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Introduction

Since COVID-19 acute respiratory syndrome was first 
discovered in Wuhan city, Hubei province, China, the 
scientific community, as well as the entire human race, 
has come face-to-face with an unprecedented challenge to 
find treatments for this disease. As of October 28th, 2020, 
there have been 43,540,739 reported cases and 1,16,650 
deaths globally (WHO 2020) as the virus continues to 
rapidly spread [1]. In Vietnam, 1,094 cases and 35 deaths 
have been reported. One of the biggest concerns of this 
disease is that its symptoms are often very diverse and 

manifest differently in each patient. Clinical symptoms 
are usually noticed 5-to-6 days after infection but the 
incubation period can be up to 14 days [2]. Fever, coughing, 
and fatigue are among the most common symptoms. 
There have been patients with no reported symptoms 
but suddenly deteriorate rapidly with severe hypoxia 
that can lead to other diseases and even death [3, 4].

SARS-CoV-2 has a 29.9 kb-size positive-sense RNA 
genome. It is composed of 14 open reading frames 
(ORFs), which encode a total of 27 proteins that are 
further divided into structural and non-structural proteins 
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(NSPs) [5]. RNA-dependent RNA polymerase (RdRp) is 
an important enzyme to the viral RNA life cycle as it is 
involved in the transcription and translation of the SARS-
CoV-2 genome. This enzyme is the cleavage product of 
polyproteins 1a and 1ab from ORF1a and ORF1ab [6]. 
Therefore, RdRp is considered to be a major target for 
antiviral inhibitors.

Molecular docking is a modelling technique that 
predicts the position and favourable configuration of a 
substrate molecule (ligand) binding to a protein molecule 
(target). This in silico method saves significant time 
and cost in the screening of compounds compared with 
experimental methods.

The rapid spread of COVID-19 has emphasised the 
need for the global development of coronavirus vaccines 
and therapies. Therefore, we investigated potential drugs 
to inhibit RNA-dependent RNA polymerase (RdRp) for 
COVID-19 treatment. Our research focused on antiviral 
compounds that were collected from DrugBank with 
keyword “antiviral”. DrugBank is a pharmaceutical 
knowledge base that has enabled significant advancements 
in the field of data-driven medicine [7]. Remdesivir is 
an antiviral drug that has been approved by the Food 
and Drug Administration (FDA) for the treatment 
of COVID-19 requiring hospitalisation [8]. Thus, to 
evaluate the ability of these compounds to inhibit SARS-
CoV-2 RdRp, remdesivir was used as a positive control.

Materials and methods
Structure-based virtual screening (SBVS)

Virtual screening is presently a worthy solution to 
the discovery of new hits. The database of 192 antiviral 
chemical compounds, available from DrugBank, was 
chosen for SBVS studies.  From this subset, molecular 
docking using AutoDock Vina was used to select the 
compounds based on binding energies lower than that 
of remdesivir. Next, the compounds were selected by 
visually inspecting the docking results with focus on 
the main interaction between crucial residues at the 
binding site of the SARS-CoV-2 RdRp enzymes. For 
the visual inspection, the existence of polar interactions 
with ASP760 and ASP761 were utilised as the preference 
criterion. Finally, the authors performed Lipinski’s rule 
of five and the prediction of ADMET for hit compounds.

Protein receptors preparation

The 3D structure of the RNA-dependent RNA 
polymerase (RdRp) enzyme (PDB ID: 6M71, resolution 

of 2.90 Å) was derived from the Protein Data Bank RCSB 
[9]. All water molecules and co-crystal were removed 
from the protein molecule using Discovery Studio 
Visualizer 4.0 software. After that, hydrogen atoms will 
be added to the protein before regenerating the active site 
using MGL AutoDock tools 1.5.6 software. Furthermore, 
the MOE SiteFinder algorithm was used to classify the 
RdRp binding pocket. The grid center for 6M71 was set 
as X=121, Y=120, and Z=125 (Angstrom), length 30 Å 
X 30 Å X 30 Å with the distance between grid cells is 1 
Å [10]. The protein is then saved in PDBQT format to 
prepare for the docking program.

