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1. Introduction

Micro-beam resonators [1] are utilised in many Micro-
Electro-Mechanical Systems (MEMS) sensor applications 
for environmental monitoring [e.g., temperature (T), 
humidity (RH), pollutant gases] [2, 3]. The advantages 
of temperature and humidity MEMS sensors based on 
MEMS technology include a wide detection range, rapid 
resonant response, and high precision. However, in moist 
air, the detection of temperature and water vapour plays 
a pivotal role in many MEMS sensor applications for 
environmental monitoring [4]. 

In MEMS resonators, the quality factor is the 
primary outcome when micro-beam resonators operate 
at atmospheric pressure. External SFD is one of the 
significant damping sources of MEMS resonators as 

airflow is squeezed in the gap spacing between a micro-
beam and its surrounding substrate [5]. In addition, TED 
[6-9] and support loss [10] are other damping sources for 
micro-beam resonators. For micro-beam structures of 
resonators, three kinds of damping sources - SFD, TED, 
and support loss - which are more dominant than other 
damping sources, have been considered to accurately 
evaluate the quality factor of micro-beam resonators 
[11]. At atmospheric pressure, the quality factor of micro-
beam resonators is highly influenced by the effects of 
temperature (T) and humidity (RH) due to the increased 
viscous damping of moist air. Thus, the effects of 
temperature and relative humidity are crucial to discuss 
when aiming to improve the quality factor of micro-beam 
resonators since the transverse vibration of micro-beam 
resonators is significantly resisted by the SFD. 
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In gas rarefaction, atmospheric pressure (p=101325 
Pa) is introduced into a narrow air gap spacing (h0). Then, 
slip flow occurs on the micro-beam and substrate surfaces. 
Hence, the effect of gas rarefaction becomes significant 
on the dynamic performance of MEMS resonators, even 
at atmospheric pressure and ultra-thin gap spacing [11, 
12]. To account for the effects of temperature and relative 
humidity in atmospheric pressure and gas rarefaction, 
the effective viscosity of moist air (µeff=µ/Qp), which 
is defined as the ratio of the Poiseuille flow rate (Qp) 
[13] and the dynamic viscosity (µ) [14] of moist air, 
modifying the MMGL equation for the SFD problem. 
As a result, the influences of temperature and relative 
humidity on the quality factor of micro-beam resonators 
can be addressed in both atmospheric pressure and gas 
rarefaction. Existing literature has examined the effects of 
temperature and relative humidity on the quality factors 
of MEMS resonators under atmospheric pressure [15-19]. 
Consequently, the quality factor of micro-cantilevers is 
heavily influenced by temperature and relative humidity 
in the atmospheric environment. However, the effects 
of temperature and relative humidity of moist air on the 
quality factor of micro-bridge resonators in atmospheric 
pressure and gas rarefaction have not yet been considered. 

In this article, the impacts of temperature and relative 
humidity of moist air on the quality factor of micro-
bridge resonators in atmospheric pressure and gas 
rarefaction for environmental monitoring are studied. 
The MMGL equation is solved using the effective 
viscosity (µeff) for the SFD issue to consider the effects 
of temperature and relative humidity across a range of 
pressures, from atmospheric to gas rarefaction. Previous 
studies have only addressed the temperature and relative 
humidity concerning the resonant frequency and quality 
factor of micro-cantilevers [18, 19] in atmospheric 
pressure. However, the micro-bridge structure has not 
been explored and discussed to date. In this research, 
the quality factor of the micro-bridge resonator will be 
discussed and compared to enhance the quality factors 
of MEMS resonators in atmospheric pressure and gas 
rarefaction. The objective of this study is to examine 
the effects of temperature and relative humidity of moist 
air in order to optimise the quality factors of MEMS 
resonators based on the micro-bridge structure for 
environmental monitoring in both atmospheric pressure 
and gas rarefaction.  

2. Materials and methods
2.1. The modified molecular gas lubrication equation 

for air damping of micro-beam resonators

 

Fig. 1. Transverse vibration of micro-beam or micro-bridge 
resonators under air film damping. 

In Fig. 1, the micro-bridge structure is used to discuss 
the effects of temperature and relative humidity on 
the quality factor of MEMS resonators in atmospheric 
pressure and gas rarefaction. In a moist air environment, 
the transverse motion of micro-beam resonators is resisted 
by the air film damping with a certain gas film pressure 
( ( , , )p x y t ). The Poiseuille flow rate (QP) occurs in an 
ultra-thin gap spacing (h0). In this instance, an isothermal 
air squeeze film is assumed for all the edges of the 
rectangular micro-bridge. The micro-beam temperature 
is assumed to be the same as the ambient temperature 
(T=T0). A new MMGL equation [11] is utilised to model 
the SFD problem in order to obtain the pressure variations 
of the gas film as: 
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where pv is the water vapor partial pressure; p is the 
total pressure partial pressure; xv is the water vapor mole 
fraction; n𝑣 and n𝑎 are the water vapor and dry air mole 
numbers, respectively. 

The relative humidity (RH) of moist air [14] is given 
by: 
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where pv is the water vapor partial pressure; psv is the 
water vapor saturated pressure at a given temperature; xsv 
is the saturated water vapor molar fraction. 

The water vapor molar fraction (xv) can be calculated 
as:
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a given temperature; xsv is the saturated water vapor molar fraction.  

The water vapor molar fraction (𝑥𝑥𝑣𝑣) can be calculated as: 

𝑥𝑥𝑣𝑣 = 𝑓𝑓(𝑝𝑝, 𝑇𝑇) × 𝑝𝑝𝑣𝑣
𝑝𝑝 = 𝑓𝑓(𝑝𝑝, 𝑇𝑇) × 𝑅𝑅𝑅𝑅 × 𝑝𝑝𝑠𝑠𝑣𝑣

𝑝𝑝                         (5) 

with the total pressure (p) of moist air is given by: 

𝑝𝑝 = 𝑝𝑝𝑣𝑣 + 𝑝𝑝𝑎𝑎                                        (6) 

where pa is the partial pressure of dry air.  

The enhancement factors (f (p, T)) [20] are calculated by: 

𝑓𝑓(𝑝𝑝, 𝑇𝑇) = exp [𝛼𝛼 × (1 − 𝑝𝑝𝑠𝑠𝑣𝑣
𝑝𝑝 ) + 𝛽𝛽 × ( 𝑝𝑝

𝑝𝑝𝑠𝑠𝑣𝑣
− 1)]                              (7) 

with  

𝛼𝛼 = ∑ 𝐴𝐴𝑖𝑖 × 𝑇𝑇4
𝑖𝑖=1

(𝑖𝑖−1)                          (8) 

and 

𝛽𝛽 = 𝑒𝑒𝑥𝑥𝑝𝑝(∑ 𝐵𝐵𝑖𝑖 × 𝑇𝑇(𝑖𝑖−1)4
𝑖𝑖=1 )                 (9) 

where the numerical values of the coefficients in Eqs. (8) and (9) are: 𝐴𝐴1 = 3.53624 ×
10-4, 𝐴𝐴2 = 2.93228 × 10-5, 𝐴𝐴3 = 2.61474 × 10-7, 𝐴𝐴4 = 8.57538 × 10-9, 1 -10.7588,B 

𝐵𝐵2 = 6.32529 × 10-2, 𝐵𝐵3 = -2.53591 × 10-4, and 𝐵𝐵3 = 6.33784 × 10-7 in the 

temperature range between 0 and 100oC. 

