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KHẢO SÁT CÁC ĐẶC TRƯNG ĐIỆN HÓA CỦA                            
PIN LITI-ION THƯƠNG MẠI DẠNG TRỤ 

Tóm tắt: Pin liti-ion thương mại dạng trụ, kiểu dáng 26650, có dung lượng danh định 
4000 mAh đã được tháo dỡ phục vụ nghiên cứu cấu trúc và thành phần cấu tạo của vật 
liệu điện cực. Các phép phân tích nhiễu xạ tia X (X-ray), hiển vi điện tử quét (SEM), phổ 
tán xạ năng lượng tia X (EDX) cho thấy vật liệu dương cực là hỗn hợp của các ôxít 
LiMn2O4 và LiMO2 (M = Mn, Co, Ni), vật liệu âm cực là graphit. Vật liệu dương cực được 
cấu tạo từ các hạt ôxít tương đối đồng đều với đường kính trung bình trong khoảng từ 1-
3 µm, vật liệu âm cực là các hạt graphit với đường kính trung bình khoảng 10 µm. Dung 
lượng xả của pin ở chu kỳ đầu tiên là 3820 mAh (tương ứng khoảng 95,5% dung lượng 
danh định). Dung lượng pin giảm dần trong các chu kì phóng, nạp tiếp theo. Hiệu điện thế 
hoạt động trung bình của quá trình phóng là 3.7 V, giá trị này tương đồng với hiệu điện 
thế hoạt động danh định của pin. 

Từ khóa: Pin liti-ion, pin thương mại, vật liệu âm cực, vật liệu dương cực, hợp chất liti. 
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Abstact: Description and understanding of electronic structures and magnetic properties of 
gadolinium Gd have been challenging. Especially, its magnetic phase stability of gadolinium 
has been in debate for a long time. In this report, the precise all-electron full-potential 
linearized augmented plane wave (FLAPW) method is introduced to study properties of Gd. 
Due to strongly localized f-states, the calculation may lead to weird results depending on 
defined parameters. The calculations including both 4f-core and 4f-band models are 
performed. The analysis of the electronic structure and magnetic phase stability are shown 
and discussed. All the results are good agreement with available experiments and previous 
theoretical reports.  
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1. INTRODUCTION  

In modern material science, the economy-efficient approach to explore is using the 
density functional theory [1] proposed by Honhenberg, Kohn and Sham. The core of the 
theory is Kohn – Sham equation (in atomic unit) [2],  

− + ὺ(ὶ⃗) + ( ⃗ )
| ⃗ ⃗ |

Ὠὶ⃗′ + ὺ [”(ὶ⃗)]  = ‐  , (1) 

”(ὶ⃗) = ὲ 〈 | 〉, (2) 

is electron density, n the occupation number, vxc[ρ]=δExc[ρ]/δρ the exchange-corelation 
potential, and v the external potential. One can solve this equation self-consistenly [3]. The 
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seft-consistently converged solution obtained gives us information of the ground states, e.g. 
eigenvalues εi, total energy, forces, and etc. [3] Nevertheless, this task is very demanding 
and the method to solve is still being developed in different ways, e.g. to deal with exchange 
correlation potential [4–6] and to develop numerical methods. Practically, when working on 
a magnetic system, many local minima may occur basically which infer multi-solutions. 
Some of the solutions are therefore unphysical meaning. Especially, in the case of strongly 
localized system such as Gd bulk (the well-known rare earth materials), the calculations may 
contain gosh states which originate from the strongly localized f states. As in general, the 
electron-nuclear interaction is given by the bare Cloulomb interaction whereas exchange 
correlation is very tough to describe. The strongly localized f states affect drastically in both 
of them. There are two classes of electrons: valence electrons (participate actively in 
chemical bonding), and core electrons (tightly bound to the nuclei, do not participate in 
bonding and to be treated as frozen orbitals). There is a third class of electrons called semi-
core electrons. The f electrons usually are in this class. Its wave functions polarizes. There 
are two way to treat the problam: pseudopotential methods and all-electron methods. The 
precise all-electron full-potential linearized augmented plane wave (FLAPW) method is one 
of the most precise all electron method  [3–5]. In this report we will present some matrix 
elements within FLAPW method. The exchange correlation potential will be treated by using 
local density approximation (LDA) [7]. The numerical results will be shown and discussed. 

