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ABSTRACT

In this paper, a new eight-unknown shear deformation theory 1s developed for bending and
free vibration analysis of functionally graded plates by finite element method. The theory based
on full twelve-unknown higher order shear deformation theory, simultaneously satisfy zeros
transverse stresses at top and bottom surface of FG plates A four-node rectangular element with
sixteen degrees of freedom per node 1s used. Poisson’s ratios, Young's moduli and material
densities vary continuousty in thickness direction according to the volume fraction of
constituents which is modeled as power law functions. Results are verified with available resalts
n the Lterature. Parametric studies are performed for different power law index, side-to-
thickness ratios

Kevwords: fonctionally graded plate, finite element method, bending, vibration analysis.

1. INTRODUCTION

Since 1t was invented by Japanese scientists in 1984 [1], functionally graded matetials
(FGMs)» are increasingly and  widely used in many fields, such as aerospace, matine,
mgchamca], and structural engineering due to (ts advantages compared to classical fiber-
reinforced .lammated composites. The typical FGMs composed of ceramic and metal materials.
The ceramic composinon offers thermal barrier effects and protects the metal from corrosion sod
oxidation, and the metallic composition provides FGM toughness and smrength.

For dynamic and static analysis of functionally graded plates and shells, many plate
theories are developed. A review of shear deformation theories for isofropic and laminated plates
was carned out by Ghugal and Shimpi (2] and Khandan et al. [3). Focus on modeling of
functionally graded piates and shells, Thai Huu-Tai and Kim Seung-Eock [4] reviewed variow
theoretical n.mdels to investigate their mechanical behavior. The classical plate theory (CPT)
based on Kirchhoff assumptions and ignores the transverse shear deformation effect gives
appropriate results for thin plates. First-order shear deformation theory (FSDT) takes inlo
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accaunt the transverse shear deformation effect and needs a shear comection factor which 15
difficult {0 determine due to its d pendence on many p 5. To avercome the weaknesses
of FSDT, the higher-order shear deformation theories are proposed

A comprehensive review of the various methods employed to study the static, dynamic and
stability behavior of functionally graded plates can be found 11 work of Swaminathan et al. [5]
The review focuses on comparing the stress, vibration and buckling characteristics of FGM
plates using different theories. Based on third order shear deformation theory with five
displacement unknowns, Reddy [6] developed analytical and finite element solutions for static
and dynamic analysis of functionally graded rectangular plates. El-Abbasi and Megwidin [7]
used a new thick shell element to study the thermoelastic bebavior of functionally graded plates
and shells. They extended the four-nodded seven-parameter shell element to account for the
varying elastic and thermal properties, as well as the temperature boundary conditions on both
faces of FG plates and shells

QOyekoya et al. [8] developed Mindlin-type element and Reissner-type element for the
modelling of functionally graded plate subjected to buckhng and free vibration. The Mindhn-
type element formulation is based on averaging of iransverse shear distribution over plate
thickness using Lagrangian mterpolation The Reissner-type efement formulation 1s based an
parabolic transverse shear distribution over plate thickness usmg Lagrangian and Hermutian
terpolation. Talha and Simgh [9) studied free vibration and static behavior of functionally
graded plates using higher order shear deformation theory. A continuous 1soparametric
Lagrangian finite element with 13 deprees of freedom per node is employed for the modelng of
functionally graded plates Thai Huu-Ta: and Choi Dong-Ho [10] presented finite element
formulation of various four-unknown shear deformation theores for the bending and vibration.
analyses of functionelly graded plates To describe the primary variables, a four-node
quadnilateral finite element is developed using Lagrangian and Hermitian interpolation functions.
Three-dimensional graded finite element method based on Rayleigh-Ritz energy formutation has
been applied to study the static response of the thick functionally graded plates [11).

