to solve this problem. 

We have 

ὢ =  
1   
1   
…

 

1   

68.5
42.2

…
52.3

     16.7
     16.8

     …
     16.0

; ὣ =  
174.4
164.4

…
166.5

. 

After calculating we obtained 

ὢ ὢ =  
21.0 1302.4 360.0

1302.4 87707.9 22609.2
360 22609.2 6190.3

, ὢ ὣ =  
3820

249643
66073

, 

(ὢ ὢ) =  
29.5740 0.0718 −1.9820
0.0718 0.00037 −0.0055

−1.9820 −0.0055 0.1356
 

And 

 = (ὢ ὢ) ὢ ὣ =  
−68.609

1.455
9.488

. 

So we have the result  

ὣ = −68.609 + 1.455ὢ + 9.488ὢ . (3.9) 

From (3.9) we can predict the results: 

a) If the average income is constant and the population increases by one thousand 
people, the sale turnover of the Corporation increases by 1455 USD; 

b) If the population is constant and the income per capita increases by one thousand 
dollars, the sale turnover increases by 9488 USD. 

3. CONCLUSION 