The saturated vapor pressure (psv) [21] is expressed by  

𝑝𝑝𝑠𝑠𝑣𝑣 = 103 × 0.1 × 10𝑒𝑒                          (10) 

where 

𝑒𝑒 = 𝐸𝐸0 + 𝐸𝐸1 (1 −
273

𝑇𝑇+273) − 𝐸𝐸2 𝑙𝑙𝑙𝑙𝑙𝑙10 (
𝑇𝑇+273
273 ) + 𝐸𝐸3 (1 − 10−8.2969×(

𝑇𝑇+273
273 −1)) +

𝐸𝐸4 (104.76955×(1−
273

𝑇𝑇+273))                                  

and  

𝐸𝐸0 = 0.78614, 𝐸𝐸1 = 10.79574, 𝐸𝐸2 = 5.028, 𝐸𝐸3 = 1.50475 × 10−4, 𝐸𝐸4 =
0.42873 × 10−3. 

At atmospheric pressure, the dynamic viscosity of humid air (µ) [14] is 

calculated by:  

           
                     

 

5 
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and 
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At atmospheric pressure, the dynamic viscosity of 
humid air (µ) [14] is calculated by: 
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Also, Φ𝑎𝑎𝑣𝑣 and Φ𝑣𝑣𝑎𝑎 are calculated by   
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−0.5

× [1 + (𝜇𝜇𝑎𝑎𝜇𝜇𝑣𝑣)
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)
0.25

]
2
                (14) 
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2
                (15) 

where 𝛷𝛷𝑎𝑎𝑣𝑣 and 𝛷𝛷𝑣𝑣𝑎𝑎 are interaction factors for calculating 𝜇𝜇𝑎𝑎 and 𝜇𝜇𝑣𝑣, respectively; 

𝑀𝑀𝐴𝐴𝑖𝑖and 𝑀𝑀𝑉𝑉𝑖𝑖are interpolation constants for the dynamic viscosity of dry air and water 

vapor, respectively; Ma and Mv are the dry air and water vapor molar mass, respectively.  

For the effect of gas rarefaction, the Poiseuille flow rate (𝑄𝑄𝑃𝑃(𝐷𝐷)) [13] is derived 

for arbitrary inverse Knudsen number (D) with the accommodation coefficients of two 

surfaces (α1 = α2 = 1.0) by:   
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𝐷𝐷 = √𝜋𝜋
2𝐾𝐾𝑛𝑛

= √𝜋𝜋ℎ
2𝜆𝜆           (17) 

where h is the gap spacing. 

The mean free path of gas is estimated from the kinetic theory of gases [22] is 

expressed as:  

𝜆𝜆 = 𝑅𝑅𝑅𝑅
√2𝜋𝜋×𝑁𝑁𝑎𝑎𝑑𝑑2𝑝𝑝

                     (18) 

where d is the gas molecular diameter; R=8.314 (J/mol) is the gas constant; 𝑁𝑁𝑎𝑎 =
6.0221 × 1023 is Avogadro's number; M is the gas molecular weight.  

 (11)

where µa and µv are the dynamic viscosity of dry air and 
water vapor, respectively, as: 
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where d is the gas molecular diameter; R=8.314 (J/mol) 
is the gas constant; Na=6.0221×1023 is Avogadro’s number.  

From Eqs. (3), (7), and (18), the mean free path of 
moist air (λ) can be expressed by: 
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From Eqs. (3), (7), and (18), the mean free path of moist air (𝜆𝜆) can be expressed 

by:  

𝜆𝜆 = 𝜆𝜆0𝑝𝑝0′ 𝑇𝑇
𝑝𝑝𝑇𝑇0′

= 𝜆𝜆0𝑝𝑝0′ 𝑇𝑇
(𝑝𝑝𝑎𝑎+𝑅𝑅𝑅𝑅⋅𝑝𝑝𝑠𝑠𝑠𝑠)𝑇𝑇0′

 ,             (19) 

where 𝜆𝜆0 (=66.5 nm); 𝑝𝑝0
′  (=101325 Pa); 𝑇𝑇0

′ (=300 K) are the reference gas mean free 

path, reference pressure, and reference temperature, respectively.   

The effective viscosity (µeff) of moist air [11] is expressed by: 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇
𝑄𝑄𝑃𝑃

                               (20) 

where µeff (RH,T) can be used to consider the effects of temperature and relative 

humidity in atmospheric pressure and gas rarefaction. 

2.2. The linear transverse vibration equation for micro-beam resonators 

Under small displacement (w), the linear transverse vibration equation of a 

micro-beam in Fig. 1 governs the transverse displacement [23], which is expressed as:  

𝐷𝐷𝑝𝑝 (𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4 + 2 𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 + 𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦4 ) + 𝜌𝜌𝑚𝑚𝑡𝑡𝑏𝑏

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2 = −�̄�𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)                              (21) 

where E is Young’s modulus; ν is the Poisson’s ratio; DP (=𝐸𝐸𝑡𝑡𝑏𝑏
3/12(1 − 𝑣𝑣2)) is the 

rigidity of the material; 𝑡𝑡𝑏𝑏 is the structural thickness; �̄�𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) is the gas pressure 

variation; w(x,y,t) is the transverse displacement at positions along the structure (x, y) 

over time (t); 𝜌𝜌𝑚𝑚 is the density of the material.  

For a micro-cantilever beam [18, 19], single-clamped boundary conditions are 

used at one edge of the cantilever (𝑥𝑥 = 0):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 0                     (22) 
𝜕𝜕𝑤𝑤(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑥𝑥 = 0                         (23) 

and three free boundaries are used at the other edges of the cantilever (𝑥𝑥 = ℓ𝑏𝑏, 𝑦𝑦 = 0, 

and 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
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𝜕𝜕2𝑤𝑤(𝑥𝑥,0,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝑤𝑤(𝑥𝑥,0,𝑡𝑡)
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                               (20) 

where µeff (RH,T) can be used to consider the effects of temperature and relative 
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2.2. The linear transverse vibration equation for micro-beam resonators 
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where 𝜆𝜆0 (=66.5 nm); 𝑝𝑝0
′  (=101325 Pa); 𝑇𝑇0

′ (=300 K) are the reference gas mean free 

path, reference pressure, and reference temperature, respectively.   

The effective viscosity (µeff) of moist air [11] is expressed by: 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇
𝑄𝑄𝑃𝑃

                               (20) 

where µeff (RH,T) can be used to consider the effects of temperature and relative 

humidity in atmospheric pressure and gas rarefaction. 

2.2. The linear transverse vibration equation for micro-beam resonators 

Under small displacement (w), the linear transverse vibration equation of a 

micro-beam in Fig. 1 governs the transverse displacement [23], which is expressed as:  
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variation; w(x,y,t) is the transverse displacement at positions along the structure (x, y) 
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used at one edge of the cantilever (𝑥𝑥 = 0):  
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From Eqs. (3), (7), and (18), the mean free path of moist air (𝜆𝜆) can be expressed 
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 ,             (19) 

where 𝜆𝜆0 (=66.5 nm); 𝑝𝑝0
′  (=101325 Pa); 𝑇𝑇0

′ (=300 K) are the reference gas mean free 

path, reference pressure, and reference temperature, respectively.   

The effective viscosity (µeff) of moist air [11] is expressed by: 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇
𝑄𝑄𝑃𝑃

                               (20) 

where µeff (RH,T) can be used to consider the effects of temperature and relative 

humidity in atmospheric pressure and gas rarefaction. 

