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PHUONG PHAP FLAPW VA UNG DUNG NGHIEN CUU
TINH THE Gd: CAU TRUC PIEN TU VA TiNH BEN VUNG
CUA CAC PHA TU FM VA AFM

Tém tit: Mo ta va hiéu biét vé cau tric dién tir va thude tinh tir tinh cia gadolinium la maot
van dé day thir thach. Ddc biét, cdu triic tir bén vitng nhdt cia Gd da gay nhiéu tranh ludn
trong mot thoi gian dai. Trong bdo cdo nay, phuong phap thé toan phan song phang gia
tang dwoc gidi thiéu dé nghién citu cac tinh cht ciia Gd. Do cdc trang thdi f dinh xir rat
manh, phép tinh cé thé cho két qua rat la ling phu thudc vao tham sé dinh nghia khéc
nhau. Viéc tinh toan bao g5m cac mo hinh 4f-core va 4f-band dwoc thuc hién. Phan tich
cdu tric dién tir va dg én dinh pha tie dwoc trinh bay va thdo lugn. T Gt ca cac két qua la
phil hop tuyét voi véi cdc két qua thuwe nghiém va bdo cdo Iy thuyét truée do.

Tir khod: Cdu triic Gd bén viing, cdu triic, mé hinh f-16i, mé hinh f-band, mé hinh f héa
tri, phuwong phap FLAPW.
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Abstract: The asymptotic behavior of the elastic scattering amplitude by the
exchange of graviton between two scalar particles at high energies and fixed
momentum transfers is reconsidered in the Logunov-Tavkhelidze equation in the
linearized gravitational theory. The corrections to the eikonal approximation in the
quasi-potential approach of relative order 1/p is developed with the principal
contributions at high energy. The eikonal expression of scattering amplitude and
the formal first correction are derived. The Yukawa potential is applied to discuss
the results.
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1. INTRODUCTION

The eikonal approximation (which is also called straight-line path approximation) is an
effective method of calculating the scattering amplitude at high energies and is studied by
many authors in quantum field theory [1-4], and in quantum gravity theory recently [5-13].
However, in different approaches, only the main term of amplitude was considered, while
the first correction does not have an explicit solution. Researches [9,10] in which the path-
integral method with a modified perturbation theory and Logunov-Tavkhelidze quasi-
potential are used to give the analytic expression of the first correction. Thus, the advantage
of the quasi-potential approach is affirmed and need to be studied more deeply.

The aim of this paper is to make a more detailed investigation of the quasi-potential
approach by solving the quasi-potential equation [9-10] to find the eikonal scattering
amplitude and the first correction at high energies and minor momentum transfers.

The paper is organized as follows. In section 2.1, an eikonal approximation for the
scattering amplitude and the first correction are derived by using a quasi-potential approach
in the coordinate representation. This result is applied to the Yukawa potential in section 2.2.
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The last section, we draw our conclusion.

2. CONTENT
2.1. Correction terms of scattering amplitude

First, we will derive homogenous equation for one-time wave function of an interactive
two scalar particle system. To do this, we start from 4-time Green function G, (x, y;x',»")

which must be satisfied the Bethe-Salpeter equation [14], and can be written down in a
symbolic form [14,15].

= + : =(@), (1)

where  is the Green function of free particles, and the kernel K can be found by the
perturbative method.

Solving (1) by using the reduction technique with a relation between the 2-time Green

function and 4-time Green function , following the procedure of ref. [16], we have an
explicit equation for the 2-time Green function in momentum representation.

(';)('11)_1 (,’1)(11):(_') (2)

where ( ; )=(C + — ) + ,and (', , ) is a potential
matrix.