Ligands preparation 

The ligand structures were collected from DrugBank 
for the RNA-dependent RNA polymerase enzyme (RdRp) 
target involved 192 antiviral compounds. The structures 
were downloaded from DrugBank in the simplified 
molecular-input line-entry system (SMILES) format and 
then converted into 3D structures in PDB format using 
MOE software [7]. After that, the ligands were optimised 
by Avogadro software using Conjugate Gradients and 
converted to PDBQT format using AutoDock tools 
software.

Performance of molecular docking

These collected compounds were docked into the 
active site using AutoDock Vina software. The ligand-
protein interaction energy is calculated by the scoring 
function of AutoDock Vina.

Lipinski’s rule of five

Lipinski’s rule of five is used to compare drug-
like and non-drug-like molecules [11]. It is widely 
employed to evaluate a potential molecule for use as a 
therapeutical drug. This rule acts as a filter that screens 
promising compounds with particular pharmacological 
characteristics. In this work, we used an online tool 
to evaluate Lipinski’s rule of five [12]. The chemical 
structures were downloaded from the PubChem database 
and set at pH 7.0 [13].

Prediction of ADMET by computational analysis

In order to analyse the physiochemical efficiency 
of the five above-mentioned drugs to inhibit the target 
protein, we used in silico ADMET profiling. An ADMET 
profile involves five parameters: absorption, distribution, 
metabolism, excretion, and toxicity, which all play a 
significant role to demonstrate the likelihood of success 
of a drug. Drug absorption depends on factors including 
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membrane permeability, intestinal absorption, levels of 
skin permeability, and as a substrate or inhibitor of the 
P-glycoprotein. Drug distribution relies on factors like 
the blood-brain barrier (logBB), central nervous system 
(CNS) permeability, and volume of distribution (VDss). 
Based on the cytochrome (CYP) models for substrate or 
inhibition (CYP2D6, CYP3A4, CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, and CYP3A4), metabolism is 
expected. Based on the total clearance model and the 
renal OCT2 substrate, excretion is expected. Based on 
salmonella typhimurium reverse mutation assay (AMES) 
toxicity, human ether-a-go-go-related gene (hERG) 
inhibition, hepatotoxicity, and skin sensitisation, the 
toxicity of drugs is expected. These criteria have been 
determined and their standard ranges have been tested 
for compliance. ADMET profiling was predicted using 
the pkCSM tool [14]. The canonical SMILES molecular 
structures of collected compounds were retrieved from 
the DrugBank database [7].

Results 
Binding pocket

Using the MOE SiteFinder to find the RdRp binding 
pocket, we found these essential acid amines: ASP760, 
ASP761, ASP623, ASP452, TYR455, TYR456, 
ARG553, PRO620, ARG624, GLU811, TYR619, 
PRO620, LYS621, CYS622, ASP623, SER681, LYS798, 
GLU811, and SER814 were all involved at the active 
site. Fig. 1 illustrates the active site or binding pocket of 
RdRp in the yellow box. 

Fig. 1. The binding pocket of SARS-CoV-2 RdRp.

Binding energy 
Figure 2 presents the SBVS workflow employed to 

find hits as SARS-CoV-2 RdRp enzyme inhibitors. 

Fig. 2.  The structure-based virtual screening workflow.

After preparing the ligands, we docked the 192 antiviral 
drugs retrieved with RNA-dependent RNA polymerase 
enzyme to screen target inhibitory activity. 