2.2. The linear transverse vibration equation for micro-beam resonators 

Under small displacement (w), the linear transverse vibration equation of a 

micro-beam in Fig. 1 governs the transverse displacement [23], which is expressed as:  

𝐷𝐷𝑝𝑝 (𝜕𝜕4𝑤𝑤
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rigidity of the material; 𝑡𝑡𝑏𝑏 is the structural thickness; �̄�𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) is the gas pressure 

variation; w(x,y,t) is the transverse displacement at positions along the structure (x, y) 

over time (t); 𝜌𝜌𝑚𝑚 is the density of the material.  

For a micro-cantilever beam [18, 19], single-clamped boundary conditions are 

used at one edge of the cantilever (𝑥𝑥 = 0):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 0                     (22) 
𝜕𝜕𝑤𝑤(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑥𝑥 = 0                         (23) 

and three free boundaries are used at the other edges of the cantilever (𝑥𝑥 = ℓ𝑏𝑏, 𝑦𝑦 = 0, 

and 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
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where µeff (RH, T) can be used to consider the effects 
of temperature and relative humidity in atmospheric 
pressure and gas rarefaction.
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2.2. The linear transverse vibration equation for 
micro-beam resonators

Under small displacement (w), the linear transverse 
vibration equation of a micro-beam in Fig. 1 governs the 
transverse displacement [23], which is expressed as: 
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where µeff (RH,T) can be used to consider the effects of temperature and relative 

humidity in atmospheric pressure and gas rarefaction. 

2.2. The linear transverse vibration equation for micro-beam resonators 

Under small displacement (w), the linear transverse vibration equation of a 

micro-beam in Fig. 1 governs the transverse displacement [23], which is expressed as:  

𝐷𝐷𝑝𝑝 (𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4 + 2 𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 + 𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦4 ) + 𝜌𝜌𝑚𝑚𝑡𝑡𝑏𝑏

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2 = −�̄�𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)                              (21) 

where E is Young’s modulus; ν is the Poisson’s ratio; DP (=𝐸𝐸𝑡𝑡𝑏𝑏
3/12(1 − 𝑣𝑣2)) is the 

rigidity of the material; 𝑡𝑡𝑏𝑏 is the structural thickness; �̄�𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) is the gas pressure 

variation; w(x,y,t) is the transverse displacement at positions along the structure (x, y) 

over time (t); 𝜌𝜌𝑚𝑚 is the density of the material.  

For a micro-cantilever beam [18, 19], single-clamped boundary conditions are 

used at one edge of the cantilever (𝑥𝑥 = 0):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 0                     (22) 
𝜕𝜕𝑤𝑤(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑥𝑥 = 0                         (23) 

and three free boundaries are used at the other edges of the cantilever (𝑥𝑥 = ℓ𝑏𝑏, 𝑦𝑦 = 0, 

and 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
𝜕𝜕2𝑤𝑤(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑥𝑥2 = 𝜕𝜕3𝑤𝑤(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝑥𝑥3 = 0                                 (24) 

𝜕𝜕2𝑤𝑤(𝑥𝑥,0,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝑤𝑤(𝑥𝑥,0,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                  (25)  

𝜕𝜕2𝑤𝑤(𝑥𝑥,𝑤𝑤𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝑤𝑤(𝑥𝑥,𝑤𝑤𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                           (26)  

 is the rigidity of the material; 
E is Young’s modulus; ν is the Poisson’s ratio; 
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From Eqs. (3), (7), and (18), the mean free path of moist air (𝜆𝜆) can be expressed 

by:  
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′ ,             (19) 

where 𝜆𝜆0 (=66.5 nm); 𝑝𝑝0
′  (=101325 Pa); 𝑇𝑇0

′ (=300 K) are the reference gas mean free 

path, reference pressure, and reference temperature, respectively.   

The effective viscosity (µeff) of moist air [11] is expressed by: 
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                               (20) 

where µeff (RH,T) can be used to consider the effects of temperature and relative 
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2.2. The linear transverse vibration equation for micro-beam resonators 
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For a micro-cantilever beam [18, 19], single-clamped boundary conditions are 
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From Eqs. (3), (7), and (18), the mean free path of moist air (𝜆𝜆) can be expressed 

by:  

𝜆𝜆 = 𝜆𝜆0𝑝𝑝0
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(𝑝𝑝𝑎𝑎+𝑅𝑅𝑅𝑅⋅𝑝𝑝𝑠𝑠𝑠𝑠)𝑇𝑇0

′ ,             (19) 

where 𝜆𝜆0 (=66.5 nm); 𝑝𝑝0
′  (=101325 Pa); 𝑇𝑇0

′ (=300 K) are the reference gas mean free 

path, reference pressure, and reference temperature, respectively.   

The effective viscosity (µeff) of moist air [11] is expressed by: 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇
𝑄𝑄𝑃𝑃

                               (20) 

where µeff (RH,T) can be used to consider the effects of temperature and relative 

humidity in atmospheric pressure and gas rarefaction. 

2.2. The linear transverse vibration equation for micro-beam resonators 

Under small displacement (w), the linear transverse vibration equation of a 

micro-beam in Fig. 1 governs the transverse displacement [23], which is expressed as:  

𝐷𝐷𝑝𝑝 (𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4 + 2 𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 + 𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦4 ) + 𝜌𝜌𝑚𝑚𝑡𝑡𝑏𝑏

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2 = −�̄�𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)                              (21) 

where E is Young’s modulus; ν is the Poisson’s ratio; DP (=𝐸𝐸𝑡𝑡𝑏𝑏
3/12(1 − 𝑣𝑣2)) is the 

rigidity of the material; 𝑡𝑡𝑏𝑏 is the structural thickness; �̄�𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) is the gas pressure 

variation; w(x,y,t) is the transverse displacement at positions along the structure (x, y) 

over time (t); 𝜌𝜌𝑚𝑚 is the density of the material.  

For a micro-cantilever beam [18, 19], single-clamped boundary conditions are 

used at one edge of the cantilever (𝑥𝑥 = 0):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 0                     (22) 
𝜕𝜕𝑤𝑤(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑥𝑥 = 0                         (23) 

and three free boundaries are used at the other edges of the cantilever (𝑥𝑥 = ℓ𝑏𝑏, 𝑦𝑦 = 0, 

and 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
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𝜕𝜕𝑥𝑥3 = 0                                 (24) 

𝜕𝜕2𝑤𝑤(𝑥𝑥,0,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝑤𝑤(𝑥𝑥,0,𝑡𝑡)
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𝜕𝜕2𝑤𝑤(𝑥𝑥,𝑤𝑤𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝑤𝑤(𝑥𝑥,𝑤𝑤𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                           (26)  

 is the gas pressure variation; 
w(x, y, t) is the transverse displacement at positions along 
the structure (x, y) over time (t); pm is the density of the 
material. 

For a micro-cantilever beam [18, 19], single-clamped 
boundary conditions are used at one edge of the cantilever 
(x=0): 
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From Eqs. (3), (7), and (18), the mean free path of moist air (𝜆𝜆) can be expressed 

by:  

𝜆𝜆 = 𝜆𝜆0𝑝𝑝0
′ 𝑇𝑇

𝑝𝑝𝑇𝑇0
′ = 𝜆𝜆0𝑝𝑝0

′ 𝑇𝑇
(𝑝𝑝𝑎𝑎+𝑅𝑅𝑅𝑅⋅𝑝𝑝𝑠𝑠𝑠𝑠)𝑇𝑇0

′ ,             (19) 

where 𝜆𝜆0 (=66.5 nm); 𝑝𝑝0
′  (=101325 Pa); 𝑇𝑇0

′ (=300 K) are the reference gas mean free 

path, reference pressure, and reference temperature, respectively.   

