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ABSTRACT

In this paper, we study a nonlinear viscoelastic heat equation with logarithmic sources.
By introducing a family of potential wells, we prove the global existence and exponential
decay for solutions with initial data in the potential wells.
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1. INTRODUCTION

In this paper, we study the following heat equation with viscoelastic term and logarithmic
nonlinearity
t
U, —Au + IO g(t—s)Au(s)ds=kuln|u|-u, in Qx(0,T),

u=0 on 0Qx(0,T), (1.2)
u(x,0) =ugy(x), in Q,

where 0<T <o and Q<= R" (n>1) is a bounded domain with smooth boundary oQ,
and k is a postive real number. The kernel g satisfies some conditions will be specified later.

The first equation in (1.1) without viscoelastic term (that is, the relaxation function g
vanishes) has the form
u, —Au = f (u), (1.2)
where f(u)=kuln|u|—u. Related to these type equations with logarithmic nonlinearity

source f(u)=uln|u|, we refer the readers to [1] and references therein. In [1], by using the

logarithmic Sobolev inequality and a family of potential wells, Chen at al obtained the global
existence, decay estimate and blow-up at +oo of solutions under some suitable conditions.

In the case with presence of the memory term I;g(t—s)Au(s)ds, the equation in (1.1)

has the form

U — AU+ f; g(t—s)Au(s)ds = f (), (1.3)
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where f(u)=kuln|u|—-u. Concerning the results of global existence and blow-up in
finite time or decay property for the solutions of problems related to equation (1.3) with the
source term is the power functions, i.e, f(u)=u|"2u, or power-like functions satisfying:

(1) feC*and f(0)=f'(0)=0.

(2) (a) f is monotone and is convex for u >0, and concave for u<0; or (b) f is
CONVex.

3) (p+1) j: f (z)dz <uf (u), and |uf (u)|< Kj: f (2)dz, where

00, if n<2,
2<p+l<x<2’ =
P 2N i 3,
n-2
have attracted a great deal of attention in last several decades. For instance in [4],
Messaoudi studied the equation (1.3) in the case f(u)=b|u|°P?u, associated with
homogeneous Dirichlet boundary condition. If the relaxation function g is assumed to be

nonnegative; g'(t)<0 and

© p_2
s)ds < ,
[ 96 TE
the author proved the blow-up of weak solution with positive initial energy by the
convexity method.

In [8], Truong and Y considered the equation (1.3) with f (u) in the general polynomial

satisfied above conditions and they obtained the decay property and blow up in finite time for
solutions. We refer to [2, 3, 6] for further results on this type of equations. However, when
f (u) is alogarithmic nonlinear function, i.e. f (u) =kuln|u|—cau, as far as we know, there is

no results on this aspect of the global solution and decay property for the problem (1.1). The
main difficulty in this case is that the method of potential wells in [4, 7] will be not suitable
for the problem (1.1), since the nonlinear function f(u)=kuln|u|—au doesn’t satisfy the

conditions (1) - (3).
Motivated by all these works, we consider the problem (1.1), by using the potential wells
and the Sobolev logarithmic Sobolev inequality (see [1] Proposition 1.1), we obtain the global

existence and by contructing a suitable Lyapunov functional to obtain the exponential decay
property of solutions under starting in the stable set.

This paper is organized as follows. In the next section, we present some assumptions,
notations and preparing results. In Section 3, we establish potential wells which is related to
the logarithmic source of the problem (1.1). In Section 4, we obtain the global existence of the
solutions and the last section, we prove the exponential decay of the solution.

2. PRELIMINARIES

Throughout this paper, we denote LP(€2)-norm by Il I o, especially Il - 1=l -1 d

LZ(Q), an
let (--) denote L2 -inner product.
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First, for any u, e Hy(®) and any a>0, we have following logarithmic Sobolev
inequality (see [1] Proposition 1.1):

Zj|u(x)| In{”| ”( )| de+ n(1+lna)||u||i2(g) ga;“w(x)fdx. (2.1)
2(Q) Q

To state our main results, we need the following definitions.
Definition 2.1. u=u(x,t) is called a weak solution of problem (1.1) on Qx[0,T), if
uel™(0,T;Hy(Q)) with u, € L*(0,T;L*(Q)) and sastifies the problem (1.1) in distribution
Sense, i.e.