Remdesivir is an antiviral drug that has been 
approved by the FDA for the treatment of COVID-19 
requiring hospitalisation [8]. As an RNA polymerase 
(RdRp) inhibitor, it can inhibit coronavirus replication in 
respiratory epithelial cells [15]. Therefore, in this study, we 
compared the docking scores of the ligands with remdesivir 
to evaluate the compounds’ abilities to inhibit RNA-
dependent RNA polymerase enzyme. Elfiky (2020a) [16] 
also reported that remdesivir has a binding energy with the 
SARS-CoV-2 RdRp target of -7.6 kcal/mol. Fig. 3 shows 
the interaction between remdesivir and the RdRp enzyme.

Fig. 3. Interaction between remdesivir and RdRp enzyme.

From the results of docking 192 drugs, we obtained 26 
drugs with lower binding energy levels than remdesivir 
(-7.6 kcal/mol). Ligand-amino acid interactions of these 
26 compounds are shown in Table 1.
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ASP760 and ASP761, two aspartate residues, are 
the main catalytic residues of RdRp [17, 18]. These two 
residues are exceptionally conserved in all coronaviruses. 
As a selection criterion, the presence of polar interactions 
with ASP760 and ASP761 was used. Six compounds were 
selected based on the main interaction between these 
essential residues at the binding site of SARS-CoV-2 
RdRp enzyme. Fig. 4 shows the interaction between 
dihydroergotamine, sofosbuvir, nilotinib, inarigivir, 
tipranavir, darunavir, and the RdRp enzyme target.

Lipinski’s rule of five 

Lipinski’s rule of five is used to distinguish between 
drug-like and non-drug-like molecules. It predicts high 
probabilities of drug-like effectiveness or failure for 
molecules complying with 2 or more of the following 
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Table 1. Ligand-amino acid interactions of 26 scoring 
antiviral drugs against the RdRp enzyme. 