The effective viscosity (µeff) of moist air [11] is expressed by: 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇
𝑄𝑄𝑃𝑃

                               (20) 

where µeff (RH,T) can be used to consider the effects of temperature and relative 

humidity in atmospheric pressure and gas rarefaction. 

2.2. The linear transverse vibration equation for micro-beam resonators 

Under small displacement (w), the linear transverse vibration equation of a 

micro-beam in Fig. 1 governs the transverse displacement [23], which is expressed as:  

𝐷𝐷𝑝𝑝 (𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4 + 2 𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 + 𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦4 ) + 𝜌𝜌𝑚𝑚𝑡𝑡𝑏𝑏

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2 = −�̄�𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)                              (21) 

where E is Young’s modulus; ν is the Poisson’s ratio; DP (=𝐸𝐸𝑡𝑡𝑏𝑏
3/12(1 − 𝑣𝑣2)) is the 

rigidity of the material; 𝑡𝑡𝑏𝑏 is the structural thickness; �̄�𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) is the gas pressure 

variation; w(x,y,t) is the transverse displacement at positions along the structure (x, y) 

over time (t); 𝜌𝜌𝑚𝑚 is the density of the material.  

For a micro-cantilever beam [18, 19], single-clamped boundary conditions are 

used at one edge of the cantilever (𝑥𝑥 = 0):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 0                     (22) 
𝜕𝜕𝑤𝑤(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑥𝑥 = 0                         (23) 
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where µeff (RH,T) can be used to consider the effects of temperature and relative 

humidity in atmospheric pressure and gas rarefaction. 
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Under small displacement (w), the linear transverse vibration equation of a 
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used at one edge of the cantilever (𝑥𝑥 = 0):  
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path, reference pressure, and reference temperature, respectively.   

The effective viscosity (µeff) of moist air [11] is expressed by: 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇
𝑄𝑄𝑃𝑃

                               (20) 

where µeff (RH,T) can be used to consider the effects of temperature and relative 

humidity in atmospheric pressure and gas rarefaction. 

2.2. The linear transverse vibration equation for micro-beam resonators 

Under small displacement (w), the linear transverse vibration equation of a 

micro-beam in Fig. 1 governs the transverse displacement [23], which is expressed as:  

𝐷𝐷𝑝𝑝 (𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4 + 2 𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 + 𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦4 ) + 𝜌𝜌𝑚𝑚𝑡𝑡𝑏𝑏

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2 = −�̄�𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)                              (21) 

where E is Young’s modulus; ν is the Poisson’s ratio; DP (=𝐸𝐸𝑡𝑡𝑏𝑏
3/12(1 − 𝑣𝑣2)) is the 

rigidity of the material; 𝑡𝑡𝑏𝑏 is the structural thickness; �̄�𝑝(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) is the gas pressure 

variation; w(x,y,t) is the transverse displacement at positions along the structure (x, y) 

over time (t); 𝜌𝜌𝑚𝑚 is the density of the material.  

For a micro-cantilever beam [18, 19], single-clamped boundary conditions are 

used at one edge of the cantilever (𝑥𝑥 = 0):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 0                     (22) 
𝜕𝜕𝑤𝑤(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑥𝑥 = 0                         (23) 

and three free boundaries are used at the other edges of the cantilever (𝑥𝑥 = ℓ𝑏𝑏, 𝑦𝑦 = 0, 

and 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
𝜕𝜕2𝑤𝑤(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑥𝑥2 = 𝜕𝜕3𝑤𝑤(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝑥𝑥3 = 0                                 (24) 

𝜕𝜕2𝑤𝑤(𝑥𝑥,0,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝑤𝑤(𝑥𝑥,0,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                  (25)  

𝜕𝜕2𝑤𝑤(𝑥𝑥,𝑤𝑤𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝑤𝑤(𝑥𝑥,𝑤𝑤𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                           (26)  

 (23)

and three free boundaries are used at the other edges of 
the cantilever (x=lb, y=0, and y=wb): 
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From Eqs. (3), (7), and (18), the mean free path of moist air (𝜆𝜆) can be expressed 
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variation; w(x,y,t) is the transverse displacement at positions along the structure (x, y) 
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For a micro-bridge, the two double-clamped boundary 
conditions are set at two edges of the micro-bridge (x=0) 
and (x=lb): 

 

8 

For a micro-bridge, the two double-clamped boundary conditions are set at two 

edges of the micro-bridge (𝑥𝑥 = 0) and (𝑥𝑥 = ℓ𝑏𝑏):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 𝑤𝑤(ℓ𝑏𝑏, 𝑦𝑦, 𝑡𝑡) = 0                         (27) 
𝜕𝜕𝜕𝜕(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝜕𝜕 = 0                                           (28) 

and two free-edge conditions at other edges of the micro-bridge (𝑦𝑦 = 0, 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
𝜕𝜕2𝜕𝜕(𝜕𝜕,0,𝑡𝑡)

𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,0,𝑡𝑡)
𝜕𝜕𝑦𝑦3 = 0                      (29)  

𝜕𝜕2𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                                             (30) 

  2.3. Quality factors of micro-beam resonators 

In the eigen-value problem, the quality factor of the MEMS resonators in the 

SFD problem is numerically estimated by obtaining the eigenvalue (�̄�𝜆 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖). Then, 

the quality factor for the SFD problem (QSFD) [14] can be calculated as the ratio between 

the natural frequency (𝑖𝑖0) (𝐼𝐼𝐼𝐼|�̄�𝜆|) and the damping factor (𝛿𝛿) (𝑅𝑅𝑅𝑅|�̄�𝜆|) by: 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = | 𝐼𝐼𝐼𝐼(�̄�𝜆)
2𝑅𝑅𝑅𝑅(�̄�𝜆)| =

𝜔𝜔0
2𝛿𝛿                      (31) 

where �̄�𝜆(= 𝛿𝛿 + 𝑖𝑖𝑖𝑖) is the complex eigenvalue. 

In micro-beam resonators, the total quality factor (QT) can be evaluated by the 

quality factor of the main damping sources of the SFD (QSFD), TED (QTED), and the 

support loss (Qsup). Therefore, the total quality factor (QT)) of the micro-cantilever and 

bridge beam resonators are calculated as:  
1
𝑄𝑄𝑇𝑇

= 1
𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆

+ 1
𝑄𝑄𝑇𝑇𝑇𝑇𝑆𝑆

+ 1
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

                         (32) 

where the basic operating conditions are listed in Table 1. QTED is calculated by Zener’s 

models [6, 7] (Eq. (14) in [7]) in Table 2. Qsup is also calculated by Z. Hao, et al. (2003) 

[10] (Eq. (18) in [10]) in Table 3.  

Table 1. Basic geometric and operating conditions of MEMS resonators.  