In this paper, a new higher order dispiacement field based on twelve-unknown higher order
shear deformation theary 1s developed to analyze the free vibration and buekling of functionally
graded plates. The new eight-unknown higher order shear deformation theary is derived from
the satisfaction of vanishing transverse shear stress at the top and bottom surfaces of the plate.
The finute element model 15 developed for bending and free vibration analysis of power-law
functionally graded plates A €' continuous four-node quadrilateral plate element with sixteen
degrees of freedom per node 15 employed Lagrangran hinear interpolation functions are used to
describe the in-plane displacements and the rotation of normals about x, ¥ axes; Hermutian cubic
interpolation functions are given for the transverse displacement, rotation about z-axis, higher-
otder term of displacements and their first derivanon.

2. KINEMATICS

The twelve-unknown higher order displacement field is given as follow (123
B(%, y,z) =u, (3, )) + 20,05, ) + 2wy (x, 3)
v{x, y,z)= v, (x, ¥)+ 26, (v ) + =y

(13

BN = (%, 00+ 28 )+ P () + 28 (xa.0)
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where u, v, w denote the displacements of a point along the (x, y, 2) coordmates. u,, v,, w, are
corresponding displacements of a point on the midplane. 8,, 6, and @ are the rotations of the
line segment normal to the midplane about the y-axis, x-axis and z-axis , respectively. The
fanctions #, . ], ;. 8. 6 and @ are the higher order terms in the Taylor series expansicn
defined 1n the mid-plane,

For bending plates, the transverse shear stresses o, , o, must be vanished at the top and

bottom surfaces. These conditions lead to the requirement that the corresponding transverse

h I .
strains on these surfaces be zero. From y [V \’,74 EFAES =Y ‘:(}, e obiain:
2

(8w, )=

e
3h7(€ Way)_g“m'
,,3,
» +£|H.;)A?LCI(Q +w0‘x)+wﬂvr1;
s
z . z .
{6 +adl, )= 3[61(9‘+wn‘,‘)'wn,,,]; o)
w=w, +260, + 7w +2°6.
. 4 .
with: ¢, =— :F.orm matnx notation as:
W}=[Hd 0]
where.
10220 g g2 P A -
- 3 , 3 2 E 2
[Al=la1 o =224 ¢ 0 Z g 0o Z o 9 X
3 2 3 2
00 0 0 1 0 D02 0 027 0 0

W7
{w}={uv} displacement vector of any genenc point within the plate;

{d}= {u“\nﬁ 6., o, 0,6, 6, W W ¥y 6L

=Yy

Following strain - displacement telation, the non-zero strains are given as:
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e [e « & K
gl (& (% £ K
; :
;:=:i+::i+z£+z’£‘ )
Y= |22 2 Ve x
=l s 7. KL
or
{£}={E"]+z{.r“}+zz{£'}+z’{lr'}. (6)
where:
{F}={edel et =fu, 0, 8, 10 i
Ko tit}={6..0,.2%.0, +6 )
{s;,s;,s;,y;}z{-%(ez_" +c,e;"),~%(9, w68.,).360-(6,  +odl, )}, )
{0 o o) e 6,, ) o).
®)
_é(c:(ex‘+5H+2w9“)+2w;“)};
(A} ={m +0,m, +8 )RR} ={ad 0 ]: ©)
{rord=l-a(n.+6)—(m, +0 i{xin) =g 0 ). (10)

3. CONSTITUTIVE EQUATION

Consider a rectangular FGM plate with the length a. width b, and thickness 4. The X=y 3,
and z-coordinates are taken along the length. width, and heaght of the plate, respectively, as
shown n Fig. 1. The material propertics of FGM plates are assumed to vary continuously
theough the thickness of the plate by a power law distribution as [6]

- 1 P
"(:l=(‘r-"m)[g+z) A (any

where V(=) represents the effective matenal property such as Young's modulus £. mass density
p. and Poisson’s ratio 1: subscnpts m and ¢ represent the metallic and ceramic constituents.
respectively: and p is the volume fraction exponent

405



Figure 1. Geometry of FG plate with positive set of reference axes.