No Name Binding energy 
(kcal/mol) Involved amino acids

1 Dihydroergotamine -9.4 ASP760, ASP761, LYS621, ARG553, 
GLU811, LYS798, LYS551

2 Sofosbuvir -9.4
ASP760, ASP761, ASO618, TYR619, 
CYS622, GLU811, TRP800, SER814, 
CYS813

3 Nilotinib -8.8
ASP760, ASP761, LYS621, ARG553, 
ARG624, TYR455, TYR619, ASP623, 
SER814, PRO620

4 Inarigivir -8.6
ASP760, ASP761, ARG553, ASP623, 
ALA554, ASP452, ARG624, SER814, 
CYS813, GLU811, TRP800

5 Tipranavir -8.2
ASP760, ASP761, LYS621, ARG553, 
ARG624, ASP618, ASP452, TYR455, 
PRO620, GLU811, CYS622

6 Darunavir -7.7
ASP760, ASP761, LYS621, ARG553, 
CYS622, TYR455, ARG624, ASP623, 
TYR619

7 Golvatinib -9.3 ASP623 ARG624, LYS621, ARG553, 
THR680, TYR456, SER681, SER682

8 Beclabuvir -9 ARG553, LYS621, CYS622, ASP164, 
ASN552

9 Nafamostat -8.7 LYS621, VAL166, LYS798, TRP800, 
TRP617, GLY811

10 Bictegravir -8.6 ARG624, ASP623, LYS621, ARG553, 
CYS 622, TYR619

11 Baloxavir marboxil -8.2 ASP623, ASN691, CYS622, ASP760, 
ARG553,LYS621

12 Avatrombopag -8.2 PRO620, VAL166, LYS521, TYR455, 
ARG553, ARG555, ARG836

13 Adarotene -8.1 VAL166, PRO620, LYS621, ARG624

14 Delavirdine -8 THR556, ARG553, LYS621, TYR619

15 Dolutegravir -8 TYR619, ASP760, CYS622, LYS621, 
ARG553, ARG624, ASP623

16 Aplaviroc -8 ARG553, LYS621, TYR455, GLU811, 
TRP617

17  Deferasirox -8 ASP618, TYR619, CYS622, PRO620, 
LYS621, ARG553

18 Raltegravir -7.9 ASN691, ALA688, THR556, ARG553, 
LYS621, TYR455, ASP623

19 Doravirine -7.9 ARG553, ARG624, ASP623, TYR619, 
CYS622, ASN691, ASP760

20 Pritelivir -7.9 LYS798, PRO620, LYS621, ASP623, 
ARG553, TYR455

21 Elsulfavirine -7.9 ARG553, CYS622, ASP164, ASN552, 
THR556, ARG553, LYS621, TYR619

22 PF-232798 -7.9 ARG624, ASP623, LYS621, ASP761

23 Pranlukast -7.8 ASP623, ARG555, ARG553, ARG624, 
ASP452, TYR455, LYS621

24 BMS-488043 -7.8 ASP623, CYS622, ASP761, GLU811, 
TRP617, TRP800, ALA762

25 Nelfinavir -7.7 ARG553, TYR619, LYS621, PRO620, 
VAL166, SER795, PHE793

26  Benperidol -7.7 VAL166, LYS798, PRO620, SER795, 
PHE793, LYS621, ARG553, ARG624
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rules: molecular mass (MW) below 500 Dalton; high 
lipophilicity (expressed as logP below 5); less than 5 
donors of hydrogen bonds (HBD); less than 10 acceptors 
of hydrogen bonds (HBA1); and a molar refractivity 
(MR) between 40-130.
Table 2. The result of Lipinski’s rule of five.

No Drugs Molecular 
weight HBD HBA1 logP MR Drug-

likeness

1 Dihydroergotamine 583.0 3 9 1.498670 155.963348 Yes

2 Sofosbuvir 529.0 3.0 12.0 1.999300 123.152649 Yes

3 Nilotinib 529.0 2 7 6.356432 140.482941 Yes

4 Inarigivir 587.0 6 16 -0.876200 132.885513 No

5 Tipranavir 602 2.0 7.0 8.406303 152.331619 Yes

6 Darunavir 547.0 4 10 3.456099 141.639954 Yes

Among the 6 potential drugs, 5 of them satisfied 
more than 2 criteria, which we then suggest are 
potential candidates. These candidates are sofosbuvir, 
dihydroergotamine, nilotinib, tipranavir, and darunavir 
(Table   2). Then, we focus on analysing the pharmacokinetic 
properties including absorption, distribution, 
metabolism, excretion, and toxicity of these drugs. 

Prediction of absorption, distribution, metabolism, 
excretion and toxicity (ADMET) profile

The prediction of absorption, distribution, metabolism, 
excretion, and toxicity profile of five selected drugs are 
shown in Table 3. 

Discussion 
Structure-based virtual screening and molecular 

docking
Comparing the interactions of the 5 drugs with 

remdesivir, we can see that their bonds to the RdRp 
enzyme have similarities with remdesivir. This is 
demonstrated by their association with several important 
amino acids such as LYS621, ASP761, ARG553, and 
especially the π-anion bond with ASP760. In addition, 
these drugs also bind to many other amino acids such 
as TYR619, PRO620, ASP618, CYS622, etc. In recent 
studies, they demonstrated the same residues to bind 
strongly within the active sites of RdRp [17, 19].

Analysing the binding energy and interaction of 
the ligand-amino acid, we found that all five drugs had 
COVID-19 therapeutic potential. Dihydroergotamine 
and sofosbuvir, which had the lowest binding energy 
to SARS-CoV-2 RdRp (-9.4 kcal/mol), was docked 
into the active site of the enzyme in a similar manner to 
remdesivir. Dihydroergotamine was observed to interact 
via carbon hydrogen bonds to ASP760 and ASP761 
along with π-anion electrostatic bonds to GLU811 and 
LYS621. On the other hand, sofosbuvir could bind 

Table 3. The result of ADMET profile.