Symbol Description Values  

ℓ𝑏𝑏 Length of beam 250 µm 

𝑤𝑤𝑏𝑏 Width of beam 10 µm 

𝑡𝑡𝑏𝑏 Thickness of beam 1 µm  

E Young’s modulus of silicon  130 × 109 Pa 

 (27)
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For a micro-bridge, the two double-clamped boundary conditions are set at two 

edges of the micro-bridge (𝑥𝑥 = 0) and (𝑥𝑥 = ℓ𝑏𝑏):  
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𝜕𝜕2𝜕𝜕(𝜕𝜕,0,𝑡𝑡)

𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,0,𝑡𝑡)
𝜕𝜕𝑦𝑦3 = 0                      (29)  

𝜕𝜕2𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                                             (30) 

  2.3. Quality factors of micro-beam resonators 

In the eigen-value problem, the quality factor of the MEMS resonators in the 

SFD problem is numerically estimated by obtaining the eigenvalue (�̄�𝜆 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖). Then, 

the quality factor for the SFD problem (QSFD) [14] can be calculated as the ratio between 

the natural frequency (𝑖𝑖0) (𝐼𝐼𝐼𝐼|�̄�𝜆|) and the damping factor (𝛿𝛿) (𝑅𝑅𝑅𝑅|�̄�𝜆|) by: 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = | 𝐼𝐼𝐼𝐼(�̄�𝜆)
2𝑅𝑅𝑅𝑅(�̄�𝜆)| =

𝜔𝜔0
2𝛿𝛿                      (31) 

where �̄�𝜆(= 𝛿𝛿 + 𝑖𝑖𝑖𝑖) is the complex eigenvalue. 

In micro-beam resonators, the total quality factor (QT) can be evaluated by the 

quality factor of the main damping sources of the SFD (QSFD), TED (QTED), and the 

support loss (Qsup). Therefore, the total quality factor (QT)) of the micro-cantilever and 

bridge beam resonators are calculated as:  
1
𝑄𝑄𝑇𝑇

= 1
𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆

+ 1
𝑄𝑄𝑇𝑇𝑇𝑇𝑆𝑆

+ 1
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

                         (32) 

where the basic operating conditions are listed in Table 1. QTED is calculated by Zener’s 

models [6, 7] (Eq. (14) in [7]) in Table 2. Qsup is also calculated by Z. Hao, et al. (2003) 

[10] (Eq. (18) in [10]) in Table 3.  

Table 1. Basic geometric and operating conditions of MEMS resonators.  

Symbol Description Values  

ℓ𝑏𝑏 Length of beam 250 µm 

𝑤𝑤𝑏𝑏 Width of beam 10 µm 

𝑡𝑡𝑏𝑏 Thickness of beam 1 µm  

E Young’s modulus of silicon  130 × 109 Pa 

 (28)

and two free-edge conditions at other edges of the micro-
bridge (y=0, y=wb): 
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For a micro-bridge, the two double-clamped boundary conditions are set at two 

edges of the micro-bridge (𝑥𝑥 = 0) and (𝑥𝑥 = ℓ𝑏𝑏):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 𝑤𝑤(ℓ𝑏𝑏, 𝑦𝑦, 𝑡𝑡) = 0                         (27) 
𝜕𝜕𝜕𝜕(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝜕𝜕 = 0                                           (28) 

and two free-edge conditions at other edges of the micro-bridge (𝑦𝑦 = 0, 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
𝜕𝜕2𝜕𝜕(𝜕𝜕,0,𝑡𝑡)

𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,0,𝑡𝑡)
𝜕𝜕𝑦𝑦3 = 0                      (29)  

𝜕𝜕2𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                                             (30) 

  2.3. Quality factors of micro-beam resonators 

In the eigen-value problem, the quality factor of the MEMS resonators in the 

SFD problem is numerically estimated by obtaining the eigenvalue (�̄�𝜆 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖). Then, 

the quality factor for the SFD problem (QSFD) [14] can be calculated as the ratio between 

the natural frequency (𝑖𝑖0) (𝐼𝐼𝐼𝐼|�̄�𝜆|) and the damping factor (𝛿𝛿) (𝑅𝑅𝑅𝑅|�̄�𝜆|) by: 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = | 𝐼𝐼𝐼𝐼(�̄�𝜆)
2𝑅𝑅𝑅𝑅(�̄�𝜆)| =

𝜔𝜔0
2𝛿𝛿                      (31) 

where �̄�𝜆(= 𝛿𝛿 + 𝑖𝑖𝑖𝑖) is the complex eigenvalue. 

In micro-beam resonators, the total quality factor (QT) can be evaluated by the 

quality factor of the main damping sources of the SFD (QSFD), TED (QTED), and the 

support loss (Qsup). Therefore, the total quality factor (QT)) of the micro-cantilever and 

bridge beam resonators are calculated as:  
1
𝑄𝑄𝑇𝑇

= 1
𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆

+ 1
𝑄𝑄𝑇𝑇𝑇𝑇𝑆𝑆

+ 1
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

                         (32) 

where the basic operating conditions are listed in Table 1. QTED is calculated by Zener’s 

models [6, 7] (Eq. (14) in [7]) in Table 2. Qsup is also calculated by Z. Hao, et al. (2003) 

[10] (Eq. (18) in [10]) in Table 3.  

Table 1. Basic geometric and operating conditions of MEMS resonators.  

Symbol Description Values  

ℓ𝑏𝑏 Length of beam 250 µm 

𝑤𝑤𝑏𝑏 Width of beam 10 µm 

𝑡𝑡𝑏𝑏 Thickness of beam 1 µm  

E Young’s modulus of silicon  130 × 109 Pa 

 (29) 
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For a micro-bridge, the two double-clamped boundary conditions are set at two 

edges of the micro-bridge (𝑥𝑥 = 0) and (𝑥𝑥 = ℓ𝑏𝑏):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 𝑤𝑤(ℓ𝑏𝑏, 𝑦𝑦, 𝑡𝑡) = 0                         (27) 
𝜕𝜕𝜕𝜕(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝜕𝜕 = 0                                           (28) 

and two free-edge conditions at other edges of the micro-bridge (𝑦𝑦 = 0, 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
𝜕𝜕2𝜕𝜕(𝜕𝜕,0,𝑡𝑡)

𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,0,𝑡𝑡)
𝜕𝜕𝑦𝑦3 = 0                      (29)  

𝜕𝜕2𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                                             (30) 

  2.3. Quality factors of micro-beam resonators 

In the eigen-value problem, the quality factor of the MEMS resonators in the 

SFD problem is numerically estimated by obtaining the eigenvalue (�̄�𝜆 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖). Then, 

the quality factor for the SFD problem (QSFD) [14] can be calculated as the ratio between 

the natural frequency (𝑖𝑖0) (𝐼𝐼𝐼𝐼|�̄�𝜆|) and the damping factor (𝛿𝛿) (𝑅𝑅𝑅𝑅|�̄�𝜆|) by: 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = | 𝐼𝐼𝐼𝐼(�̄�𝜆)
2𝑅𝑅𝑅𝑅(�̄�𝜆)| =

𝜔𝜔0
2𝛿𝛿                      (31) 

where �̄�𝜆(= 𝛿𝛿 + 𝑖𝑖𝑖𝑖) is the complex eigenvalue. 

In micro-beam resonators, the total quality factor (QT) can be evaluated by the 

quality factor of the main damping sources of the SFD (QSFD), TED (QTED), and the 

support loss (Qsup). Therefore, the total quality factor (QT)) of the micro-cantilever and 

bridge beam resonators are calculated as:  
1
𝑄𝑄𝑇𝑇

= 1
𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆

+ 1
𝑄𝑄𝑇𝑇𝑇𝑇𝑆𝑆

+ 1
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

                         (32) 

where the basic operating conditions are listed in Table 1. QTED is calculated by Zener’s 

models [6, 7] (Eq. (14) in [7]) in Table 2. Qsup is also calculated by Z. Hao, et al. (2003) 

[10] (Eq. (18) in [10]) in Table 3.  