(U, V) +(Vu, W) - J.; g(t—s)(Vu(s), vu(t))ds+(u,v)=(kulnu,v), 22)

YV e Hé(Q), te(0,T),
where u(x,0) =, (x) € H3 ().

Definition 2.2. Let u(x,t) be a weak solution of problem (1.1). We define the maximal
existence time T of u(x,t) as follows:

(i) If u(x,t) exists forall 0<t<o, then T = +o0.

(i) If there exists a t, € (0,00) such that u(x,t) exists for 0<t<t,, but doesn't exists at
t=t,, then T =t,.

The following conditions are the basis hypotheses to establish the main results of this
paper.

(G) g:R*" > R" isa C' function satisfying:

(i) g(t)>0, g'(t) <O, 1—j:g(s)ds=.e>o;

(if) There exists a positive differentiable function &(t) such that

9'(1) <—£09(1), &' <0, [E(W)dt=-+o0, V>0,

(K) The constant k satisfies 0 <k <k,, where k, is the positive real number satisfying:

2
Ko '
: 2zl 2 : : :
Remark 2.3. The function f(s)=,/—— —e ™ is a continuous and decreasing function on
s

(0,0), with
lim f(s) =+ and I|m f(s)=—e".

s—0"

Then, there exists a unique k, >0 such that f(k,)=0. Moreover,
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2
e < % Vs e(0,k, ).

Next, we define functionals on Hé(Q) as follows:

£)-2(1- [, a(s)es Ivuc)

1 1 k+2 23)
+§(g o Vu)(t) —E.[Quz In|u|k dX+T"U(t)”2 ,
1 2 2\ kK 2
D) = (Ve - [ Infuf* dx oo )+ Juf” (2.4)
Hu(®) = ¢[Vu]” - [ u*Injul* dx+ Ju@f, (2.5)
where (gov)(t) = j; gt —s)|v() —v(s)||2 ds.
Then it is obvious that
) = 1) + oo (26)
and
E(t)>1|(u(t))+1(goVu)(t)+5||u(t)||2 (2.7)
T2 2 4 ' '
Lemma 2.4. E(t) is a nonincreasing function for t >0 and
E'(t) =—|u|f —% a(t) [Vu +%(g' -VU)(t) <0, 2.8)

Proof. Multiply (1.1): by u, and integrating on Q, we obtain (2.8) after some simple
calculations. o

3. POTENTIAL WELLS

In this section, we establish the potentail wells which is related to the logarithmic
nonlinear term uln|ul.

First, we define

N={ueH§(Q):1(u)=0, |Vul = o},
(3.1)
d =inf {supJ (Au):u e Hg(Q), [Vu] = 0}.
220

Then we have the following lemma for well-defined of the potential well d.
Lemma3.l. 0<d = in):[\] (u).
ue

Proof. Let u e Hg, [Vu|| =0, we have

2 2 2
J(Au) :]”7€||Vu||2 —%L}uz In|u|k dx—%(ln A)||u||2 + A2 kf:2||u||2 , forall >0.
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Then

d B 2 2 k 2 2
EJ(AU)_E[EMVUH - [ 7 njul* ax+ulf k(I 2)ulf |

9 ) =0 222" —exp '(“)2 .
dA KJul

It is easy to show that
supJ (Au) = J(A7u).

120

On the other hand, it follows from (2.5) and (3.1), that A*'u e A/ and consequently

supJ(Au)=J(Au) > inf J(u).