Properties Dihydro-
ergotamine Sofosbuvir Nilotinib Tipranavir Darunavir

Absorption

Water solubility
(log mol/l) -2.941 0.953 -2.899 -5.181 -3.358

Caco-2 permeability
(log Papp in 10-6 cm/s) 0.271 0.472 1.385 0.664 0.493

Intestinal absorption 
(human) (% absorbed) 64.091 64.308 99.538 98.275 75.477

Skin permeability
(log Kp) -2.735 -2.736 -2.735 -2.735 -2.739

P-glycoprotein substrate Yes Yes Yes Yes Yes

P-glycoprotein I 
inhibitor Yes Yes Yes Yes Yes

P-glycoprotein II 
inhibitor Yes No Yes Yes No

Distribution

VDss (human) (log l/kg) 1.301 -0.728 -0.547 -0.04 0.602

Fraction unbound 
(human) (Fu) 0.301 0.08 0.243 0 0.055

BBB permeability -0.532 -1.873 -0.684 -1.368 -1.111

CNS permeability
(log PS) -2.693 -4.343 -2.052 -3.063 -3.519

Metabolism

CYP2D6 substrate No No No No No

CYP3A4 substrate Yes No Yes Yes Yes

CYP1A2 inhibitor No No No No No

CYP2C19 inhibitor No No Yes Yes No

CYP2C9 inhibitor Yes No Yes Yes No

CYP2D6 inhibitor No No No No No

CYP3A4 inhibitor Yes No Yes Yes Yes

Excretion

Total clearance (log ml/
min/kg) 0.67 -0.106 0.406 0.131 0.622

Renal OCT2 substrate 
(human) No No Yes No No

Toxicity

AMES toxicity No No No No No

Max. tolerated dose 
(human)
(log mg/kg/day)

0.135 1.049 0.199 -0.354 -0.763

HERG I inhibitor No No No No No

HERG II inhibitor Yes No Yes Yes No

Oral rat acute toxicity 
(LD50) (mol/kg) 2.714 2.31 2.489 2.367 2.107

Oral rat chronic toxicity 
(LOAEL) (log mg/kg 
bw/day)

3.131 1.824 0.923 2.326 2.775

Hepatotoxicity Yes Yes Yes Yes Yes

Skin sensitisation No No No No No

T. Pyriformis toxicity 
(log ug/l) 0.285 0.283 0.285 0.286 0.289

Minnow toxicity (log 
mM) 1.74 1.023 1.301 -2.023 0.61
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to the interface active pocket of the SARS‐CoV-2 by 
conventional hydrogen bonding through TYR619, 
CYS622, and GLU811 as well as π-anion bonds through 
ASP760, ASP761, and ARG553. Nilotinib also interacted 
with SARS-CoV-2 RdRp by a conserved binding pattern. 
It was found that this compound had interacted with 
carbon hydrogen bonds to ASP760 and GLU811 along 
with π-anion bonds to ASP761, LYS621, and ARG553. 
Tipranavir and Darunavir had high binding energies to the 
viral RdRp through some of the same amino acids such 
as hydrogen bonds with ARG553, π-anion electrostatic 
bond with ASP761, and other interactions with ASP760, 
LYS621, and CYS622. For Tipranavir, hydrogen and 
π-anion bonds with ASP760 and ASP761, respectively, 
were observed with a docking score of -8.2 kcal/mol. The 
binding energy and the interaction of the ligand-amino 
acid between Darunavir and SARS-CoV-2 exhibited 
an inhibitory ability against COVID-19 of Darunavir. 
Both Tipranavir and Darunavir exhibited two π-anion 
interactions with ASP760 and ASP761 with docking 
score of -7.7 kcal/mol.