Table 1. Basic geometric and operating conditions of MEMS resonators.  

Symbol Description Values  

ℓ𝑏𝑏 Length of beam 250 µm 

𝑤𝑤𝑏𝑏 Width of beam 10 µm 

𝑡𝑡𝑏𝑏 Thickness of beam 1 µm  

E Young’s modulus of silicon  130 × 109 Pa 

 (30)

2.3. Quality factors of micro-beam resonators

In the eigen-value problem, the quality factor of the 
MEMS resonators in the SFD problem is numerically 
estimated by obtaining the eigenvalue 
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For a micro-bridge, the two double-clamped boundary conditions are set at two 

edges of the micro-bridge (𝑥𝑥 = 0) and (𝑥𝑥 = ℓ𝑏𝑏):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 𝑤𝑤(ℓ𝑏𝑏, 𝑦𝑦, 𝑡𝑡) = 0                         (27) 
𝜕𝜕𝜕𝜕(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝜕𝜕 = 0                                           (28) 

and two free-edge conditions at other edges of the micro-bridge (𝑦𝑦 = 0, 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
𝜕𝜕2𝜕𝜕(𝜕𝜕,0,𝑡𝑡)

𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,0,𝑡𝑡)
𝜕𝜕𝑦𝑦3 = 0                      (29)  

𝜕𝜕2𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                                             (30) 

  2.3. Quality factors of micro-beam resonators 

In the eigen-value problem, the quality factor of the MEMS resonators in the 

SFD problem is numerically estimated by obtaining the eigenvalue (�̄�𝜆 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖). Then, 

the quality factor for the SFD problem (QSFD) [14] can be calculated as the ratio between 

the natural frequency (𝑖𝑖0) (𝐼𝐼𝐼𝐼|�̄�𝜆|) and the damping factor (𝛿𝛿) (𝑅𝑅𝑅𝑅|�̄�𝜆|) by: 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = | 𝐼𝐼𝐼𝐼(�̄�𝜆)
2𝑅𝑅𝑅𝑅(�̄�𝜆)| =

𝜔𝜔0
2𝛿𝛿                      (31) 

where �̄�𝜆(= 𝛿𝛿 + 𝑖𝑖𝑖𝑖) is the complex eigenvalue. 

In micro-beam resonators, the total quality factor (QT) can be evaluated by the 

quality factor of the main damping sources of the SFD (QSFD), TED (QTED), and the 

support loss (Qsup). Therefore, the total quality factor (QT)) of the micro-cantilever and 

bridge beam resonators are calculated as:  
1
𝑄𝑄𝑇𝑇

= 1
𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆

+ 1
𝑄𝑄𝑇𝑇𝑇𝑇𝑆𝑆

+ 1
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

                         (32) 

where the basic operating conditions are listed in Table 1. QTED is calculated by Zener’s 

models [6, 7] (Eq. (14) in [7]) in Table 2. Qsup is also calculated by Z. Hao, et al. (2003) 

[10] (Eq. (18) in [10]) in Table 3.  

Table 1. Basic geometric and operating conditions of MEMS resonators.  

Symbol Description Values  

ℓ𝑏𝑏 Length of beam 250 µm 

𝑤𝑤𝑏𝑏 Width of beam 10 µm 

𝑡𝑡𝑏𝑏 Thickness of beam 1 µm  

E Young’s modulus of silicon  130 × 109 Pa 

. Then, 

the quality factor for the SFD problem (QSFD) [14] can 
be calculated as the ratio between the natural frequency 
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For a micro-bridge, the two double-clamped boundary conditions are set at two 

edges of the micro-bridge (𝑥𝑥 = 0) and (𝑥𝑥 = ℓ𝑏𝑏):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 𝑤𝑤(ℓ𝑏𝑏, 𝑦𝑦, 𝑡𝑡) = 0                         (27) 
𝜕𝜕𝜕𝜕(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝜕𝜕 = 0                                           (28) 

and two free-edge conditions at other edges of the micro-bridge (𝑦𝑦 = 0, 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
𝜕𝜕2𝜕𝜕(𝜕𝜕,0,𝑡𝑡)

𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,0,𝑡𝑡)
𝜕𝜕𝑦𝑦3 = 0                      (29)  

𝜕𝜕2𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                                             (30) 

  2.3. Quality factors of micro-beam resonators 

In the eigen-value problem, the quality factor of the MEMS resonators in the 

SFD problem is numerically estimated by obtaining the eigenvalue (�̄�𝜆 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖). Then, 

the quality factor for the SFD problem (QSFD) [14] can be calculated as the ratio between 

the natural frequency (𝑖𝑖0) (𝐼𝐼𝐼𝐼|�̄�𝜆|) and the damping factor (𝛿𝛿) (𝑅𝑅𝑅𝑅|�̄�𝜆|) by: 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = | 𝐼𝐼𝐼𝐼(�̄�𝜆)
2𝑅𝑅𝑅𝑅(�̄�𝜆)| =

𝜔𝜔0
2𝛿𝛿                      (31) 

where �̄�𝜆(= 𝛿𝛿 + 𝑖𝑖𝑖𝑖) is the complex eigenvalue. 

In micro-beam resonators, the total quality factor (QT) can be evaluated by the 

quality factor of the main damping sources of the SFD (QSFD), TED (QTED), and the 

support loss (Qsup). Therefore, the total quality factor (QT)) of the micro-cantilever and 

bridge beam resonators are calculated as:  
1
𝑄𝑄𝑇𝑇

= 1
𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆

+ 1
𝑄𝑄𝑇𝑇𝑇𝑇𝑆𝑆

+ 1
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

                         (32) 

where the basic operating conditions are listed in Table 1. QTED is calculated by Zener’s 

models [6, 7] (Eq. (14) in [7]) in Table 2. Qsup is also calculated by Z. Hao, et al. (2003) 

[10] (Eq. (18) in [10]) in Table 3.  

Table 1. Basic geometric and operating conditions of MEMS resonators.  

Symbol Description Values  

ℓ𝑏𝑏 Length of beam 250 µm 

𝑤𝑤𝑏𝑏 Width of beam 10 µm 

𝑡𝑡𝑏𝑏 Thickness of beam 1 µm  

E Young’s modulus of silicon  130 × 109 Pa 

 and the damping factor (δ) 
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For a micro-bridge, the two double-clamped boundary conditions are set at two 

edges of the micro-bridge (𝑥𝑥 = 0) and (𝑥𝑥 = ℓ𝑏𝑏):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 𝑤𝑤(ℓ𝑏𝑏, 𝑦𝑦, 𝑡𝑡) = 0                         (27) 
𝜕𝜕𝜕𝜕(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝜕𝜕 = 0                                           (28) 

and two free-edge conditions at other edges of the micro-bridge (𝑦𝑦 = 0, 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
𝜕𝜕2𝜕𝜕(𝜕𝜕,0,𝑡𝑡)

𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,0,𝑡𝑡)
𝜕𝜕𝑦𝑦3 = 0                      (29)  

𝜕𝜕2𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                                             (30) 

  2.3. Quality factors of micro-beam resonators 

In the eigen-value problem, the quality factor of the MEMS resonators in the 

SFD problem is numerically estimated by obtaining the eigenvalue (�̄�𝜆 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖). Then, 

the quality factor for the SFD problem (QSFD) [14] can be calculated as the ratio between 

the natural frequency (𝑖𝑖0) (𝐼𝐼𝐼𝐼|�̄�𝜆|) and the damping factor (𝛿𝛿) (𝑅𝑅𝑅𝑅|�̄�𝜆|) by: 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = | 𝐼𝐼𝐼𝐼(�̄�𝜆)
2𝑅𝑅𝑅𝑅(�̄�𝜆)| =

𝜔𝜔0
2𝛿𝛿                      (31) 

where �̄�𝜆(= 𝛿𝛿 + 𝑖𝑖𝑖𝑖) is the complex eigenvalue. 