The stress-strawmn relationsinp for the FGM plate can be written as:

o, 0 Q. @ 0 0 o |[&
g, Oy O O 0 0 0| &
ol e e o 0 0 ofla o
o.(lo o o g 0o ofln| & {o)=[DYe} (3
oo 0 0 0 g ofln
o) lo o 0o 0 o glln
in which
20,0, =—ME E
010 =0y = [ i 00 =0s =0u =5,
0020y =0y =r 20,20, =0,

(1+v)(1-2v)

4. FINITE ELEMENT FORMULATION

A C' continuous four-node quadrilateral plate bending element with sixteen degrees of
freedom per node is used (Fig. 2). The Lagrangian linear interpolation functions N, (£,7) are
employed to describe the vanables u, 96,6, and the Hermitian cubic interpolation functions

H,(£.7) are employed to describe the variables W,y ., 26,8, .8, W,y Wiy

LA

401D Ty

1{-1,-1) 2(1,-1)
Figure 2 Node number of four-node quadrilatera] element in its natural coordinate.
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fro5:050, =3, {u5006,.6, [ B, e} a3
=1

{8,328 } ii.‘lq{ww,w"”‘w,,,i,Hr__.Hr_u,Hy_.n;;_

=

o 1086 ) =[BJlak (14)

Dl L =35, (o i, 0,08, i 0 08, Y B i 019

ENT
3 _
{00} = ZZH{u 8,.8,,.8, i o, :6.6, 8. ) =[B.)ia} (6)
e

For rectangular elements, the interpolation functions N, and H, for the i-th node are given
in terms of the natural coordinates as:

M= 0+ E8) e na), an

H.*é(1+¢§)1+nv)(2+¢¢+w &-r).
1

: 85('5.5-‘)(1“7,77)(“‘3’,153}, (18)
H, :%ﬂ,(fm‘l)(l+5,§)(|+5-f:)-
[q,} ={q1 ‘qz.qu,,}r is element nodat displacement vector.

{0} ={u0 08800, 00, 345,60, .6, 5, ;6,68 s modal
displ vector correspending to i-th node

The displacement vector at any generic point can be wntten as:
=[Bia.) (19)
where. [E] E[[E‘, ],[fi:,].[.@:: ],[EDHT 15 the shape function matrix

The strain vector is expressed by
{el=[L{a) = (L) B e} =[Ble.). 20)
[L] is differential operator matrix, [ B] =[L][E] is the strain - drsplacement matrix.
The Hamilton’s pninciple can be expressed as:

0= (o + W - 6T ar. 2n

and applying for each element*
The strain energy of the FGM plate element 1s given by,
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Jio felar =+ J{qy}’[BJT[D][B]{qg}dV=;{qp}r[K.»]{qe}- @

The external work dene on the plate element by distributed applied load may be written as:

w, == [{dY {r1aa=-[{a Y [B] {rhaa=-{a} {F}. @)

o
and {f} 15 mechanical load vector 'b:l
The kinetic energy of the FGM plate can be expressed as: :‘;d

=il oo =35y [HT 18] [ATAGI oG9 =50y e} n |

Substituting Egs. (11b-11d) into Eq. {11a), finite element stiffness equation is obtained as;
[ ){g. )+ (&g} (R} [oX)
where [K.]. [M.] and {F,} are the clement stiffness matrix, element mass matrix and clement
nodal load vector. g.} is nodal displacement vector, and {q’e} is the second derivative of the

displacements of the element with respect to time

. i
By assembling the element matrices, the global equilibrium equations for the plate can be ﬁ
obtained as ot
- A T
(kle)+ (M0} =[F]. @
where {K], [M] and {F} are the global stiffness matrix, mass matrix and nodal load vector of the
structure, {Q} 15 nodal displacement vector, and {Q} is the second dervative of the
displacements of the structures with respect to time.
The peneralized governing equation (26) can be employed to study the frec vibration and
static analysis by dropping the appropriate terms as:
For linear static analysis:
[Kl{ot={F). @
For free vibration analysis, the frequency of natural vibration can be obtained from the
bellow ergenvalue problem: ”
{(X]-w*[M]}0) =[o]- 28)
This equation can be solved after imposing boundary conditions of the structure, with
ergenvalues solving common problems. -
The boundary conditions for an arbitrary edge with simply supported and clamped edge
condinons are,
Clamped (C)
hi
M=y =0 =0 =u, -, =g =0,-6.,=6., =wy=w =w, =6 =6, -
atv=0:aandy=90.b e
Simply supported (S)- e
ikt
W= =, =, =0, =6 m
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g, aty=0;b.

