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ABSTRACT

On the imperfect water entry, a high speed slender body moving in the forward direction
rotates inside the cavity. The super cavity model describes the very fast motion of body in water.
In the super cavity madel the drag coefficient plays important role 1n body's motion. In some
references this drag coefficient is simply chosen by different values in the mterval 0.8-1.0. In
some other references this drag coefficient is written by the formula & =Cy, {1+ 0 )cos’ @ with

O is the cavity number, « 15 the angle of body axis and flow direction, C,q is a parameter
chosen from the interval 0.6-0 85, In this paper the drag coefficient & =k,Cp, [\l +o’)coslaf is

written with fixed €,, =082 and fhe parameterk, 15 corrected so that the simulation body
velocities are closer to observation data. To find the convenient drag coefficient the data
?55iml|at10n method by differential vanation is applied. In this method the observing data is used
in the cost fanction The data assimilation is one of the effected methods to solve the optimal
problems by solving the adjoin problems and then finding the gradient of cost function.

Keywords data assimilation, optimal, Runge-Kutta methods.

1. INTRODUCTION

When slender body runming very fast under water (velocity is higher than 50 ms) the
cavity phenomena is happened. Cavity may have a variety of cause. The most common example
is boiling water, where the vapor pressure is increased by raising the water temperature. In
hydrodynamics applications cavitation is the appearance of vapor bubbles and pockets inside
homogeneous hquid medium This phenomenon oceurs because the pressure is reduced to the
vapor pressure limit In this paper we will study super cavity appearing by the very fast
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movement of slender body in water that makes uncontrolted gun-launched stender body. Except
the body head called by cavitator is directly touching with water, the gas iayer can be covered
partial of full body depending on the design of body form. The body rotates about its nose. The
form of body's nose can be differently chosen such as: sharp, hemisphere, plate disk. For
simple calcutation we chaose cavitator formed by the plate disk with diameter d, (Figure 1).

The body is consisted of two parts: the cone top and cylinder part with the diameter 4 .

haras - L isthe length of the slender body,
——— - L, is the body's length of cylinder part;
- L, is the body's length of cone top part,
T - d isthe body's diameter;

de - d_ the body's nose diameter.
Fige I Slender bedy geometer.

In the super cavity model the following assumptions are [1, 2]

- The motion of the projectile 1s confined to a plane,

- The slender body rotates about its nose [1-4];

- The effect of gravity on the dynamics of this body 15 negligible;

- The motion of the slender body is not tnfluenced by the presence of gas, water vapor or
water drops 1n the cavity;

The super cavity problems are studied m (1, 2,5 - 11). To study the motion problems of
slender body running under water there are basic approaches:

- The experimental approach consisting in observing and measuring motion by remote
sensing.

The modeling approach based on mathematical models of the flow and of the body
motion.

- The models of body's motion under water include some parameters that have not a clear
physical meaning because they are a synthetic representation of several physical effects such as
sub-gnd turbulence that can't be explicit in the model becanse of a necessary truncation for
humerical purposes.

None of these approaches s sufficient to predict the evolution of body motion. They have
fo be combined to retrieve the body motion under water All the techniques used to combine the
information provided by observations and the mformation provided by models are named by
Data Assimilation methods and have known an important development during these last
decades. The Data Assimlation method using differential variation 1s based an the theory of
optimal control for partal ditferential equation by Lions et al. {12, 13) and Marchuk et al [14].
This method is applied to correct coeffictents, solve the 1m erse problems, simulate the air and
fluid poliution processes ([14 - 217)

- In this paper we will concentrate the study on the 1dentification coefficient parameter k,
of the drag coefficient k=kC,, (1 +0)cos’ @ (C,y =082}, In the second section we will

describe the abstract defimtion of an inverse problem via varation methods The unknown
coefficient 1s defined as the solution of an optimization problem In the third section we will
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formulate the model of the problem of bedy's fast motion under water probiem. The 4-th section
1s devoted to the application of optimal control to the identification of model's coefficient,

2. GENERAL VARIATION APPROACH

Becanse In the model's parameters are a synthetic representation of several physical effects,
they can't be directly estimated. They depend both on the model and on the data. They will be
evaluated as the solution of an "Inverse Problem"”, basically as the solution of an optimization
problem. The advantage is that therc cxist many efficient algorithms for solving thesc problerms,
Most of them require to compute the gradient of the function to be minimized. The cost function
is done by solving an “Adjoin Model" The method is described in many papers together with
the computational developments ([14 - 21 ). It can be summarized as follows:

Let X (7} the state vector describing the evolution of a system geverned by the abstract
equation”

K F(X.E...E)

dt 20

x(0)-.x,

where: £],.., £y are the equation's parameters with » is the number of parameters; X(/) is a
unknown  state vector belonging for any ¢ to a Hilbert space 3. Xge3; £ is a nonlinear

1/2
1y =y
space of model's parameters). Suppose that for given initial value X(0)=Xqe Sand

operator mapping ¥ x¥p to ¥ with ¥=125(0,1,%), » Ypis Hilbert space (the

(El....E,)c Y[,Ihcrc cxists a unique solution XYe3  to (2.1). In case the values of
£ =(E]....Ep) are unknowa and there are some observation data Xpps € Spps with Sppgisa
Hilbert space (observation space) we introduce the functional called cost function:
| 7 ()]
HEY = [(HICx - Xops).CX ~Xobs)g
b ¥
where (EQj....£0,,) are priori approximation evaluations of Byt C:353ppg1s a

dH—%(Eon)z

lincar bounded operator, H:3phs — Jppg 15 symmetnc positive definite operator; The

problem is to determine E* :(EI*, E;\\ by mimmizing J . The second and the third terms in
J are a regulanization term in the sense (:nykhun(!\, have a well posed problem (see [15, 17)).
The optimal solutions are characterized by ¥ j(El*,,_ ,E:). where V.J/ 15 the gradicnt of J . To
compute this gradient we introducee; (/=1,2, .1, the dircetions in the space Yp_ We will
compute the Gatcaux dervative of the cost function J by £ =(£,.,Fy) in the directions

ofe=(e]...ey) The Gateaur derivative of the cost function J  in the directions of
e={e]. ..ey) will be
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Qe E)= ZJC(C’H(CX—XD(,)X‘”) (1(+Z(E -E e}

:Z“!’(C’H(a\r_ an’)y/gm)j d”.Z:;(E' — .6 23

B ),y (B, ))irnne,)

where: X', (£,..,£,) respectively are the Gateaux derivatives of X and J with respect
to £ m the directions ;. Here <> is the dot product assaciated with the norm operator | |.
The optimal solution of problem is characterized by J(E...E, )=V.J.(¢. e, Y =0 where
V.J:(J[’, ,JE) is the gradient of J/ with respect to E,,...E,; The superscript T indicates
the transpose of the vector

The Gateaux derivative equalions of (2.1} by £, in the directions of ¢ (1=1,2, n)are:

ax _OF(X.E, \E) ., oF
") g, 9F
o ox T 24
)‘{m(m:

Let us introduce P, the adjoin variable in the same space a3 2 Multiplying equation
(24)by P" 1n space S we integrate by time between 0 and 7 . It comes.

% . dF s dr " .
JD(T’P“J d,_J‘( X0 p 'dew"j{diﬂ e, P ldr (2.5)
’ Po(g), 2 @ [T ™
or[x'(n,PV(T;)J»(X’() (o)), -|{v — {;ﬂ']# 1d+e"!|,d€j[ﬁ & 26}
i=12,.n

The superscript ' indicates the transpose of the matnix
Summing » equations of (2 6) we have

(e - o) |

o - . N ; " .
=3 ” i g o dl+c,J G\ pogr @n
= dr dX . aF
RN Ja o +
If P is the soluton ot
nl 4
ar Y[ﬁ} PO=CTH(CX - X}
4 LdY
#T)-0 238)

then (2.7 becomes,
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zg(t’% L 1 P“’)'Sdt Zj(x-“ CTH(CX - £,,)), d

=1 =

S A
—*Z"-IHT} Pt (2.9)

@

Therefore, from (2.3}, (2.9}, we have

’ \
EnE)- Z[ j’[dp} PUdi+E -E,, Je
=V e e,) (2.10)

with VI =[S (B e (EnE)) @m

: e
where: JL’(E \‘TE,] P+ E - E,,

Equations 2.1 - 2.9 and the condition for the gradient (2.11} to be null are the Optimality
System (0.3) The adjon model will be run back word to get the gradient which are used to
carry out an algorithm of optimization [14 - 21].