In micro-beam resonators, the total quality factor (QT) can be evaluated by the 

quality factor of the main damping sources of the SFD (QSFD), TED (QTED), and the 

support loss (Qsup). Therefore, the total quality factor (QT)) of the micro-cantilever and 

bridge beam resonators are calculated as:  
1
𝑄𝑄𝑇𝑇

= 1
𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆

+ 1
𝑄𝑄𝑇𝑇𝑇𝑇𝑆𝑆

+ 1
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

                         (32) 

where the basic operating conditions are listed in Table 1. QTED is calculated by Zener’s 

models [6, 7] (Eq. (14) in [7]) in Table 2. Qsup is also calculated by Z. Hao, et al. (2003) 

[10] (Eq. (18) in [10]) in Table 3.  

Table 1. Basic geometric and operating conditions of MEMS resonators.  

Symbol Description Values  

ℓ𝑏𝑏 Length of beam 250 µm 

𝑤𝑤𝑏𝑏 Width of beam 10 µm 

𝑡𝑡𝑏𝑏 Thickness of beam 1 µm  

E Young’s modulus of silicon  130 × 109 Pa 

 by:
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For a micro-bridge, the two double-clamped boundary conditions are set at two 

edges of the micro-bridge (𝑥𝑥 = 0) and (𝑥𝑥 = ℓ𝑏𝑏):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 𝑤𝑤(ℓ𝑏𝑏, 𝑦𝑦, 𝑡𝑡) = 0                         (27) 
𝜕𝜕𝜕𝜕(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝜕𝜕 = 0                                           (28) 

and two free-edge conditions at other edges of the micro-bridge (𝑦𝑦 = 0, 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
𝜕𝜕2𝜕𝜕(𝜕𝜕,0,𝑡𝑡)

𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,0,𝑡𝑡)
𝜕𝜕𝑦𝑦3 = 0                      (29)  

𝜕𝜕2𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                                             (30) 

  2.3. Quality factors of micro-beam resonators 

In the eigen-value problem, the quality factor of the MEMS resonators in the 

SFD problem is numerically estimated by obtaining the eigenvalue (�̄�𝜆 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖). Then, 

the quality factor for the SFD problem (QSFD) [14] can be calculated as the ratio between 

the natural frequency (𝑖𝑖0) (𝐼𝐼𝐼𝐼|�̄�𝜆|) and the damping factor (𝛿𝛿) (𝑅𝑅𝑅𝑅|�̄�𝜆|) by: 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = | 𝐼𝐼𝐼𝐼(�̄�𝜆)
2𝑅𝑅𝑅𝑅(�̄�𝜆)| =

𝜔𝜔0
2𝛿𝛿                      (31) 

where �̄�𝜆(= 𝛿𝛿 + 𝑖𝑖𝑖𝑖) is the complex eigenvalue. 

In micro-beam resonators, the total quality factor (QT) can be evaluated by the 

quality factor of the main damping sources of the SFD (QSFD), TED (QTED), and the 

support loss (Qsup). Therefore, the total quality factor (QT)) of the micro-cantilever and 

bridge beam resonators are calculated as:  
1
𝑄𝑄𝑇𝑇

= 1
𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆

+ 1
𝑄𝑄𝑇𝑇𝑇𝑇𝑆𝑆

+ 1
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

                         (32) 

where the basic operating conditions are listed in Table 1. QTED is calculated by Zener’s 

models [6, 7] (Eq. (14) in [7]) in Table 2. Qsup is also calculated by Z. Hao, et al. (2003) 

[10] (Eq. (18) in [10]) in Table 3.  

Table 1. Basic geometric and operating conditions of MEMS resonators.  

Symbol Description Values  

ℓ𝑏𝑏 Length of beam 250 µm 

𝑤𝑤𝑏𝑏 Width of beam 10 µm 

𝑡𝑡𝑏𝑏 Thickness of beam 1 µm  

E Young’s modulus of silicon  130 × 109 Pa 

 (31)

where 

 

8 

For a micro-bridge, the two double-clamped boundary conditions are set at two 

edges of the micro-bridge (𝑥𝑥 = 0) and (𝑥𝑥 = ℓ𝑏𝑏):  

𝑤𝑤(0, 𝑦𝑦, 𝑡𝑡) = 𝑤𝑤(ℓ𝑏𝑏, 𝑦𝑦, 𝑡𝑡) = 0                         (27) 
𝜕𝜕𝜕𝜕(0,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕(ℓ𝑏𝑏,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝜕𝜕 = 0                                           (28) 

and two free-edge conditions at other edges of the micro-bridge (𝑦𝑦 = 0, 𝑦𝑦 = 𝑤𝑤𝑏𝑏):  
𝜕𝜕2𝜕𝜕(𝜕𝜕,0,𝑡𝑡)

𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,0,𝑡𝑡)
𝜕𝜕𝑦𝑦3 = 0                      (29)  

𝜕𝜕2𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)
𝜕𝜕𝑦𝑦2 = 𝜕𝜕3𝜕𝜕(𝜕𝜕,𝜕𝜕𝑏𝑏,𝑡𝑡)

𝜕𝜕𝑦𝑦3 = 0                                             (30) 

  2.3. Quality factors of micro-beam resonators 

In the eigen-value problem, the quality factor of the MEMS resonators in the 

SFD problem is numerically estimated by obtaining the eigenvalue (�̄�𝜆 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖). Then, 

the quality factor for the SFD problem (QSFD) [14] can be calculated as the ratio between 

the natural frequency (𝑖𝑖0) (𝐼𝐼𝐼𝐼|�̄�𝜆|) and the damping factor (𝛿𝛿) (𝑅𝑅𝑅𝑅|�̄�𝜆|) by: 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = | 𝐼𝐼𝐼𝐼(�̄�𝜆)
2𝑅𝑅𝑅𝑅(�̄�𝜆)| =

𝜔𝜔0
2𝛿𝛿                      (31) 

where �̄�𝜆(= 𝛿𝛿 + 𝑖𝑖𝑖𝑖) is the complex eigenvalue. 

In micro-beam resonators, the total quality factor (QT) can be evaluated by the 

quality factor of the main damping sources of the SFD (QSFD), TED (QTED), and the 

support loss (Qsup). Therefore, the total quality factor (QT)) of the micro-cantilever and 

bridge beam resonators are calculated as:  
1
𝑄𝑄𝑇𝑇

= 1
𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆

+ 1
𝑄𝑄𝑇𝑇𝑇𝑇𝑆𝑆

+ 1
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

                         (32) 

where the basic operating conditions are listed in Table 1. QTED is calculated by Zener’s 

models [6, 7] (Eq. (14) in [7]) in Table 2. Qsup is also calculated by Z. Hao, et al. (2003) 

[10] (Eq. (18) in [10]) in Table 3.  
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where the basic operating conditions are listed in Table 1. QTED is calculated by Zener’s 

models [6, 7] (Eq. (14) in [7]) in Table 2. Qsup is also calculated by Z. Hao, et al. (2003) 

[10] (Eq. (18) in [10]) in Table 3.  
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Symbol Description Values  
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 (32)

where the basic operating conditions are listed in Table 1. 
QTED is calculated by C. Zener’s models [6, 7] (Eq. (14) 
in [7]) in Table 2. Qsup is also calculated by Z. Hao, et al. 
(2003) [10] (Eq. (18) in Table 3). 

