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ABSTRACT  

The paper aims to study various sufficient conditions for the existence of positive 

solutions to the fractional differential equation  

( ) ( ), ,  0 1,  1 2,D u t f t u t =      

subject to the multipoint boundary condition 

( ) ( ) ( )
1

0 0,   1
m

i i

i

u u u 
=

 = = . 

The main tools used are Krasnosels’kii fixed point theorem, Leggett-Williams fixed point 

theorem and the monotone iterative technique. In addition, the set of positive solutions is 

proved to be compact. 

Keywords: Multipoint, boundary value problem, resonance, positive solution, solution set. 

1.  INTRODUCTION 

Fractional differential equations arise in various areas of physics and applied mathematics 

and have been of great interest recently. It becomes a powerful tool in modeling of many 

physical phenomena (for instance, see [1-9] and the references therein). In this article, we 

consider the existence of positive solutions for fractional multipoint boundary value problem 

at resonance:     

      

( ) ( )

( ) ( ) ( )
1

, ,  0 1,  1 2,

0 0,   1 ,
m

i i

i

D u t f t u t

u u u

 

 
=

 =    


 = =




 (1.1) 

where D
is the Caputo fractional derivative, 1,m  1 20 1,m       0i   

and 
1

1.
m

i

i


=

=  
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When 2 =  the problem (1.1) is studied with non-resonant condition 
1

1
m

i

i


=

  in [10], 

and with resonant condition 
1

1
m

i

i


=

=  in [11, 12]. For the fractional case ( )1,2  , the 

problem at resonance is investigated in [13, 14] with the fractional derivative in Riemann–

Liouville sense. 

In this note, by the condition 
1

1
m

i

i


=

= , the associated homogeneous BVP (when taking 

𝑓 ≡ 0 in the right hand side) has nontrivial solutions 𝑢(𝑡) = 𝑐, for 𝑐 ∈ ℝ which the problem 

(1.1) is so-called resonant. To handle the existence of such resonant BVPs, authors mainly 

employ the Mawhin coincidence degree [15] which has been published recently [13, 14, 16-24]. 

Generally speaking, the problem non-resonant is easier to explore the existence of solutions, 

especially positive ones. For most cases of resonant ones studied previously, only the 

solvability is established, with no more deeper properties of solutions such as positiveness, 

compactness which is considered chiefly on BVPs at non-resonance [10, 25, 26]. 

Motivated by that and inspired the perturbation technique proposed in [27], in this paper, 

we will investigate the existence for positive solutions and the compactness of solution-set to 

problem (1.1) at resonance. 

We consider the Banach spaces  0,1C  and  2 0,1C equipped with the norm  

  ( )0,1
max

t
u u t


=  and  

2
max , ,u u u u =  respectively. Define a linear operator 

( )    2: 0,1 0,1L D L C C →  by setting 
2: ,Lu D u u = +  where  

( )   ( ) ( ) ( )2

1

0,1 : 0 0,  1 ,
m

i i

i

D L x C u u u 
=

 
=  = = 

 
  

and 0   is suitable constant such that L is invertible. 

Inspired by the perturbation t Putting ( )( ) ( )( ) ( )2, , ,g t u t f t u t u t= +  we observe 

that u  is a solution of the resonant BVP (1.1) if and only if it is a solution of the following 

non-resonant BVP 

( )

( ) ( ) ( )

2

1

, ,0 t 1,

0 0,  1 . 
m

i i

i

D u u g t u

u u u

 

 
=

 + =  


 = =




  (1.2) 

     Throughout the paper, we make the following assumptions. 

     (H1) 

2
2 0,

2 1

 




 −
 

− 
 is a constant. 

     (H2)    ): 0,1 0,f  + →  is a continuous function such that 

( )    )2, ,  0,1 ,  0, .f t x x t x −    +  

     (H3) The function ( ),f t x  is nondecreasing in x . 
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2.  PRELIMINARIES 

To begin the section we recall some definitions of the fractional calculus. See [28-30] 

for more details. 

Definitions 2.1. Given  : 0,1f →  and 0.   Then  

(i) The fractional integral of order α of the function f  is given by 

( )
( )

( ) ( )
1

0

1
:

t

I f t t s f s ds




−
= −
   for 0.t   

(ii) The Caputo fractional derivative of order α of f  is given by  

( ) ( )( )( )
( )

( ) ( )

( )
1

0

1
:

nt
nn

n

f s
D f t I f t ds

n t s

 



−

− +
= =

 − −
  for 0,t   

   

where n is the smallest integer greater than or equal to a .  