2150 ueN
This implies

inf {supJ(ﬂu) tueHg, [Vu ¢0}2 inf J (u).
>0 ue/

In order to prove the inverse inequality, we note that, for each u € AV, the function A J(Au)
attains its maximum at 4, =1. So we obtain

inf {supJ (Au):ueHyg, [Vu||= O} <inf {supJ(/lu) ‘Ue /\/}z inf{J(u):ue N}
A20 A20
and we get d = in/va(u). The proof is complete. o

We now can define the modified stable set as in [7].

W={ueHg(Q):1(u)>0} {0}

Lemma 3.2. If 0<|[Vu[|<3, then 1(u)>0, where 9=&”2(%J4 e2 and 4 is the first

eigenvalue of the following equation

{—Au = U, in Q,
(3.2)
u=0, on o).
Proof. Using the Sobolev inequality (2.1), for any a >0, we have
() =¢[vul - | u?Injul" dx-+]u]”
U| 2
> (||Vulf —k uz(ln|—+ln||u||de+||u|| (3.3)
k Jul

a’ kn(l+Ina)
ek ol oo+ LD .

2

Since 1> (- kg—, we can deduce from (3.3) that
T
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a’ 2 2\ kn@l+Ina), . 2
I(u)z(ﬁ—kgj(nwn +ul )+T||u|| —k]ul? In]u]] (3.4)

Taking a= /% in (3.4), we gain
n[1+ln ’MJ
k
2

() >k —Inu] {|lul*- (3.5)

n
—~n
If 0<|[Vu||< 9, then |u]| < (%)4 e2, sowe have I(u) >0 from (3.5). The proof is complete. o

Lemma 3.3. For any u e Hg, ||u[| =0, and let j(1)=J(Au). Then we have

>0,0<A< A,
1(Au)=Aj'(1){=0, A=A,

<0, 1" < A< +oo.

Proof. We have

. _/12 2 AP 2 k kA? 2 iz(k"'z) 2
j(/l)_J(}tu)_7€||Vu|| —7.[Qu Inul dx—T(Inﬂ)”u” — ul|”-
Since |u[=0, then j(0)=0, j(+o0)=—o0, and
d .
I — . — !
(Au) ile(lu) A1j'(4)
— 22y 2 42 2 2 2 a2 2
=A%|Vu®)|” -2 '[Qu Infuldx+A% ||uf” = kA% InA|ul".
So, we have
>0,0<4< %,
I (Au) = 1j'(A){=0, A=4%, O
<0, 1" < 1< +oo.
Lemma 3.4. For the constant d in (3.1), we have
n
d>M :5(@jz e".
4\ k
Proof. We have
. 1.,. Ko, = 2
supd (Au) = J(A"u) == 1 (4 u)+—H/1 uH . (3.6)
420 2 4

From (3.5) and Lemma 3.3, we obtain
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n(1+ln M}
\/ k
2

0=1(4'u)>k —infau] [l

then

-]

n
Au e2. (3.7)

27l

> =
)
From (3.1), (3.6) and (3.7), it implies that

d>M =K(@jz e". o
4\ k

4. GLOBAL EXISTENCE

Proposition 4.1. Let u be a weak solution of problem (1.1) and u, € Hy (). Suppose that
E(0)<d and u, €W then u(t) e W, for 0<t<T, where t is the maximum existence time
of u(t).
Proof. Let u be a weak solution problem of (1.1) under condition E(0)<d,u, €W and T
be the maximum existence time of u(t). Then by Lemma 2.4 and (2.4), we have
JU@) <E()<E()<d

We shall prove I(u(t)) >0 for 0<t<T. Arguing by contradiction, suppose that there exists
t, €(0,T) such that 1(u(t,)) <0. By the continuity of 1(u(t)) in t, thereisa t” e (0,T) to
make 1(u(t")) =0.
However from the definition of d, one has

d>E@Q)=E(u(t"))=Ju(t")) =>d,
which is a contradition. o

We now state the existence of solution to (1.1) which can be obtained by Faedo—Galerkin
methods.