2. CONTENT  

2.1. Hamiltonian matrix in FLAPW method 

To solve Kohn-Sham equation, orbitals ψ are written as a linear combination of a 
complete basis set, i.e. 

 (ὶ⃗) = ὧ • (ὶ⃗). (M is dimension of the basis orbitals) (3) 

For the specific basis set ϕ, in FLAPW, it is chosen by deviding space into interstitial 
and muffin-tin regions (here we are interested in 3D bulk calculations, if 2D oe 1D needed 
vacuum should be included) [3] 

•
⃗

=

ừ
Ử
Ử
Ừ

Ử
Ử
ứ 1

√ 
ὧ ⃗Ὡ ⃗ ⃗ ⃗

⃗

  in  the  interstitial region :  |ὶ⃗ − Ὑ⃗| > ὶ

ὥ , ⃗ (Ὁ )ό (ὶ) + ὦ , ⃗ (Ὁ )ό̇ (ὶ) ὣ (ὶ⃗ )
,

  

in  the ὥ tomic region muffin-tin ‘ :  |ὶ⃗ − Ὑ⃗| < ὶ

 (4) 
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In the muffin-tin region, these two radial wave functions are (i) the solutions of the radial 
Schrödinger equation, ul, solved at a fixed energy, El; (atom unit) 

−
Ὠ

Ὠὶ +
ὰ(ὰ + 1)

ὶ ό (ὶ) + ὠ(ὶ) − Ὁ ὶό (ὶ) = 0, (5) 

and (ii) their derivatives lu . Ylm are spherical harmonics and the coefficients alm and blm 

are determined by the requirement that the plane waves and their radial derivatives are 
continuous at the muffin-tin boundary. For the potential, there is no shape approximation 
assumed [3,8] 

ὠ(ὶ⃗) =

ừ
Ử
Ừ

Ử
ứ ὠ ⃗Ὡ ⃗ ⃗

⃗
                        interstitial

ὠ (ὶ)ὣ ὶ⃗          muffin-tin
, (6) 

Accordingly, hamiltonian and overlap matrices consist of two contributions from the 
two regions where space is divided, i.e. H=HI+HMT and S=SI+SMT in which I stands for 
“Interstitial” and MT “muffin-tin” 

Contribution of muffin-tins. Let denote the quantum states as follow: ὰά → ὒ;    ό ὣ →
• . The contribution of muffin-tin to the Hamiltonian and overlap matrices are is given by 
inserting Eqs. (3,4) into Eqs. (2) and (1) to obtain 

Ὄ ⃗ ⃗ Ὧ⃗ = Ὠὶ⃗ ὥ ⃗ Ὧ⃗ • (ὶ⃗) +

+ὦ ⃗ Ὧ⃗ •̇ (ὶ⃗)
∗

Ὄ ὥ ⃗ Ὧ⃗ • (ὶ⃗) + ὦ ⃗ Ὧ⃗ •̇ (ὶ⃗) , 

(7) 

Ὓ ⃗ ⃗ Ὧ⃗ = Ὠὶ⃗ ὥ ⃗ Ὧ⃗ • (ὶ⃗) +

+ὦ ⃗ Ὧ⃗ •̇ (ὶ⃗)
∗

ὥ ⃗ Ὧ⃗ • (ὶ⃗) + ὦ ⃗ Ὧ⃗ •̇ (ὶ⃗) , 

(8) 

These contain the following type of matrix elements 
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ὸ Ὧ⃗ = Ὠὶ⃗ • (ὶ⃗) ∗Ὄ • (ὶ⃗) (9) 

H can be splited into two parts, the spherical Hsp and the nonspherical contributions ὠ , 
i.e.  