Uy=6, =Wy =Wy, =6, =8, =w,=w, =

5. NUMERICAL RESULTS

Matlab codes for finite element nodel have been built for numerical investigation Afier
checking convergence, a 10%10 mesh of four-node element has been used in the computation
The selective integration scheme based on Gauss-quadrature rules, with 3x3 for membrane,
coupling, flexure and inertia terms and 2x2 for shear term. A rectangular FG plates with different
boundary conditions as shown m Fig. 3 are considered (F-free, S-sumply supported, and C-
clamped). Material properties of the P-FG plate are given n Table 1. For convenience, the
following dimensionless forms are used [13):

3
o OWER E:w,,‘/z
9o E.

Table I Material properties used i the P-FG plate [13)

Properties E (GPa) v p (kg/m’y
Metal Aluminum (Al) 70 03 2702
Ceramuc  Alumina (Al;05) 380 03 3800
¥ Y ¥
x X F x
CCCe SCSC 88sC
¥ 2 Y

§888 SFsC SFSS
Figure 3 Boundary conditions of plates

Example 1. Validation study

Dimenstonless central deflections i+ of sotropic square plates (p = Q) with vanous values of
thickness ratios a/h are presented in Table 2 The present results are compared with the solutions
given by Thai, H.T., & Cho1, D.H. [10] based on four-unknown shear deformation theories
(zeros shape function - FSDT) and the analytical solutions reported by Zenkour [14] based on a
mixed first-order shear deformation theory (MPT), It can be seen that the present solution 1s 1
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. <0.2 °
close agreement with those solutions {errors <0.2 %).

Dimensionless fundamental frequencies @ of simply supported (SSSS) square FG plates (p=
0) with varions values of thickness rafios affr and power law index p are presented in Table 3. The
comparison of the dimensionless fundarmental frequencies of present results shows good agreement
with analytical soluuons of Thai H. T., & Kim 8. E. [12] based on simple higher-order theory,
and finite element results of That H. T., & Choi D.H. |9] based on four unkmowns shear
deformation theories.

Trble 2. Dhmensionless deflection W of iseropic squase plates under uniform loads,

Boundary condition

alh Method SCSC §85C SSS8 SESC SFSS SFSF
s MPT (147 0302 03827 04904 07139 09072 14539
FSDT[13] 02837 03686 04925  06M5 09146 1479
Present 02833 03565 04526 06958 04837  LST42
0 MPT14] 02209 03058 04271 06065 08224 13459
FSDT[13] 02220 03062 04298 06121 08314 13722
Present 02550 03337 04390  0.6625 08629 15406
2 MPT|14] D196 02830 04096 05737 07981 L3S
FSDT(13] 02047 02887 04121 05890 08080 13422
Present 02005 02816 03961 05822 08005 L4487
0000 MPT[14: 01917 02785 04062 05667 07931 1309
FSDT[13] 02014 02853 04087  QSR47 08036 L3365
Present 00919 02736 03905 0.5694 07918 14324
o —
iy
HN
i 2 “\1 —_ ———————
[
e

Figrae 4 Vaciabon of d:mensionless deflection
W versus poveer law 1ndex s of AVAR203-1
square plates under uniform: loads (e - 10).

