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ABSTRACT

In this paper, we study the properties of the nonlinear scalarizing functions for set
optimization problems and its applications. First, under suitable assumptions, we establish the
semicontinuity and pseudo-monotonicity of such functions. Next, by using the above
properties, we study the well-posedness of related equilibrium problems. Our results are new
or improve the existing ones in the literature.
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1. INTRODUCTION

Scalarization is one of the most important techniques to study problems in optimization.
There are two types of scalarizing functions, linear and nonlinear ones (see, for instance, [1-
6] and the references therein). One of the most popular nonlinear scalarizing functions is the
Gesterwizt's function. This function has been extended in several versions to deal with
different problems. Motivated by the above observations, in this article, we propose a version
of the scalarizing Gesterwitz's function in set optimization problems. We also establish the
conditions for the semicontinuity and pseudo-monotonicity of this function. These properties
can be applied to study the well-posedness of equilibrium problems.

The rest of the article is organized as follows. In Section 2, we state the set optimization
problems and recall some preliminary results. Section 3 devotes to the properties of the
nonlinear scalarizing function in set optimization problems. The applications of the above
properties are presented in Section 4.

2. PRELIMINARIES

Let X, Y be two normed vector spaces. For AcY , we denote by intA and clA the
interior and closure of A, respectively. Let C be a closed, convex and pointed cone in Y , with
intC #J and e is a fixed element of intC .

Let 2(Y) be the family of all nonempty subsets of Y . Forany A Be R (Y), we define
the set less order relation <" and the strict one <" as follows
A<'B< AcB-C,

A<' B< AcB—intC.
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Itis said that Ae R(Y) is C -proper if A+C =Y , C -closed if A+C isaclosed set, C

-bounded if for each neighborhood U of the origin in Y , there is some positive number t such
that ActU +C, C -compact if any cover of A of the form {U_+C:U,_ are open} admits

a finite subcover.
From [7], every C -compact set is C -closed and C -bounded.

Definition 2.1. [4] Let aeY , the Gerstewizt's function ¢, . :Y — R is defined by
¢ (y)=min{teR:yete+a-C},VyeY.
The function ¢, , :Y — R u{—oc} is obtained by replacing a by AR (Y)
g a(y)=inf{teR:yecte+ A-C} VyeY.
Clearly ¢, , is continuous and it is easy to see that for any given yeY

$.p () =inF{, (V).

Let ¢, (Y) be the family of all nonempty (-C)-proper subsets of Y .
Proposition 2.1. [4] Let AeR ,(Y) and reR. Then for any yeY the following
statements are satisfied
(i g (Y)<r<yere+ A—intC;
(i) g (y)<reyere+cl(A-C);
(ili) ¢ .(y)=r<yere+d(A-C), where B is the topological boundary of B.

Let F: X =Y beaset-valued mapping and K isanonempty subset of X . We consider
the set optimization problem (SOP)

min F(X).

xeK
Definition 2.2. (See [8]) Let x, e K, X, is said to be
(i)  u-minimal solution of (SOP) if, for x e K, F(x) <" F(x,) implies F(x,) <" F(x);
(i)  Weakly u-minimal solution of (SOP) if, for xeK,F(x)<"F(x,) implies
F(x,) <" F(X).

We denote the u-minimal solution set of (SOP) and the weakly u-minimal solution set of
(SOP) by E(F,K) and W(F,K), respectively.

Remark 2.1. By Remark 2.1 of [8], E(F,K) cW(F,K). Moreover, by Remark 2.5 of [8], if
A is compact then WMax(A) = .

Definition 2.3. [9] A function T : X — IR is said to be upper semicontinuous (u.s.c, shortly)

at a point x e X if for every €>0, there exists a neighborhood U of x such that f(y) <f(x) + ¢
for all y € U when f(x) > -o0, and f(y) — -0 as y — x when f(x) = -o. f is said to be upper
semicontinuous on X if it is upper semicontinuous at every point of X.