From (2) and the relation (,,)= (; ., ) (; ,)between the I-time

wave function and the 2-time Green function, the homogenous equation of 1-time wave
function will be

VI(p—-q—)E] ()
m? +

( — + ) ()=Jdg— €)

Considering Eq. (3) in the coordinate representation with a purely imaginary local quasi-

potential ( ; )= ( )in which ( )is a smooth positive function and =] |. At
high energies and small scattering angles, wave function ( ) can be written in the
foom ()= (), () = 1. By the way of expanding terms in inverse

powers of momentum, and keeping only terms of the order 1/p takes the form, the solution
of Eq. (3) will be [ 18,19]

OO 1
2

():eXp— (") '_2_ ()(’,) " (4)

where
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2"(p.2)= 2" (p.2) =0 (p)s [ 2" (p.20dz'= [ 77 (p,2) ="+ 260(2)y(p)
Z(O) ZV(I"), }[(l) =—3|:an(7") _v(r)z _nl(?av)]s 77¢(}7:7Z) :—IVi}[(p,Z')dZ'-F(J‘ Vl}[(p,Z')dZ'J :

The scattering amplitude is related to the wave function as follows
;) () (5)

where, =( — ) = + =— and =—+ — .

Substituting (4) into (5) and integrating by part, we obtain

()= OC:)+— OC )+ (6)
where the eikonal approximation for the amplitude is
1
O : )y=-2 —— (5 ¢ -y, 7)
@) (

and the first correction in this approximation
OC )
=2 3 () ()

(2 ) 1 1
_ 5o 7
+f (.) J .y 75 )

Using method of integration by part [9] and quasi-potential approach in the momentum
representation [10] these results (7), (8) can also be found.

Now, let us consider the case where momentum transfers t = 0 and the quasi-potential

has the Gaussian form ( ; )= sge*, = — which the corresponding form in the
coordinate representation is
()= / /-, 9)
Since =A +A =0, it follows = 0. Substituting (9) into (8), and noticing that on

the mass shell = - v, the first correction term will be
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v e
(10

x (Y "ep2 () "-ep2 () ', )

= — / =1 -1
Where2 =-—4 ) ()_V4_ .

The similar result Eq. (10) is also found by the Born approximation in momentum
representation [7].

2.2. Asymptotic behavior of the scattering amplitude at high energies

In the previous section, the general form of the scattering amplitude of two scalar
particles is found in the potential ( ; ).

Now, let us consider a particular example in which the graviton exchange’ [9] the quasi-

potential increases with energy (, ) = ( ~2 ). Substituting this Yukawa
potential into (7), (8) and noticing that at high energies, Vv, we find the leading
term of the scattering amplitude
O+ ) - O+ O (1
2) - 2(2) 3(2)
and the first correction term
O Y=o O O (12)
) (2)
Where
1 1- 1-4 -~
R T 13)

! The model of interaction of a scalar “nucleons” with a gravitational field in the linear approximation to

() ()= )+  ()+ () where
C()=- )y O)- () ()y=—7- 0) ()

()= () H)-—- () )- ();and () is the energy momentum
tensor of the scalar field. The coupling constant x is related to the Newton constant of gravitation G by =
32 =32 . =1,6.10 is the Planck length.
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()= ! In (14)
= " T =

These results (11), (12) have similar forms in [9]. Moreover, from these equations
we see that the first correction term of the eikonal expression of the scattering amplitude at
high energies and fixed momentum transfers increases rapidly in the linearized gravitational
theory. Comparison of these above potentials has made it possible to draw the following

conclusions: in the model with the scalar exchange, the total cross section o, decreases as

(1/s), and only the Born term predominates in the entire eikonal equation; the vector model

leads to a total cross section o, approaching a constant value as s — oc, (#/s) — 0. In both

cases, the eikonal phases are purely real and consequently the influence of inelastic scattering
is disregarded in this approximation, ¢ =0 . In the case of graviton exchange the Froissart
limit is violated. A similar result is also obtained in Ref. [20] with the eikonal series for
reggeized graviton exchange.

3. CONCLUSION

The asymptotic behavior of the scattering amplitude at high energies and fixed
momentum transfers has been studied within a quasi-potential approach in the coordinate
representation in the linearized gravitational theory. The obtained results of eikonal
expression of the scattering amplitude and the corresponding first correction term coincide
with the results found by other authors [9-10]. The Yukawa potential has been used to
concretize the results.
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