Our docking findings revealed that dihydroergotamine 
(DHE) is a semi-synthetic ergot alkaloid that exhibits 
high affinities against RdRp with docking binding 
energies of -9.4 kcal/mol, which is similar to the research 
result of Gul, et al. (2020) [20]. Previous studies using in 
silico models have also shown the SAR-CoV-2 inhibitory 
potential of DHE due to interactions within the binding 
pocket through a good number of hydrogen bonds and 
hydrophobic interactions [20, 21]. In the research of 
Gupta, et al. (2020) [22] using molecular mechanics 
Poisson-Boltzmann surface area  (MM/PBSA), DHE had 
the lowest binding free energy of -17.9 kcal/mol among 
the final set of surveyed drugs. Thus, it is suggested that a 
strong interaction between SARS-CoV-2 and DHE exists. 
Sofosbuvir is a virus inhibitor of great interest among 
direct-acting antivirals currently in development [23]. 
Sofosbuvir was also shown to have an ability to bind to 
the SARS‐CoV‐2 RNA‐dependent RNA polymerase and 
inhibit enzyme activity [24]. Previous studies reported 
that sofosbuvir may be a possible candidate in the 
treatment of COVID-19 based on the similarity of HCV 
and coronavirus replication systems [25-28]. Nilotinib is 
another potential compound that showed strong binding 
energy towards SAR-CoV-2 RdRp. A recent study by 
Ruan, et al. (2020) [24] showed the binding energy 
between nilotinib and the active site of the SARS-CoV-2 
RdRp enzyme to be -8.4 kcal/mol, which is similar to 
our result of -8.8 kcal/mol. Noticeably, nilotinib should 
be able to inhibit SARS‐CoV‐2 replication in in vitro, 
both in Vero‐E6 and in Calu‐3 cells, with a half maximal 
effective concentration (EC50) evaluated at 1.44 and 3.06 
μM, respectively [29]. Also, some recent publications 
demonstrated that Tipranavir could serve as a potential 

COVID-19 medicinal product, with additional validation 
studies, because of interactions with the main protease 
and RNA-dependent RNA polymerase of SARS-CoV-2 
[30, 31]. Finally, darunavir exhibited inhibitory ability 
against COVID-19 in our research. This drug has 
been carried out in many studies and shows signs of 
improvement in COVID-19 treatment [32-34]. 

All five drugs mentioned have been approved by 
the FDA for antiviral treatment. Due to the COVID-19 
pandemic, the option of these FDA-approved drugs is 
a wise decision in this current emergency because they 
have already been tested prior to FDA approval.

Each of the five drugs have been shown to treat many 
diseases as well as inhibit viruses. Dihydroergotamine 
is a semi-synthetic ergot alkaloid that has been widely 
used in the treatment of migraines [35]. Sofosbuvir is a 
hepatitis C virus inhibitor of great interest among direct-
acting antivirals currently in development [23]. Nilotinib 
is a tyrosine kinase inhibitor used to treat chronic 
myelogenous leukemia [36]. Tipranavir is a new protease 
inhibitor that, by blocking HIV-1 and HIV-2 proteases, 
is highly selective for therapeutic intervention in the 
viral life cycle [37, 38]. As darunavir’s high genetic 
barrier and potency, it is a protease inhibitor for the 
successful treatment of HIV-1 infection in both naive and 
experienced subjects [39, 40]. Thus, these medications 
propose their reuse for new health complications. The 
benefits associated with repurposed drugs include safety 
for human use, no escalating cost, and a reduced timeline 
for its development [41].