It follows from [9] that f is upper semicontinuous on X if and only if the set {x eX | f(x)> r}
isclosed forall re R .
Definition 2.4. A set-valued mapping G : X ==Y is said to be
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(i) upper semicontinuous (usc, shortly) at xo € dom G if for any open superset U of G(xo),
there exists a neighborhood V of x such that G(V) cU ;

(ii) lower semicontinuous (lsc, shortly) at xo € dom G if for any open subset U of Y with
G(%,) "U =, there exists a neighborhood V of X such that G(x) "U = &, Vx eV ;

(iii) continuous at xo if it is both upper semicontinuous and lower semicontinuous at Xo.

Lemma2.1.[8] If K isnonempty compactand F islscon K with nonempty compact values,
then E(F,K)=J.

Let A be a nonempty subset of Y . a€ A is said to be weak maximum point of A with
respectto C, if (A—a)nintC = . We denote the set of all weak maximum point of A by

WMax(A).
Lemma2.2.[8] Forany x, e K, if WMax(F(x,)) =<, then x, is a weakly u-minimal solution
of (SOP) if and only if there does not exist x € K satisfying F(x) <" F(x,) -
Lemma 2.3. [3] Let F: X ==Y be a set-valued mapping. Then the following assertions hold.
(1) F isuscat X and F(X) is compact if and only if for any sequence {x .} = X with
x,—X and y eF(x,), there is a subsequence {ynk} that converges to some
yeF(X).
(i)  F islIscat X if and only if for any sequence {x,}= X with x, »x and y e F(X),
there exists a sequence {y,}, y, € F(x,),suchthat y —y.

3. PROPERTIES OF SCALARIZING FUNCTION

Proposition 3.1. Assume that A,Be R, _,(Y) are (-C)-closed. Then

(i) AZ'Bifandonlyif ¢, ,(a)=¢, ,(a) forany acA.
(i)  A<"Bifandonlyif ¢, ,(a)>4¢ ,(a) forany aeA.

Proof. Since the proof techniques are similar, we only prove (i). The sufficient condition
is followed by the definition of the function ¢, , . For the necessary condition, assume to the

contrary that A¢ B—C . Then there is a€ A such that a¢ B—-C. On the one hand, by
Proposition 2.1, ¢4, ; (a) > 0. On the other hand, by the definition of the function ¢, , , we have

#. (a) <0, which is in contradiction with ¢, ,(a) >4, ;(a) . O

Inspired by the ideas in [4, 5], we propose the scalarizing function
G, : Py oy (Y)? = R0} as follows.

G (A B) =sup{g ,(0)}, V(A B) € By ,(Y)"

Proposition 3.2. Assume that A,Be R _,(Y) are (-C)-compact sets. Then G, (A, B) <0 if
and only if B<" A
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Proof. Suppose that G, (A, B) <0 . By the definition of G,, foreach be B, 4, ,(b)<0.
By Proposition 2.1, be A—intC and then B<" A,

Conversely, assume that B <" A. By Proposition 3.1, ¢, ,(b) <4, 5 (b), vb e B. Noting
that ¢, ,(b)<0,vbe B, we obtain ¢, ,(b) <0,vb e B. We will show that G,(A,B) <0 .

Indeed, for each beB, since ¢ ,(b)<0, there exists r, <0 such that

bere+A-Ccre+ A—%“e—intC —C . Therefore,

B J(re+ A—r—zbe—intC ey :U(%be+ A—intC —C).

Ty fy

. I . i . .
Noting that Ebe + A—intC is open, from the (-C)-compactness of B, there exists k e N

such that

k r k r
Bc U(%e+ A—intC-C)= U(%e+ A—intC).
i=1 i=1

T

Let %: max %,We have B %e+ A—intC.By Proposition 2.1, ¢, ,(b)< % . This
implies that G, (A, B) < 0.0
Proposition 3.3. Let A, Be R, _,(Y), suppose that A is (-C)-closed set, then G, (A, B) <r if
andonlyif Bcre+ A-C.