Theorem 4.2. If u, € H3(Q), E(0) <M u, e W, and (G, (i)), (K) hold. Then the problem (1.1)
has a global weak solution u e L*(0,+o0; Hy(€2)) with u, € L*(0,+o0; L*(€2)).

Proof. Let {w;} be the Galerkin basis for —A in Hg. We find the approximate solution of the
problem (1.1) in the form

Up (t) = zcmj (tw;, (4.1)
it

where the coefficients functions c..,1< j<m, satisfy the system of integro-differential

mj !

equations
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t
(Upnt s W >+<Vum,VWj>—Lg(t—s)<Vum(s),ij>ds
+<um,wj>=<kum In|um|,wj>,1£jsm, (4.2)
Um(O) :u0m’
where

Zaml | — Uy strongly in Hg. (4.3)
According to Schauder’s fixed point theorem, we find that (4.1) lead to a system of
integro-differential equations in the variable t that has a local solution u,,(t) on [O,T,,].
First, by u, e W and

1
E(l_ 8) ”vu0m”2 +J (UOm) = E(uOm)’

thanking (4.3) we have u,,, €WV for sufficiently large m and E(u,,,) <M.

th

Multiplying the j™ equation of (4.2) by c/; (t) and summing up with respect to j,

for sufficiently large m, we obtain
t t
[ Jum ()7 ds + 3 Uy () < | U S)] s + Eup (1)

1t 1 et
=E(Uon) 5 [ 9 Vun ()] ds+ 2 [ (9= Vuy Js)ds (4.4)
<M <d, 0t < +oo,

From (4.4) and Proposition 4.1, we have u,, (t) e W for sufficiently large m and 0<t <co.
Combining (2.6) with (4.4), we derive

2 4
Jun (O <M
Now, using logarithmic Sobolev inequality (2.1), we obtain

E(t)>—(€——]||Vu(t)|| += (g Vu)(t)+—{k+2+kn(1+lna) kln[ H”u(t)” .(4.6)
Choosing

1 2 1 2
max{e i nk g nomk /%}<a< f% 4.7

f—kzi>o k+2+kn(l+Ina)>0 and k+2+knl+Ina)- kln(kM}o'
T

will make

Hence, we can deduce from (4.4) and (4.6) that

E(un (D) <

< —M
v m||kaa 270 —ka?

305 MECHATRONICS - APPLIED SCIENCE - IT



Nguyen Van Y, Duong Thi Mong Thuong, Vu Thi Phuong

We also get from (4.4) that
t
j [un )| ds < M. (4.9)
0

On the other hand, by direct calculation, we have

Ig(um In|um|)2dx = I (U In|um|)2dx+ I (U In|um|)2dx
{xeQ:luy, (X)I<1} {xeQ:|uy, (X)>1}

, (4.10)
<e?j0) +(”;22j S [V, <Cu,

where S is the best constant of the Sobolev embedding Hj(Q) < V"2 (Q).

By (4.8) — (4.10), we deduce that, there exists a subsequence of {u,}, still denote by
{up,} such that

u, —u in L°(0,00;H})  weakly*,
Uy —> Uy in  L?(0,0;L%)  weakly, (4.11)
Uy Infuy[ > ulnful in L*(0,00;L%) weakly*.
Hence in (4.2)4, for j fixed and m — oo, we have
<ut,wj>+<Vu,ij>—j; g(t—s)(Vu(s), vw; )ds +(u,wp) = (kulnfu[,w; ), vj =1,2,...(4.12)

On the other hand, from (4.3), we obtain u(x,0) =u,(x) in H(Q). Then u is a global
weak solution of the problem (1.1). o

5. EXPONENTIAL DECAY

We begin this section by the following lemma which is helpful to the proof of Theorem 5.4.

Lemma 5.1. Suppose that assumptions in Theorem 4.2 hold and E(0) <d. Then there exists
a positive constant C, such that

k d 2 2
I(u(t))zgln(%j”u(t)” and E(t)<C [vu(t)| .