Ὄ = Ὄ + ὠ  (10) 

Note that  
LL
,  can be chosen to diagonalize Hsp  

Ὄ • = Ὁ • , (11) 

Ὄ •̇ = Ὁ •̇ + • . (12) 

Taking inner product with 〈• |, 〈•̇ | respectively gives 

〈• Ὄ • 〉 = Ὁ   ,   〈• |• 〉 =   ,  (13) 

〈•̇ Ὄ • 〉 = 0,    〈•̇ |• 〉 = 0, (14) 

〈• Ὄ •̇ 〉 =   , 〈• Ὄ •̇ 〉 = 〈• Ὁ •̇ + • 〉 =
  , 

(15) 

〈•̇ Ὄ •̇ 〉 = Ὁ   〈ό̇ |ό̇ 〉 , 〈•̇ |•̇ 〉 =
  〈ό̇ |ό̇ 〉 . 

(16) 

It is noted that the potential is also expanded by using spherical harmonics, i.e. 

ὠ (ὶ⃗) = ὠ "(ὶ⃗)ὣ "(ὶ⃗)" . (17) 

Thus, hamiltonian matrix is obtained 

Ὄ ⃗ ⃗ Ὧ⃗ =

=

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ ὥ ⃗ Ὧ⃗

∗

ὸ ὥ ⃗ Ὧ⃗ + ὦ ⃗ Ὧ⃗
∗

ὸ ̇ ̇ ὦ ⃗ Ὧ⃗ +

+ ὥ ⃗ Ὧ⃗
∗

ὸ ̇ ὦ ⃗ Ὧ⃗ +

+ ὦ ⃗ Ὧ⃗
∗

ὸ ̇ ὥ ⃗ Ὧ⃗
Ứ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

 
(18) 

Where 
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ὸ = Ὅ " Ὃ "
"

"

+   Ὁ , 

 Ὃ "
" = ὣ∗ ὣ ὣ" "Ὠ  , 

Ὅ " = ό (ὶ)ό (ὶ)ὠ " (ὶ)ὶ Ὠὶ 

. 

(19) 

Similarly, the overlap matrix is  

Ὓ ⃗ ⃗ Ὧ⃗ = ὥ ⃗ Ὧ⃗
∗

ὥ ⃗ Ὧ⃗

+ ὦ ⃗ Ὧ⃗
∗

ὦ ⃗ Ὧ⃗ 〈ό̇ |ό̇ 〉  

(20) 

The interstitial contribution. Using basis function (4) for the interstitial region, the 
hamiltonian matrix is derived by noting that the kinetic energy is diagonal in momentum 
space and the potential is local, diagonal in real space and of convolution form in 
momentum space, 

Ὄ ⃗ ⃗ Ὧ⃗ = − ℏ |Ὃ⃗ + Ὧ⃗|  ⃗ ⃗ + ὠ Ὃ⃗ − Ὃ⃗′ ;   Ὓ ⃗ ⃗ =  ⃗ ⃗ , (21) 

The muffin-tin a- and b-coefficients are determined by expanding planewave into 
spherical harmonics using Rayleigh expansion, i.e. 

Ὡ ⃗ ⃗ = 4“ Ὥ Ὦ (ὶὑ)ὣ∗ ὑ⃗ ὣ (ὶ⃗), (22) 

where ὶ = |ὶ⃗|;   ὑ⃗ ≡ Ὃ⃗ + Ὧ⃗;   ὑ = |ὑ⃗|. The requirement of continuity of the wave 
functions at the muffin-tin boundary leads the coefficients a and b  [9] 

ὥ ⃗ Ὧ⃗ = Ὡ ⃗ ⃗ ὣ∗ Ὑ⃗ ὑ⃗ ό̇ (Ὑ )ὑὮ′ (Ὑ ὑ) −
ό̇′ (Ὑ )ὑὮ (Ὑ ὑ) , 

(23) 

ὦ ⃗ Ὧ⃗ = Ὡ ⃗ ⃗ ὣ∗ Ὑ⃗ ὑ⃗ ό′ (Ὑ )ὑὮ (Ὑ ὑ) −
ό (Ὑ )ὑὮ′ (Ὑ ὑ) , 

(24) 