410

deflection W versus thickness ratie a/h of
AVAI203-1 square plates under uniforns Joads

Frgure 5. Variation of dimenstonless

(p=2.
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Figure 6. Variahon of dimensionless fundamental Figure 7.Variation of dimensionless
frequency & versus power law 1ndex pof fundamentat frequency @ versus thickness
AVALO; square plates (a/k = 10) ratio a/f of ALYALQ; square plates (p ~ 2).
Table 3. Dimensionless fundarental frequency @ of $S5S AVALO, square plates.
. w nde:
wh Meﬂid - = — Power la : index (p) . .
5 TSDT | 14] 02113 01807 0.1631 0.1378 0.1301
TFSDT[13] 0.2108 01802 0.1629 0.1396 0.1322
Present 0.2280 0.1949 0.1765 0.1504 0.1420
10 TSDT [14] 00577 00490 0.0442 2.0381 0.0364
FSDT (13] 0.0576 0.0439 90441 0.0382 00365
Present 0.05%91 0.0502 0.0457 0.0402 0.0383
20 TSDT (14) 00148 0.0125 0.0112 0.0098 00094
Present 0.M54 0.0130 0.011% _0.0105 0.0100

Table 4 Dimensionless deflection it of AFALO; square plates under uniforr loads.

Boundary condion

ath P Tcccfscs€ sssC sses  arsc §Fss SFSF
s 0 02064 02833 03565 04526 06958 08837 15742
0s 03048 04225 05379 0.6909 10545 (3526 24082
1 03897 05418 06919 0.891) 13602 (7498 31272
2 05090 07053 08956 11463 17574 22511 40427
5 06757 09205 11406 14234 22019 27611 49del
10 0.7802 10537 12921 IS9S2 24780 30770 5.5048
10 0 0.1800 02550 03337 04300 06625 08620 15406
05 0.2720 03875 05104 06756 10148 13290 23672
1 03424 04859 06491 08642 12974 17087 3050
2 04280 06131 08144 10868 16364 21622 39014
s 0.5271 07489 09827 12960 16656 25733 46574
10 0.5999 08469 11016 14402 21933 28499 51563
20 0 01393 02056 02862 03996 05805 08056 14562
05 02135 03158 04411 06175 09085 12445 22444
1 02725 04039 05639 07945 [1e96 Le07s 26101




2 05085 07136 10028 14810 2.0400 37224
5 06042 0.8439 11809 175138 24059 44104
10 06689 09309 12984 19302 26432 485]
50 0 01940 02756 03919 05727 07942  1.4395
05 02996 04259 06062 08848 12280 22205
] 03846 05478 07810 11413 15877 288
2 04848 06913 009863 14460 20156 36873
5 pS698 (8118 11570 17013 23708 4.35%
10 06263 03913 12650 18679 26000 47

Example 2. Eftect of power law index p and side-to-thickness mtio @/ on the dimensioniess
centrat deflection .

In this example, the square FG plate with different boundary conditions under uniformly
dismbuted load is considered. The calculated dimensionless central deflection with various power
law index p =0, 0.5:1.0: 2; 5: 10 and a/h = S, 10z 20: 50 arc given 1n Table 4. Figures 4 and 5 show
the vanation of power law mdex p and side-to-thickness ratio a/h versus dimensionless central
deflection. It 1s found that the dimensionless central deflection increases as power law index p
increases, while dimensionless central deflection decreases as side-to-thickness rano increase wath all
types of boundary conditions.

Table 3 D I | | @ frequency of AVALO; square plates.
m » __ Boundary condition
COCC S80S0 $35C 5558 SFSC SESS SFSF
5 0 03422 02896 02562 02280  0.1480  0.1386 01097
05 02970 02503 02201 0949 01263 0.180  0.093)
1 02702 02274 0199 0765 01143 01067  OOR4G
2 02432 02051 (1806 01602 01037  009%S  0.0758
s 02174 01850 01651 01482 00962 00903 00706
10 02052 01755 01575 00420 00924  0.0869  0.0682
4] 00984 0.0805 (00684 04591 0.0312 00300 0.0252
03 0.0843 00688 00582 00502  0.0267 0025 00215
! 007700631 00532 0.0457 00248 00238 0.0197
2 0.0713 0.0532 0.0490 0.042( 0.0233 00222 0.018
5 00661 00343 (0461 00398 00219 00209 Q.07
) 00630 00519 00442 00383 00200 00200 00165
20 U 00275 00220 00L& 00154 00080 00077 0.0064
0s 00234 00187 00154 00130 00060  0.0066  0.005
! GO 00171 go14l 00119 00064 0006 0.0050
N 60197 00158 00130 06109 00060 00057  0.0046
5 oolyy 00150 00123 9.0104 0.0057 0.0054 0.0044
10 UOI80 00144 00119 00100  0.0054 00052 0.0042
30 0 0.0046 00036 00030 0.0025 0.0013 0.0012 00910
03 _000319 00031 0oe2s 00020 00011 00001
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T Towm 60028 00023 00019 00010 00010 0.0008
z 00033 00026 00021 00018  0.0010 00009 00007
5 00031 00025  0.0020 00017 00009 00009 00007
lo 00030 00024 00019 000I6 00009  0.0008 00007