Proof. Since u, €W and E(0)<d. By Theorem 4.2, we have that u(t) eV for t>0 and
I (u(t))>0.

Put ¢(1)=kIn /1||u||2 for 2 (0,). Then for any 4 >0, we have
| (20) =22 (¢]vuf” = [ u®Inful e Joff ~kin 2 ulf)

=22 (1(u) - ¢(2)).

Since 1(u) >0, we get

(5.13)
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O =0<1(u)=(vul* = [ v*Injuf dx+[uf. (5.14)
Moreover, it is easy to see that ¢ is continuous, increasing and Alim @#(A) =+o0, Which
combining with (5.14) to imply that there exist a A" >1 such that ¢(4.)=1(u) and

I(4"u)=0. Taking into account this fact and the following estimate

0=1(2u®) =(4") 1(u)-k(2")

we imply that
L (u))=kIn A" Ju®)|. (5.15)

To end the proof, it remains to estimate A°. By variational characterization of d, we have

d<3(#u) =31 (2uw) + ( Y )l
<5 (2 el

On the other hand, by the non-increasing property of functional energy E(t), we have that

(5.16)

E(0)> E(t)>J(u(t)):—I(u(t)) —||u(t)||2

(5.17)
> —|u(t)|l .
Juor
Combining (5.15) — (5.17), one has
d 1/2
Azl —1] >L (5.18)
E(0)

From (5.15) and (5.18), we deduce

I(u(t _—In t

(u() [E(O)jllu( I
The rest estimate is implied by E(t) < E(0) and (5.16), i.e,

kS2

E()<d<=2(2 ) vuff =cvuyf,

where S, is the optimal constant of the embedding H;(Q) < L*(Q2). The proof follows from
(5.15) and (5.18). o
For proving the decay of the solutions, we define the following auxiliary functional

L(t) = E(t) +§45(t)||u(t)||2 , (5.19)

for £ is a small positive number specified later.
The next lemma tells us that E(t) and L(t) are equivalent functions.
Lemma 5.2. For & small enough, there exist two positive constants ¢, e, such that

o E(t) < L(t) < o E(t).
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Proof. From the fact that u(t) e W and
E(t)=E(u(t) > %(1— OIvu@)| + % L(u(t)) + §||u(t)||2 (5.20)
we have
IVu@|f < é E®) and Ju)|* < % E(t). (5.21)
Since 0<£(t) <£(0), the above estimates imply that
LO-E0|= ZE0]u0f <2 £0EQ.
that is

(1-%5(0)) E@)<L(t) < (1+%§(0)] E().

By choosing ¢ small such that 1—2?85(0)>0, we claim the lemma. o

The next lemma allows us to estimate L'(t).

Lemma 5.3. Let (G), (K) hold. Then for number a such that 0<a< ,% £>0, and

0< A <1, we have

L'(t) <—eA&E()E(t) —|u, ||2 —%(1—% —gA]cf(t)(g > Vu)(t)

A ka? 2
_ gg(t)Kl_ Ej[ﬁ _ Zj _ 5:|||Vu(t)|| (5.22)

ke A A 4 2 2
—7§(t){—5+(1—5j(—ln(i M j+ n(l+Ina) +KHHU(UM .

Proof. Simple calculations and using Lemma 2.4, we have
L'(t)=E'(t)+ g§’(t)||u(t)||2 + ,szf(t)J'Qut (tu(t)dx
<l =S 9OV +5(g- V) ®
. , . , (5.23)
+g§(t){—(1—j0 g(s)ds)”Vu(t)" +[_u?Injuf* dx - Jucw)] }
+ gf(t)jQVu (t) ﬁ g(t—s)(Vu(s) — Vu(t) ) dsdx.