Proof. G,(A,B)<r ifand only if ¢4, ,(b)<r,vbeB. The proof is completed by the (-
C)-closedness of A and Proposition 2.1. o

Let X,, X, be two normed vector spaces, F,: X, =Y, F,:X, =Y be two set-valued
mappings, g(x,y) =G, (R(X),F,(¥)), V(x,y) € X; x X, .

We first establish the sufficient conditions for the upper semicontinuity of the mapping
g as follows.

Theorem 3.1. If F, is Isc with nonempty values, F, is usc with nonempty and compact values,
then g isu.s.con X, x X,.

Proof. Forany a€R, let

L={(x,y) e X;x X, :9(X,y) = a}.
We will show that L is closed. Indeed, for any sequence {(x,,y,)}<L with
(X0 Yn) = (%, Yo) - I (%5, ¥,) # L then

9(X, ¥o) =G, (F. (%), > (Yo)) = bsup )¢e,F1(x0) (b)<e.

€F, (Yo

This implies that
¢e,F1(x0) (b) <a,VbeF,(y,)

By Proposition 2.1,
F,(y,) < ae+F(x,)—intC. @
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We claim that F,(y,) cae+F(x,)—intC for n large enough. If not, there exists a
subsequence {(X, .Y, )} of {(x,,y,)} such that F,(y, ) & ae+F(x, )—intC. Without loss
of generality, we can assume that F,(y,) ¢ ae+ F(x,)—intC,vneN. Hence, there exists
v, € F,(y,) such that

v, gae+F(x,)—intC,vneN. (2)

Since F, is usc with compact values, by Lemma 2.3, without loss of generality, there
exists v, e F,(y,) such that v. —v,. From (1), there exists u, e F,(x,) such that

V, —U, € e —intC. (3)

Since F is Isc, by Lemma 2.3, there exists u, € F(x,) such that u, —u,. Thus, (3)
yields that v, —u, eae—intC for n large enough, which contradicts with (2). Thus,

F(y,) cae+F(x,)—intC for n large enough. Hence,

9%, ¥a) =G (F(X,), Fo(Y,)) = sup 4, ¢, ,(0) <a, which contradicts with {(x,,y,)}<L.
bEFZ(yn)

Therefore, (x,,y,)eL and g is u.s.c. O

We are now in the position to discuss the pseudo-monotonicity of the scalarizing
function.

Definition 3.1. [10] The function f: X xX — R is said to be pseudo-monotone on X x X
iff forany x,ye X with XYy,

f(x,y)=0= f(y,x)<0.
Foreach ye X, let
P(y) ={xeK:F(y) £ F(x)},
Q(y) ={xeK:F(x) <' F(V)}.

Theorem 3.2. If foreach ye X, P(y)cQ(y) and F(x) is (-C)-compact for all xe X,
then G, (F(),F()) is pseudo-monotone on X x X .

Proof. Forany x,ye X with X# Yy, suppose that G,(F(x),F(y))=>0. By Proposition
3.2, F(y) " F(x). This means that xeP(y) and then xeQ(y), i.e., F(x)cF(y)-C.
Noting that F(y) is (-C)-closed, by Proposition 3.3, G,(F(y),F(x))<0. The proof is
completed. m

4. APPLICATIONS TO WELL-POSEDNESS OF EQUILIBRIUM PROBLEMS

Let f:XxX —R, we consider the scalar equilibrium problem as follows
(EP(f,K)) Find X eK such that

f(X,y)>0,vyeK.
We denote the solution set of (EP(f,K)) is S(f,K).