Definitions 2.2. (i) The classical Mittag-Leffler function is defined by 

( )
( )

( )
0

     0 ,
1

k

k

x
E x

k
 





=

= 
 +

  

where   stands for Gamma function. 

(ii) The two-parametric Mittag-Leffler function is defined by 

( )
( )

( ),

0

     0,
k

k

x
E x

k
   

 



=

=  
 +

 . 

The next two lemmas are the Green function associated with BVP (1.2) and some 

estimates for it. The proofs can be found in [31]. 

Lemma 2.1. For ( )  0,1 ,h t C then the problem 

( ) ( ) ( )

( ) ( ) ( )

2

1

,  0 1,

0 0,   1 ,
m

i i

i

D u t u t h t t

u u u

 

 
=

 + =  


 = =




 (2.1) 

has a unique solution 

( ) ( ) ( )
1

0

, ,u t G t s h s ds=   (2.2) 

where  

( )
( ) ( )( )1 2

, ,    0 1
,

0,                                             0 1

t s E t s s t
G t s

t s

 

  
− − − −   

= 
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( )
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=

− −

=

− −

−
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−
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−
+
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− − −







                                                                1.m s













 


 (2.3) 

here ( ) ( )2 2

0

1

m

i i

i

a E E

    
=

= − − − . 

Lemma 2.2. For given 

2
2 0,

2 1

 




 −
 

− 
, we have that 

(i) there exist 1 2,  0c c    such that 

( ) ( ) ( )  
1 1

1 21 , 1 ,  ,  0,1 .c s G t s c s t s
 − −

−   −    

(ii) There exist 0,  0M M   such that 

     ( )  0 , ,   , 0,1 ,G t s M t s     (2.4) 

and 

 ( )    0, ,   0,1 ,  0, .mG t s M t s      (2.5) 

Now put 1

2

c
c

c
= . Let K be a cone in  0,1C  which consists of all nonnegative functions 

and put ( )   : ,  0,1 .P u K u t c u t=      Obviously, P is a cone in  0,1 .C  For 

,u P  denote ( )( ) ( )( ),F u t g t u t= and define a map A as follows 

( ) ( ) ( )
1

0
,Ah t G t s h s ds=  , for    0,1 , 0,1 .h C t   

Then we have the following lemma. 

Lemma 2.3. The operator :T A F P P= →   is completely continuous. 

Proof. From (H2) we deduce that the operator :F P K→  is continuous. So, the operator 

:T A F P K= →  is completely continuous. Moreover, for each ,u P  by Lemma 2.2-(i) 

we have 

         ( ) ( ) ( )( ) ( ) ( )( )
1 1 1

1
0 0

, 1 ,Tu t G t s F u s ds c s F u s ds
−

=  −   (2.6) 

                     
 

( ) ( )( ) ( ) ( )( )
1

1 1

2
00,1

0

max , 1
t

Tu G t s F u s ds c s F u s ds
−


=  −   (2.7) 

Combining (2.6)-(2.7) and 1

2

,
c

c
c

=  we obtain  



Chu Binh Minh, Le Thi Nhan, Ha Binh Minh, Phan Dinh Phung  

 

45 

( ) .Tu t c Tu  (2.8) 

Therefore, .Tu P  The proof is complete. 

It is noted that a nonzero fixed points of the operator T is a positive solutions of BVP (1.2). 

To conclude this section, we recall some well-known fixed point theorems for main tools 

to establish our results in the next section. 

Theorem 2.1. (Krasnosel’skii, [32]) Let X  be a Banach space, and let P X  be a cone. 

Assume 1 2,    are two open bounded subsets of X with 11 20 ,    and let 

( )2 1: \T P P   →  be a completely continuous operator such that 

(i) 1, ,Tu u u P    and 2, ,Tu u u P    or 

(ii) 1, ,Tu u u P    and 2, .Tu u u P    

Then T has a fixed point in ( )2 1\ .P     

Theorem 2.6. (Leggett-Williams, [33]) Let K  be a cone in a Banach space ,X  

 :cK u K u c=    and   be a nonnegative continuous concave functional on K  with 

( )u u   for all .cu K  Assume that ( ) ( ) , , : ,S b d u K b u u d =    and 

: c cT K K→  is a completely continuous map such that there exist the constants 

0 a b d c     satisfying the conditions 

(i)  ( ) ( ) , , :u S b d u b     and ( )Tu b   for ( ), , ,u S b d  

(ii)  Tu a  for ,u a  

(iii)  ( )Tu b   for ( ), ,u S b c  with .Tu d  

Then T  has at least three fixed points 1 2,u u  and 3u  with 

( )1 2 3, ,u a b u a u    with ( )3 .u b   

3.  MAIN RESULTS 

We begin our results with one for the existence of one positive solution via Krasnosel’skii 

fixed point theorem. 