With 
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ὡ = ό̇ (Ὑ )ό′ (Ὑ ) − ό (Ὑ )ό̇′ (Ὑ ). (25) 

The density therefore can be obtained by tanking inner product from Eq. (2) 

2.2. Numerical results 

In numberical calculation for Gd pristine crystal, we used hexagonal structure with 
lattice constants a =6.89 au and c=10.92 au. The star-function cut-off, Gmax, is 11.5. The 
plane-wave cut off Kmax is 3.8. The spin polarization has been included. For the k-point 
mesh, we use 17×17×9 Monkhorst-Pack grids. The initial spin polarization is provided by 
starting magnetic moments of 7.0μB and 7.0μB. At first, Gd-4f states are treated as core. In 
this model so-called 4f-core model, we vary the lattice constants a and c and calculate the 
corresponding total energies. The results are presented in FIG. 1. This calculation shows the 
equilibrium lattice constants, i.e. a = 6.79 au and c = 10.80 au. 

 

Fig. 1. (a) Crystal structure of Gd and (b) its energy mesh. The minimum value infers the 
equilibirum lattice constants. 

Table 1. Equilibrium lattice constants and total magnetic moments within 
LDA calculation in 4f-core model together with experimental result. 

 a(au)   μtot(μB) 
LDA 6.79 c(au) c/a 7.81 

Experiment 6.88 10.92 1.59 7.63 
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Fig. 2. Band structure calculation and Density of states within LDA calculation 
and 4f-core model 

As can be seen, in the 4f-core model, calculation using LDA gives slightly 
underestimated equiriblium lattice constants as it does [6,10]. The results still are very well 
consistent with experiments and theoretical reports earlier [11]. The magnetic moment has 
been reported to be 7.41μB whereas our result shows 7.81μB and the experiment result is 
7.63μB. Our calculated result is only 2.4% larger than the experimental value. 

 

Fig. 3. Band structure of Gd in 4f-band model with different Kmax values. 
Ghost states result in weird band structures. 

To continue, we examine the band structure of Gd. The results are presented in FIG. 2. 
As can be seen, 4f bands are disappeared from the valence band structure. It is well agreed 
with results reported of Ph Kurz et al. using all-electron FLAPW-FLEUR package [11].  
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In 4f-band model in which 4f electrons is treated as valence electrons, by using the 
experimental lattice constants, we found that some gosh states occur. These lead to weird 
results as shown in FIG. 3. These unrelevant results stem from chosing unappropriate 
parameters such as Kmax values and the gosh states appears during self-consistently solving. 

Therefore, the parameters invoked must be opted to be very careful. After a number of 
tests, here we present the calculations with Gmax= 11.5, Kmax=3.8. We obtained relevant 
results, as presented in FIG. 4 for LDA calculation  

 

Fig. 4. Band structure calculation and DOS within LDA calculation and 4f-band model 

As can be seen, within LDA calculation, Gd-4f states localize strongly at around -4.5 
eV from the Fermi energy for majority spin and right beside the Fermi energy for the 
minority spin. The latter alters the band near the Fermi energy thereby the chemical bonding 
and the phase stability of Gd crystal. To take into account the effect of on-site interactions 
from f bands, Hubbard U correction is adapted, i.e. LDA+U calculation with the correlation 
energies of Ud = 5.0eV; Jd = 1.0eV and  Uf = 7.7eV; Jd = 0.7eV  [11–17]. The calculated 
electronic band structure is presented in FIG. 5. As shown, the on-site interaction with U and 
J corrections pushes majority and minority spins away. The majority spin locates at ~ -10.3 
eV (deep) below Fermi energy. This explains why 4f-core model works for some cases, e.g. 
band structure as presented above, and 4f electrons play as semi-core electrons. The minority 
spin is at ~1.8eV above Fermi energy. The calculated results are excellent agreement with 
previous publications [11–14,18,19]. Note that all the calculations have been done by 
assuming that FM phase is stable. Next step, we will demonstrate that FM ordering is indeed 
stable. 
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Fig. 5. Band structure calculation and DOS within LDA+U calculation and 4f-
band model 