By using the Young's inequality and note that 1—J’; g(s)ds zl—J.:g(s)ds =(, we have
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J'QVu(t) : J'; g(t—s)(Vu(s) - Vu(t))dsdx

< ||Vu(t)||.HJ; g(t—s)(Vu(s)—Vu(t))ds

. t (5.24)
<svu)f o [ 9(9)ds[ g(t-9)[Vu®)-vu(s)[’ ds

2 1-¢
<S|vu()| +E(g o Vu)(t),

for 6 > 0.
By using assumption (G, (ii)), (5.24), it implies from (5.23) as follows

L) <—[uf —(%— e 5”)5@)(9 -VU)()
(5.25)

- g—g(t) i(t) - g(l— —j E)T) + &5 [Vu®)[*,
where
)= (1— J'Ot g(s)dsj”Vu(t)”z — [ u?Inju dx+ u®[ = 1) = 1),

and 0<A<1.
By the fact that

o < tm =22

and using (3.3), we have that

ka? kn(1+Ina)
10~ ol o+ Do

2
e 2 o+ D ),

Furthermore, we imply from (2.3) that

. k

[(t) = 2E(t) - (g > Vu)(t) —§||u(t)||2. (5.27)
By (5.26) and (5.27), it implies from (5.25) that

L'(t) < —AEQE) —u|? —1(1—%—51\)5(0@ -Vu)()

—gg(t){(l——jﬂf—kij—5}||VU(t)||2 (5.28)
2

ke A A 4

—7§(t){—5 + (1_5][_"{E M j +n(l+Ina)+— ﬂ”u(t)”

The proof is complete. o

(5.26)
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Theorem 5.4. Under the assumptions of Theorem 4.2 and g satisfies (G). Then solution u(t)
to (1.1) decays exponentially.
Proof. Consider the function

() = j; £(s)ds, t >0.

It is clear that ¢ is a non-decreasing function of class C' on R, and
P(t) >-+o0 as t — oo,

1 2 -2
max{e n nk enk /%}«K,/%

First, we choose

to obtain
2
f—ki >0
2r
and
n/2
—In(EMjJrn(l+|na)+§=—ln“%} e”}+ n(1+lna)+§>0.

Next, we choose ¢ >0 such that

2
(ﬂ—kij—5>0
2

and then choose ¢ small enough such that
1- gﬂ >0
26

after that we choose 0 < A <1 such that

P 2
1-80-0 oo (1A ok 500
25 2

2

_§+[1_Aj(—ln(ﬂMj+ niL+In a)+zj>0.
2 2 k k

From Lemma 5.1, 5.3 and the definition of E(t), we can find a positive constant y such that
L'(t) <—x<&()E(t), vt>0
and thanking Lemma 2.4, we have

and

L'(t) <L E@)L(t), Vt>0
(04

2
which implies
£ gt

-=¢(1)
L{t)<L(O)e “ , Vt>0.

This completes the proof. o
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6. CONCLUSION

The paper is dedicated to study a nonlinear viscoelastic heat equation with logarithmic
sources. By introducing a family of potential wells, we prove the global existence and
exponential decay for solutions with initial data in the potential wells.

Here the blow up of local solutions of the problem is open, although we prove the non
blow up at finite time of solution.
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TOM TAT

~ SUTON TAI TOAN CUC VA TiNH TAT DAN MU CUA NGHIEM
CUA MOT PHUONG TRINH NHIET BAN HOI NHGT VOI NGUON LOGARIT

Nguyén Vin Y*, Duong Thi Mong Thuong, Vii Thi Phugng

Truong Dai hoc Cong nghiép Thuc pham TP.HCM
*Email: ynv@hufi.edu.vn

_Trong bai bao nay, nhoém tac gia nghién ctiru mot phuong trinh nhiét dan hoi phi tuyén véi
nguon logarit. Bang cach gidi thiéu mot ho thé vi tét (potential wells), ching i chimg minh sy
t6n tai nghiém toan cyc va tit dan mii cua nghiém véi dit liéu ban dau trong tap on dinh.

Tir khéa: Phuong trinh nhiét phi tuyén dan hoi nhét, ton tai toan cuc, tat dan mii, nguon Logarit.
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