Example 3. Effect of power law mdex p and side-to-thickness ratio @% on the fundamental
frequency @
Table 5 presents the dimensionless fundamental frequency for vanous power law ndex p = 0; 0.5,
1.0; 2, 5 10 and a/h = 5, 10. 20: 50 Dnfferent boundary condition for each case is considered. The
variation of dimensionless fundarental frequency versus power law index p and side-to-thickness
ratio a/ft 1s illustrated in Figures 6 and 7

It is observed that, for all types of boundary condition, dimensionless frequencies decreases
as power law mdex and side-to-thickness ranon increases Effect of boundary conditions 1s clearly
too, the dimensionless frequency of FG plate with boundary conditions CCCC 1s highest, and the
lowest with SSSS boundary conditions.

6. CONCI.USIONS

In this study, the new eight-unknown shear deformanon theory is used to analyze the
bending and free vibration of rectangular fuctionaily graded plates by finite element approach.
The governing equations and boundary conditions are derived by employing the Hamulton’s
principle. Validation studies have been carred out to confirm the accuracy of the present
formulation. The obtaued result shows a good agreement with those available m the litcrature
Influence of power law index, side-fo-thickness ratio on bending and vibration responses of FG
plates have been investigated and discussed The new cight unknewns shear deformation theary
18 accurate in predicting static and free vibration responses of FG plates.
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TOM TAT

PHAN TiCH UON VA DAO BONGTUY DO CUA TAM CO CO TINH BIEN THIEN (FGM)
BANG PHUONG PHAP PHAN TU H{'U HAN DUA TREN Li THUYET TAM V{1 8 AN

CHUYEN VI
Nguyén Vin Long', Trin Hiru Quéc?, Trin Minh T2

'Trieeng Cao ding Xay dung 56 1, Trung Van, Tir Liém, Ha Né1
*Bai hae Xay ding, 55 Giai Phong, Qudn Hai Ba Trmg, Hda Not

"Email: thquoc@gmail.com

Ban bao dé xudt li thuyét m bién dang cét véi 8 thanh phin chuyén v dé phan tich ubn

va dao dong riéng cua 1dm 6 o tinh bién thign (FGM) bz"mg phuong phap phan ti hirw han Li
l‘huyél ndy duoe phit trién trén co s6 1 thuyét thm bac ba diy dd, déng thén thoa min didu kigs
Umg sudt ngang tai mat trén va mat dudi cia tho bing khong, Mo hinh phin 1 hiru hen sir dyng
phan tir tr gidc 4 wit, mdi nit 16 bic tur do. Mé dun dan héi kéo (nén), hé sé Poisson vé Kb
lugng néng ciia vét héu bien thién doc theo chiéu ddy tim theo quy luat ham mi. Két qua tinh
d\_mc;o _Sanh. van cic ket qua di cong bé ctia mét sé tac g1a khac cho théy d6 tin cdy cua 1 thuyél
va mb hl_nh tinh da x4y dung Anh romg ciia chi 56 ti 1€ thé tich, ti 1& kich thwoc hinh hoe... 63
durge khao sat.

Tir khod" thm FGM. PTHH, dao déng tw do, uén, két cdu tmw
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