Table 1. Basic geometric and operating conditions of 
MEMS resonators. 

Symbol Description Values 

lb Length of beam 250 µm

wb Width of beam 10 µm

tb Thickness of beam 1 µm 

E Young’s modulus of silicon 130×109 Pa

ρm Density of silicon 2330 kg/m3

ν Poisson’s ratio of silicon 0.28

αm Thermal expansion coefficient of silicon 2.6×10-6 1/K

κ Thermal conductivity of silicon 90 W/(m.K)

CP Specific heat capacity of silicon cantilever 700 J/(kg.K)

h0 Basic gas film thickness 4 µm

T0 Basic temperature 50oC

p Ambient pressure of moist air 101325 Pa

T Ambient temperature 0-100oC

RH Relative humidity of moist air 0-100%
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3. Results and discussion 
3.1. Effective viscosity, µeff(RH, T)

Fig. 2. Effective viscosity of moist air (μeff) versus 
temperature (T) for different relative humidity values (RH) 
at atmospheric pressure. 

In Fig. 2, the effective viscosity of moist air (μeff), 
Eq. (20), in dry air linearly increases with T in the dry 
air (RH=0%). Meanwhile, μeff of moist air decreases 
gradually as temperature and relative humidity increase. 
Therefore, we note that the effective viscosity (μeff) 
decreases more significantly as temperature and relative 
humidity increase.

3.2. Effects of temperature (T) and relative humidity 
(RH) on quality factors (QSFD, QT)

In Table 2, the results show that QTED and QZener are 
very high because the TED is very small in the 1st mode 
of cantilever and bridge resonators. Moreover, QTED from 
the FEM (COMSOL Multiphysics) [24] and QZener from 
the C. Zener's models [6, 7] are nearly identical with an 
error of less than 5.94%. Therefore, QTED in the FEM [24] 
can be accurately used to calculate the total quality factor 
(QT) of MEMS resonators. 

In Table 3, the result showed that Qsup is very high 
because the support loss is very small in the 1st mode 
of the resonators. Also, the results of Qsup can be used 
to calculate the total quality factor (QT) of micro-beam 
resonators.

In Fig. 3, the obtained results of QSFD and QT of the 
micro-beam resonators are nearly identical over a wide 
range of temperature and humidity values at atmospheric 
pressure (p=101325 Pa). Therefore, QT can be calculated 
by the main contribution of QSFD because the SFD is the 
dominant damping source and the other damping sources 
(QTED, Qsup) are negligible in the 1st mode of the resonator. 
QSFD and QT of dry air decreases as T increases. QSFD and 
QT of moist air increases as T increases while QSFD and QT 
of moist air increases as relative humidity (RH) increases 
from 0 to 100 % at atmospheric pressure. Then, QSFD and 

Table 2. The quality factor of thermoelastic damping (TED) (QTED) for micro-beam resonators in the 1st mode of vibration. 

Resonators Mode shape  (Hz) QTED in FEM [24] QZener in Zener [6, 7]
% Error 
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gradually as temperature and relative humidity increase. Therefore, we note that the 

effective viscosity (μeff) decreases more significantly as temperature and relative 

humidity increase. 

3.2. Effects of temperature (T) and relative humidity (RH) on quality factors 

(QSFD, QT) 

Table 2. The quality factor of thermoelastic damping (TED) (QTED) for micro-

beam resonators in the 1st mode of vibration.  

Resonators Mode shape 𝒇𝒇𝒏𝒏 (Hz) QTED 

in FEM 

[24] 

QZener 

in Zener  

[6, 7] 

% Error 

|𝑸𝑸𝑻𝑻𝑻𝑻𝑻𝑻−𝑸𝑸𝒁𝒁𝒁𝒁𝒏𝒏𝒁𝒁𝒁𝒁𝑸𝑸𝑻𝑻𝑻𝑻𝑻𝑻
| ×

𝟏𝟏𝟏𝟏𝟏𝟏% 

Cantilever  19,344 21,738,340 22,589,923 3.77 

Bridge   123,539 3,283,491 3,491,068 5.94 

In Table 2, the results show that QTED and QZener are very high because the TED 

is very small in the 1st mode of cantilever and bridge resonators. Moreover, QTED from 

the FEM (COMSOL Multiphysics) [24] and QZener from the Zener model [6, 7] are 

nearly identical with an error of less than 5.94%. Therefore, QTED in the FEM [24] can 

be accurately used to calculate the total quality factor (QT) of MEMS resonators.  

Table 3. The quality factor of support loss (Qsup) for micro-beam resonators in the 

1st mode of vibration. 

Resonators mode shape 𝒇𝒇𝒏𝒏 (Hz) 𝑪𝑪𝑭𝑭(𝒏𝒏) 𝝀𝝀𝑻𝑻 𝝀𝝀𝑻𝑻/𝒘𝒘𝒃𝒃 Qsup  

[10]  

Cantilever  19,344 2.081 0.241 24,133 32,515,625 

Bridge   123,539 0.638   0.038 3,778 9,968,750 

In Table 3, the result showed that Qsup is very high because the support loss is 

very small in the 1st mode of the resonators. Also, the results of Qsup can be used to 

calculate the total quality factor (QT) of micro-beam resonators. 

100%

Cantilever 19,344 21,738,340 22,589,923 3.77

Bridge 123,539 3,283,491 3,491,068 5.94

Table 3. The quality factor of support loss (Qsup) for micro-beam resonators in the 1st mode of vibration.

Resonators Mode shape fn (Hz) C(F(n)) λT λT /wb Qsup  [10] 

Cantilever 19,344 2.081 0.241 24,133 32,515,625

Bridge 123,539 0.638  0.038 3,778 9,968,750
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QT of moist air increases with temperature and relative 
humidity at p=101325 Pa. Also, QSFD and QT of the 
micro-cantilever with temperature and relative humidity 
is lower than that of the micro-bridge because of SFD 
influences on the cantilever being much stronger than 
that on the micro-bridge.

4. Conclusions

In these results, the quality factors of micro-beam 
resonators are numerically calculated by solving the 
MMGL equation, the equation of transverse vibration 
of the micro-beam, and their appropriate boundary 
conditions simultaneously using the FEM. The effective 
viscosity (µeff (RH, T)) is utilised to modify the MMGL 
equation to consider the effects of temperature and 
relative humidity in atmospheric pressure and gas 
rarefaction. Some of the obtained results are shown as 
follows: (a) The quality factor of micro-beam resonators 
increases as the temperature and relative humidity 
increase in atmospheric pressure and gas rarefaction; 
(b) The quality factor of the micro-bridge resonator with 
temperature and relative humidity is much higher than 
that of the micro-cantilever resonator.

These highlighted results can be utilised to design 
for a high-quality factor and a fast resonant response 
of MEMS resonators. In future work, the design and 
fabrication process of temperature and humidity sensors 
based on micro-bridge resonators can be addressed and 
fabricated using MEMS technologies for environmental 
monitoring.
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