3. MATHEMATICAL MODEL FOR THE BODY MOTION

To describe the motion of body, a body fixed coordinate system as shown in Figure 2 is
chosen. (X,.¥,.Z;) s the inertial reference frame with origin at O and (X,,Y,,Z,) is the non-
inertial reference frame with origin at A, the up of the slender body. The X, -axis coincides with
the longitudinal axis of the siender body. The components of velocity of point A along X, and
Z, direction are 7 and W respectively. The components of velocity of point A along Xy and Z,
direction are Ur and ¥, respectively. The angular velocity and rotating angular about ¥, axis

are Qand  respectively,

cantz of n

Figure 2 Axes of body and mertial frames.

The relanonships between body and mertral fixed velocitics arc described by the following
formulas.
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UF =Ucosd+Wsing, Wp =-Usind+Fcosd: B=0 0 =1h
The mihematic cavity model [1] is used to describe the motion of slender body under

water in cat ity The motion of slender body in both phases is written by the following equations:

Phase I' For {° >> W7 and p4.k(U, W, h)U? >>2mLQ" the equation can be written as

Ll 1
k(U R AL”
ar 2mp B )AL

aw

—=0U

ot 2

90 (3.1)
a =0

%:~U5inz9+Wcosﬁ

L
- @
U(0)=U,, {0} =1,:0(0)= 0,:0(0) = 0, :h(0) = .~ (O)= o
Phase 2: For U* >>W* and pA k(U W.h)7* >> 2miQ* the equatien can be written as:

U 1 -
L k(U R F(A4 1], O)L"
3 = P )F(4.r1,.8)
aall’:m [+ M (L 2RO OM. L (L )] O
32
%Q =KMWL v, + 0L, % -
%:{x‘smm—ﬂ'cosﬂ
EE)
=0

where:

- 8 is the angle of slender body during impact with the cavity boundary.

W .
tand =~ — or § =arcr=mi
L L

iy ol

- =
m 7

r—i tang R
"R_a}fw!, tan @);dl, ané

S F(Ard.9)=A +r’c€)s"[
- k(L) =k Cy (1 +0)cos’ &

-C =082
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- o 15 the angle between flow direction and body's direction in moving
cos@= W
- p.=pgh+ L, - Ambient pressure;
- 1, 1s the wetted length of the body;
- & . K are parameters; For the eircular section K =27 [1];
- h 15 the water depth between the body's pesition and water free surface,
£ is the mass density of water,
- X, 15 the distance between body's tail and its centre of mass;
- m is the mass of the slender body;
: : P.— P
- ¢ 15 the cavitation number U:W
- I is the moment of nertia of the body about an axis parallel to the ¥ axis and passing
thraugh its centre of mass;
- #=d {2 13 the radus of slender body;

<

xd
-4 = is the area of the cavitator;

-n= % is the cawitator radius;

- £=9.81 m/s 15 the gravity acceleration,

- P, is the vapour pressure of water.

To get the above equations the following condition is needed: %<<1

The geometry of the cavity is given by ({1, 2, 8]):
=i}y
w2y (p2y

where the maximum diameter D, and length ! of the cavity shape are given by the following

formulas:
k,
D, =d. Coo (140 _d logi
o a a

The equation (3 1) - (3.2) can be rewritten as follows:

ax
B SO a3
X(0)= X
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3.4)
where: X (UW.0.k8) ¢
is an unknown state finction vector of the equations (3 1)-(3 2) and
7
Ko = (U, 0,0 b 1)
A=) (X), 42X ), A3(X), ~U'sin 6+ W cos 5,0 (3.5)
!t
——pk(U, W‘MACUZ in the first phase
2m -’
4x)y={ 2
»z—pk(U,W,h)F(A(.,r,lk,ﬁ)b'z m the second phase
m :
ou w the first phase
H={
KO + KCaW + QU 1n the second phase
ou in the first phase
A= )
CYWE+C4WQ  in the second phase
G =Mb A M 5o (L=x, )G = 2M, x, ), (L2, 50 =M, 3G ==MLix,,
‘The equation 3.3 15 solved by Runge Kutta method.
4. CORECTION OF kj COEFFICIENT
We  have priori approximations k., of k and measurement