ADMET prediction
The absorption of drugs is predicted based on 

membrane permeability, intestinal absorption, skin 
permeability levels, and P-glycoprotein substrate or 
inhibitor. When the Papp coefficient is >8×10-6, the 
predicted value is >0.90. Hence, the compound has 
high Caco-2 permeability and is simple to absorb [42]. 
Nilotinib was predicted to have high Caco-2 permeability. 
The intestinal absorption (human) percentage of all 
mentioned compounds is comparatively high: sofosbuvir 
(67.308%), dihydroergotamine (64.091%), nilotinib 
(99.538%), tipranavir (98.275%), and darunavir 
(75.477%). Concerning skin permeability, a compound 
with log Kp>-2.5 is understood as having very poor skin 
permeability [42]. However, none of the drugs were 
considered to have low skin permeability. P-glycoprotein 
is a member of the superfamily of ABC transporters that 
can excrete drugs or other exogenous chemicals from cells. 
The results suggest that sofosbuvir, dihydroergotamine, 
and nilotinib may be actively exuded from cells by 
P-glycoprotein. Dihydroergotamine, tipranavir, and 
nilotinib were predicted to be a P-glycoprotein inhibitor.
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The distribution of medication depends on factors 
that consist of the blood-brain barrier (logBB), CNS 
permeability, and the volume of distribution (VDss). The 
distribution extent is a parameter to signify the distribution 
of medication in numerous tissues in vivo. VDss is 
considered low if it is below 0.71 l/kg (log VDss<-0.15) 
and high if it is above 2.81 l/kg (log VDss>0.45) [43]. 
The results confirmed that the distribution volume of 
dihydroergotamine and darunavir were high whereas the 
VDss of sofosbuvir and nilotinib were -0.728 and -0.547, 
respectively, and lower than -0.15. For a given drug, a 
log BB <-1 is considered to poorly cross the blood-brain 
barrier [43]. Sofosbuvir, tipranavir, and darunavir were 
predicted to have difficulty crossing the blood-brain 
barrier. For CNS permeability, sofosbuvir, tipranavir, 
and darunavir were predicted to be unable to penetrate 
the central nervous system (CNS) (logPS is <-3) while 
dihydroergotamine and nilotinib may penetrate the CNS. 

Metabolism is anticipated based on the CYP fashions 
for substrate or inhibition (CYP2D6, CYP3A4, CYP1A2, 
CYP2C19, CYP2C9, CYP2D6, and CYP3A4). A 
significant detoxification enzyme in the body, primarily 
found in the liver, is cytochrome P450. The two main 
isoforms of cytochrome P450 that are responsible for 
drug metabolism are CYP2D6 and CYP3A4 [44]. The 
results confirm that sofosbuvir is not a substrate for the 
two subtypes. However, all four remaining compounds 
were substrates for CYP3A4. This suggests that nilotinib, 
dihydroergotamine, darunavir, and tipranavir may be 
metabolised in the liver. The prediction demonstrates 
that the total clearance of dihydroergotamine is the best 
observed by means sofosbuvir, tipranavir, nilotinib, and 
darunavir. 

The toxicity profile of these compounds were also 
analysed. The toxicities of these drugs are expected 
based on their AMES toxicities, hERG inhibition, 
hepatotoxicities, and skin sensitization. Almost all of these 
compounds were observed to inhibit the human ether-a-
go-go-related gene II (hERG II) except for sofosbuvir 
and darunavir. The toxicity prediction from the AMES 
test (Salmonella typhimurium reverse mutation assay) 
indicated that all the compounds could be considered as 
non-mutagenic agents. High toxicities were shown for 
all the compounds in Tetrahymena pyriformis. All the 
compounds may not affect skin sensitisation. 

Although these above-mentioned drugs were 
approved by the FDA, we used ADMET prediction to 
re-evaluate their structural alerts of toxicity. Nilotinib, 
tipranavir, and dihydroergotamine were observed to be 
hERG II inhibitors, which is the principal cause for the 
development of acquired long QT syndrome leading 
to fatal ventricular arrhythmia. All five drugs are the 
substrates of P-glycoprotein, which are easily transported 

in the body but may have hepatotoxicity.

Conclusions 
Our research is to screen existing approved drugs 

by the FDA and suggest their reuse for new medical 
complications. This current research screened 192 
antiviral drugs from the DrugBank database for 
inhibition of the SARS-CoV-2 virus. We showed that 
five FDA-approved drugs found after virtual screening 
showed stable interaction with key residues of the 
RdRp enzyme including dihydroergotamine, sofosbuvir, 
nilotinib, tipranavir, and darunavir, which inhibited viral 
proliferation. ADMET predictions demonstrated some 
structural alerts of toxicity in these drugs. In conclusion, 
based on our findings, we suggest that these five promising 
drugs should be further studied in vitro, in vivo, and in 
clinical trials to combat this widespread infection.
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