Pick up the idea from [11], we propose the following assumptions
(A1) h: X x X — R is upper semicontinuous and pseudo-monotone on X x X ;
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(A2) sup |h(x,y)l<+o0;

(x,y)eXxX

(A3) A is a nonempty compact subset of X and there exists Xe A such that
h(x,y)>0,vy e A.
Given x e X , and two nonempty subsets A and B of X , we define

d(x,A) = in£||x —al|, and e(A,B) :=supd(a, B),
ae aeA

and the Hausdorff distance between A and B
H (A, B) =max{e(A B),e(B, A)}.
Let M ={(h,A):h, A satisfies (Al),(A2),(A3)}. According to the result in [10], M is a

complete metric space with the metric p is defined as follows: for any
W =0, A) u=(0,~A)eM,

Pl )= sup [0 y)=hy(x )]+ H(ALA).

(x,y)eXx

For the sequence {un} M, u, — aif p(u,, a) - 0.

Definition 4.2. [11] Let (f,K)e M, the problem (EP(f,K)) associated with (f,K) is
said to be generalized Hadamard well-posed iff for any (f ,K)eM and
x, eS(f,K,), (f,,K )—(f,K) implies that {x } has a subsequence converging to an
element of S(f,K).

Lemma 4.1. [11] For each (f,K)e M, the problem (EP(f,K)) associated with (f,K)
is generalized Hadamard well-posed.

By employing the properties of G, which is investigated above, we establish the sufficient
condition for the well-posedness of the related equilibrium problem as follows.

Theorem 4.1. If K is compact, F is continuous with nonempty, compact values and
P(y)cQ(y),¥ye X, then the problem (EP(G,(F(),F()),K)) associated with
(G,(F(),F()),K) is generalized Hadamard well-posed.

Proof. We will show that (G,(F(),F()),K)eM . By Theorem 3.1, G (F(),F()) is
us.con XxX.By Theorem 3.2, G,(F(-),F()) is pseudo-monotone on X x X . Since F is
compact-valued, it is easy to see that sup |G, (F(x),F(y))|<+w. By Lemma 2.1,

(X,y)eXxX
E(F,K)=&. Moreover, E(F,K)cW(F,K), and then by Remark 2.1, W(F,K) is also
nonempty.
Next, we claim that there exists X K such that G_(F(x), F(y)) =0,Vy e K . Suppose
by contradiction that for each x, e K , there exists y, e K such that G_(F(x,),F(y,))<0.
Then by Proposition 3.2,

F(yo) <" F (%) (6)

Since F is compact-valued, by Remark 2.1 WMax(F(x,))=@. By choosing

%, € E(F,K), from Lemma 2.2, there does not exist X K satisfying F(x)<" F(x,). This
contradicts with (6). Hence, there exists Xe K such that G, (F(x),F(y))=>0,vyeK and

(G.(F(),F()),K)eM. By Lemma 4.1, EP(G,(F(),F()),K)) associated with
(G.(F(),F()),K) is generalized Hadamard well-posed. m
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TOM TAT
VO HUGNG HOA TRONG TOI UU TAP VA UNG DUNG

Dinh Vinh Hién*, Nguyén Dinh Inh
Trwong Pai hoc Cong nghiép Thuc pham TP.HCM
*Email: hiendv@hufi.edu.vn

Trong bai viét ndy, nhom tac gia nghién ctru cac tinh chat cia ham vo huéng hoa phi
tuyén cho bai toan tdi wu tdp va tng dung caa nd. Trudc hét, dudi cac gia thiét thich hop,
ching tdi thiét I4p tinh nira lién tuc va tinh gia don diéu cia ham nay. Sau dé, bang céach sir
dung céc tinh chat trén, chang tdi nghién ctru tinh dt chinh cua bai todn can bang tuong Gng.
Céc két qua cua ching tdi 1a méi hoac cai tién cac két qua da co.

Tur khéa: Ham vo hudng héa, bai todn toi wu tap, dat chinh, bai toan can bang.
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