Xobs =(Uohs Hobs Oobs-Faps - Byps ) of the motion veloaity of bady. Using the cost function

%
{see formula 4 1) the continuous problem 15 1o determine k| mimmizing J ;
1 T 1 2
S =5 I(CX*X(zbs,CX*Xoh.v Jg d”g[ﬁ -h0] @n
2 .
0
Cis an operator. that is Diract’s matnx, from the space of the varable X to the space of
obsecvation with point wise measurement Therefore, we have an optimal control problem with
respect to the cocfticient &1 . The first step 1s to exhibit the Fuler-Lagrange equation- necessary
equation for an optimum tn order to exhubit the pradient of ./ with respect tok]  Then, we will
be able to carry out some optimization algonthm

The data assunidation problem s written m the farm

Bi: AX)
ar
X0 - A,

) 42)
J [(k{):iyf.l(kl)
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here X =(U,W.0,A, lﬂ)r, A(X) is the vector function defined by the formula (3.4)- (3.5), and
the cost function J(k,) is defined by the formula (4.1). To solve the problem (4.2) we will

define the formula of function J{ (k) in the next subsection.
4.1. Computation of Gateaux derivative for the cost functien J

Let k| being a value in the space of the control. Let us introduce the Gateau denvative

f(:(l},W,Qi;,@)r of X:(U,W,Q,h,z?)’ by 41 in the directions ofi?, as follows ([22]).

oo g Xk red)-X()
X=lfim——
a—0
Then the Gateaux derivative of the cost function J with respect to &| n the directions of
k,wilt be:
T
Jhy=[(CT(Cx - X, ). X) dr+(k k),
o ° 43)
Firstly, we will compute Gateaux derivatives J“ (k,) of the cost function J with respect to
k, inthe directions of k,.

The Gateau derivative equations of (3.3) with respect to , in the direction of %, are written
as follows:

aa—‘f:N(X))hB(xy?]
X(©)=0 (4.4)
where.
Mi(X) M) 0 M4 4.5)
Na(X) Np(x) Ngs(x) o 0
NXY=| 0 Np(x) Mlx) o 0 ;
-sing$  cos# o o ~Ucosd—Wsind?
0 1 i3
Ngl) in the first phase
Nj= " {i=1.37=1 4)
N ) in the second phase
st
Y [F.IC) M k. P v S S
L use(ut e w) iy P Dﬁp(U:*Wl)yzU *

" 1 - W -
= e | P b v hpCpg—F=" Py
= P "“[ +<>.5p(ux+w-‘) (2 +w?)” e ” vsp(uU° ) A
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wy L, ——E
2m 05U+ 1

g, NIV =0

) (st )R p-p .
| p.— .L[_L +3L L e 3 .
S =g kG |1 LB 5 Ao —— =
2 P ”t LN TS 0.5p(L7 +57)
’ 3 X
3
el e P P +24 e 8 —
2m . 0spfC ) 2 \,(L ]
_WUR
I — o
- Zig, T ane
e B

|\/(U’+n‘_§
;

NP =0 NP = 2KCHE  KC.0 N = KCIW +U NS = akew + KC,0
NP =KCW

B={B),52.53.0.0]

- lfpf,m(l?oj .4 for the first phase
_l o2m ' U :

! . . N N e
5 PCa Al = ) F - —k (U, WU F E, for the sccond phase
2 P A=) oA

- [z [
o[ LT 108 g \j

T

;
"0 for the first phasc
&= C W7+ L WO for the second phase
0 for the first phase

T e ., WQ for the second phasc
€/, .CL.CLL LG, ate the denvatives of those functions with respect to parameter 15
Multiplying the equation {4 4) by adjown ~anable P={E P.P.P.P )' un the same space as A’
and thenategraung by 7 between 0 and 7 we have
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(®(r).P(1) (,%(o),P(u))S :j(}%,%w ()r,p)]3 dt +1?._f3 Pldt (a.6)

T
N 0
where: F (X,P)= NT.P with N(X) is defined by the formula (4.5).
If P is satisfying the following equation:

Z—P+F(X,P):—C1H(CX- Xo)
T

P(T)=0 @
Then the Gateau denvative jk (k) of the cost function J with respect to 4] in the

directions of &, is: (see formula 4.3):
7 N

l

Therefore, the function J; (&) is calculated by the following formula:

-JT'B Prdt+(k, —AW)J=

J (k) :—][i’,%+ F{x.p )]s dt (k= kg )y =

r
Ji ==[(BB+B,A+ B )d +{k— k)
% _‘[ (R} 373 1 o (4‘8)

4.2. Algorithm to solve the aptimal control probiem

The oprimal method is based on imverse BFGS update [23 - 26). The algotithm schema is
written as follows
a. Let I = 0: Get the initial value &, =k ,: H;=1; Solve equations 3.3 with the parameter

k,,. and the adjom equations 4.7; Get the funchion JL) (k) by the formula 4 8
b. Calculate
di = =HiJy (k1)
¢. Calculate ¢ so that is satisfied the Armijo-Wolfe conditions ([25, 26]):
Uk - apdy < k) + afﬁ«/;c, (ki)
where fe (0,1}, Typically 5 ranges from 1074 10 0.1
This & can be found by the following schema steps ([27]):
© 1 %mzal =1,
¢ 2 Given 7¢(0,1). Typically =05,
¢3 Let 1=0 then o/ =mtial .

c.4 Check.
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While not J(k],,' + aldi) < J("],i)"‘alﬁ‘/]'c‘ (lq‘,')di
Set & = 1o¢'

Increase / by 1

End while

c58et gy = o) .
d. Calculate: Aki,i =5= ’”’iHiJ}c. (;q’l») )

¢ Calculate: &, =k +aAk, .

f. Solve equations 3.3 with the parameter k., and the adjoin equations 4.7.
g Get the function J, (k,,.,,) by the formula 4.8,
) '

h. Calculate y; = S B i+1) = Tk (k) g}

S¥y 5V 5585
1 Calculate H;py = -2 H; [t i

Vi si i) ym
joLeti=i+]
k. Gotostepbif J, (k,)2 & ( &> Ois given ).

lf.l;y (k) = Othe optimal process is stopped. Then, we have k= kl*

4.3. Simulation experimeut on correcting on correcting parameter 4] so that U is closed to
measurement

Let the body with m = 0025091315 kg, L=25¢cm, L,=11.5em d =0.57 cm, =012
om, Uy =240 mfs, W, =0, Q,=1radfs, ly=Tm, 4=0, 7 =181.104 kgn’, x,_ = 1001 cm,
We will test the problem by considering the following expenments-

By the same way as (16, 28] we can have the observation data
Xobs =(Uobs . WobsQabs fobs+ Uabs ) s follows.

Let model run in 0355 with values k1=l simulating the true velocity
X=(U, W.0.h, 0} by solving the equations {3.1)-(3.2).

This velocity X 15 used as a reference Xppy .

The measurement Xobs 1s obtamned by the values of X (n all the time period

Then we have Xpps 1 every time step

- In the testing the madel is running in the ime penod 0 5s with values k,=2 k,. Then, the
vector function X = (U, W.Q, k. %) 15 obtamed by solving equations (3.1)-(3 2)
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The equations (3 1)-(3.2) are solved by Runge Kutta method
- Using the formula of function J, (4.8) the optimal contro} problem (4.2) 15 solved by the

algorithm schema in subsection 4.2. Then the mimmum of J (k) is found by the formula (4.1)

with k; value.

- The process finding the coefficient is shown in Figure 3. By this process the error of
obtain coeffictent in the end optimal process is less than ¢.00001 percentage. In the Figure 4 the
obtain cost function J 1 the end of optimal process 1s nearly zero (less than 0.00001). The error
percentages of velocines U by X direction with reference Uobs with and without correction
coefficient 4, are shown in Figure 5. With the cotrection coefficient the percentage errors of
velocities are less than 0.00016 %.

- We have done real experimental of projectile running underwater. The cavity 1s presented
in the Picture I In the real we have 96 d points of velocities U by
X direction with the initial velocity Uy= 271.2 m/s. The other imtial conditions are chosen
approximately W, =0, Q)= 1rad. /s, ;y=1m, 1,=0

0

- Let the model run with the beginning coefficient & = 2.5 then the optimal coefficient Icr=
0 909999046325684 is found by the optimal program
- The companson between velocity measurement and the other ones of calculation with

k=25 or optimal coefficient ki.= (.909999046325684 is presented in the figure 6

- By this figure 1t is easy to see that with aptimal coefficient Iq*= 0.909599046325684 the
model 15 closer to measurement than the other one without correction.