Table 2. Total energy (TE, in hatree) and energy differences, dE (in meV), 
between two phases FM and AFM 

 Approximation TE, AFM phase TE, FM phase 
dE(meV) 

=EFM-EAFM 

Calculation 1 
LDA 

LDA+U 
-22545.5176615281 
-22545.3641565677 

-22545.5173656716 
-22545.3677646254 

8.1 
-98.2 

Calculation 2 
LDA 

LDA+U 
-22545.5176887987 
-22545.3639499519 

-22545.5173456476 
-22545.3678762767 

9.3 
-106.8 

 

In order to do this, we carefully consider two sets of calculations. In calculation 1, lattice 
constants are taken from Shick et al.  [13] and we let x-axis be along [110] direction. Numer 
of states are 90 of which the highest state is about 54 eV above EF. In calculation 2, lattice 
constants are taken from Kurz et al. [11] and x-axis is along [010] direction. The number of 
states are 40 of which the highest state is about 19 eV above EF. Basically, these two results 
of calculations should not be much different. For each calculation, we align magnetic 
moments to be parallel each other for FM and antiparallel for AFM and fix them during the 
self-consistent process to search for the minimum energy within both LDA and LDA+U 
calculations. The total energies are obtained by solving Eq. (1). We tabulate the results in 
Table II. Indeed, there are not much different between the two results of calculations. 
Accordingly, the calculated results show that in LDA calculation, the AFM is more stable 
with 8~9 meV lower than those of FM. Hower, in LDA+U calculation, the FM phase is more 
stable with 98~107meV lower than those of AFM. Our results are well agreement with 
results of  Harmon el al.  [20] in which LMTO+ASA calculation had been performed. And 
they found that within LDA calculation the energy difference is 8.2meV/atoms with AFM 
stable. In LDA+U calculation, the difference is -56.4meV/atom with FM stable. Shick et 
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al. [13] also found that FM is stable with energy different of about 63 meV (even this number 
is not clearly indicated for specific configurations in the paper) using LDA+U calculation 
within all-electron method. Kurz et al. [11] by using FLAPW-FLUER packages also 
demonstrated that the AFM phase is more stable over FM with -69meV in LDA calculation 
whereas the FM becomes more stable with energy difference of 34meV in the LDA+U 
calculation. By using the self-consistent semi-relativistic TB-LMTO-ASA method, Jenkins 
et al.  [21] also argued that AFM is stable within LDA calculation with energy difference of 
9.2 meV per atom. In another work, they used FP-LMTO method to prove both LDA and 
GGA giving AFM stable whereas in LMTO-ASA method, LDA gives AFM stable and GGA 
gives FM stable, with the energy difference of about 6mRy  [22]. Petersen et al.  [23] also 
used pseudo-potential method implemented by VASP package to testify that the orbital 
moment is very small and in GGA-PBE scheme, the energy different is ΔE=-7meV/atom 
with AFM stable whereas in GGA+U, calculated energy diference is 69 meV/atoms with 
FM stable. Our calculated results are excellent agreement with all these publications. And 
also 4f bands should be treated as valence bands with the Hubbard correction included, i.e. 
+U implementation [13]. 

 

3. CONCLUSION  
FLAPW method is a very precise computational method to solve the modern material 

problems. It can well describe any system without shape approximation within atomic 
muffin-tin area, especially for dealing with the system with core structure, e.g. polarized 
wave functions. The use of input parameters should be very careful to obtain relevant results 
in the f compounds. The calculations applied for Gd show that Gd-4f can be treated either 
core, semi-core or valence states in some particular cases. The LDA scheme gives 
underestimated equilibrium lattice constants. Beyond this, it predicts excited f states to 
localize strongly near Fermi enery thereby the valence band close to Fermi level. Moreover, 
LDA calculation leads to AFM stable over FM phase whereas in LDA+U calculation, FM 
phase is more stable. This is reason giving rise to LDA+U implemented throughout the study 
and it should be invoked in studies of f-electron compounds. All the results from LDA and 
LDA+U calculations are well consistent with previous publications, especially for the proof 
of magnetic phase stability. 
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