18 100
90
i7
—coeflicient|
- K1 = ——eror
z perceny
#5 1 270 (%)
2 H
3 &80
H 2
LK 550
I
™ 40 1
]
o9 | 20
10
L
0 50 100 158 64
0 50 100 150

Optitsal process Optimal process

Figure 3 Correcting coefficient k, 10 optimal process (Lefty, Coefficient error percent in optimal process
correcting &, (Right)
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—- -

% - — —

14L——‘

12 o cost function J )
10 +———

Cost function J
o

50 100 150
Optimal process

Figure 4. Cost function .7 in optimal process correcting £, .

0.0004 ——— — ‘ 80 . 7
0.00035 0+
00003 260
=z <
g :
£0.00026 4 350
g | i
a Foy
g 00002 | -— g0
w w
0.00015 1 : 30
0000t L K
—emor percent of 10 4+ -
000005 vetactty U with T
oplimal K1=k1*
0 - :
¢ ] 500 1000
0 500 1000
Time step Tima step

Figure 5. Percent ecvor of velocity [/{1) with optimal correction of cocfficient k) = k;{ (left), Percent

error of velooiy [/(r) with coefficient k=2 {Raght)
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Picture 1. The full cavity ansing in very fast motion of projectile under water

272
2
271
—withi=25
£
—wth opimal B
K1=0 808990 e 210
15 5 \
£ =
2 = 269
H =
i £
B 1=
s
& 2
267
——withk1=2 5
- o 268
e with OpUimal
k1=0 909999
265
~—=-—-measurement
0 264
i 51 i 51
Time step Time'sten

Figure 6 Percent error of velocities U/ by X7 direction with and without optimal correction of coefficient

'kl comparing with measurement (lefty; Comparison of velocities U by X, direction with or without

correction and measurement.
4. CONCLUSIONS
In the model of slender body running very fast under water the coefficient k. strongly

effects (o the simulation results (the nght of Figure 5). By the results presented in Figures 341t

- *
15 easy to see that by the data assimilaton method the corrected coefficient & can be nearly
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equal to the reference coefficicnt k . It follows that the velocity U{#) s closed to the one 1n
reference model (the left of the Figure 5 or Figure 6). Then the data assimilation method can be
used as the good tool to correct coefficient in the model of body runmng fast under water.
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Ay _wation of data assimifation for parameter correction in super cavity modeling

Trong me: trrémg nude, khi mot vit thé c6 hinh dang manh di chuyén vai van toc nhanh
huéng vé phia truge sz 1y quay trong mét khe réng (edn goi 13 khoang hoi hay tin hot xdm thurc)

Trong mé hinh khe réng hé s6 can ciia vat thé dong vai trd rit quan trong trong qué trinh di
chuyén. Theo Salis, Garabedian, Kicenukm hé s can nay duge chon bét cée gid in thich hop
trong khodng tir 0,8 dén 1. Theo Rand, Kirschner thi hé s& cin nay duoc viét bén céng thire
k=Cp(1+0)cos’ @ v6i & 13 56 cavitation (sé xam thuc ), & 1a goc gifa truc cda vat thé
manh va huéng cda di chuyén, C,, 1a tham s& thiémg duge chon trong khoang tir 0.6 dén
0.85 Trong bii béo nay hé sb cin duoc vidt dusi dang k=kC,, {1+ o)cos” &r. trong tinh ton
hé sb ¢, dirge lay bing 0,82 va bing phuong phip toan hoc hé s6 chua bidt & 58 duoc hidu
clunh sav cho cdc vin téc di chuyén trong md hinh gdn vé1 céc sé éu quan sat dugce Phuong
phap toan hoc duge dp dung dé tim hé sb chua biét 4 la phuong phip déng héa <6 héu Trong

phuong phap ndy cac sb liéu quan sit dirge sir dung trong ham mue tigu. Day chinh 1a mot trong
nhimg phuong phap hir hiéu dé gidr céc bai todn t6i uu bing cach giar bai togn hén hap ré
tinh gradient ¢ta ham muc héw,

Tir khoa- dbng héa sé ligw, t&i wru, phuong phap Runge-Kutta