Theorem 3.1. Let (H1)-(H2) hold. Assume that there exist two constants 1 2, 0R R   such that 

1 2R cR  and either 

( ) ( )    

( ) ( )    

2 1
1 1

2 2
2 2

0

, ,  , 0,1 , ,

, ,  , 0,1 , ,
m

R
f t u u t u cR R

M

R
f t u u t u cR R

M







+    


 +    


 (3.1) 

or 
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( ) ( )    

( ) ( )    

2 1
1 1

0

2 2
2 2

, ,  , 0,1 , ,

, ,  , 0,1 , .

m

R
f t u u t u cR R

M

R
f t u u t u cR R

M







+    


 +    


 (3.2) 

Then BVP (1.2) has a positive solution. 

Proof. Let      1 1 2 20,1 : , 0,1 : .u C u R u C u R =    =    Then 1 2,    are 

open bounded subsets of  0,1C  with 1 1 20 , .     

Case (3.1). For u P  with 1 ,u R=  we have 

      ( )( ) ( )( ) ( )2 10 , ,
uR

g t u t f t u t u t
M M

 = +  = , for 𝑡 ∈ [0,1]. (3.3) 

From (3.3) and (2.4) we obtain 

 
( ) ( )( )

 
( )

1 1

0 00,1 0,1
max , , max , . .
t t

u u
Tu G t s g s u s ds G t s ds M u

M M 
=   =    

 Thus, 

                                                 1, .Tu u u P     (3.4) 

On the other hand, for u P  with 2 ,u R=  we have 𝑢(𝑡) ∈ [𝑐𝑅2, 𝑅2] and then 

                          ( )( ) ( )( ) ( )2 2

0

, ,
m

R
g t u t f t u t u t

M



= +  , for 𝑡 ∈ [0,1]. (3.5) 

It follows from (3.5) and (2.5) that 

( ) ( ) ( )( ) ( )
1

2
2

0 0
0

, , , ,
m

m

R
Tu t G t s g s u s ds G t s ds R u

M




=   =   

Therefore 

2, .Tu u u P     (3.6) 

By (3.4), (3.6) and the first part of Theorem 2.1, T has a fixed point in ( )2 1\P   , 

that is, a positive solution to BVP (1.2). 

Case (3.2). Using the similar argument and by applying the second part of Theorem 

2.1, we obtain the same result as above. The theorem is proved.       

Using the monotone iterative technique, we get the following result.  

Theorem 3.2. Let (H1) and (H3) hold. If there exist two constants 1 2,  R R  with 1 20 R R   

such that 

 
( )

 
( )2 1

2 1
0,10,1 0

sup , ,  inf , .
tt m

R R
g t R g t cR

M M 

   (3.7) 

Then the problem (1.2) has positive solutions 1 2,u u  with 

( )  1 1 2 0 1 0 2  lim ,   ,  0,1 ,n

n
R u R and T u u where u t R t

→+
  = =   

and 

( )  1 2 2 0 2 0 1  lim ,   ,  0,1 .n

n
R u R and T u u where u t R t

→+
  = =   

Proof. Define    
1 2

1 2,
: .

R R
P u P R u R=     Suppose  1 2,R R

u P , then 
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( )  1 2 , 0,1 .cR c u u t u R t       

From (H3) we have 

( ) ( ) ( )( ) ( ) ( ) ( )
1 1 1

2
2 2

0 0 0
, , , , , ,

R
Tu t G t s g s u s ds G t s g s R ds G t s ds R

M
=       

and 

( ) ( ) ( )( ) ( ) ( ) ( )
1 1 1

1
1 1

0 0 0
0

, , , , , .
m

R
Tu t G t s g s u s ds G t s g s cR ds G t s ds R

M 
=       

Hence 

             1 2 1 2, ,
.

R R R R
TP P  (3.8) 

Let ( )  0 2 ,  0,1u t R t=   and so  1 2
0 ,

.
R R

u P  Put 

              
1

1 ,  1,2,...n

n n ou Tu T u n+

+ = = =  (3.9) 

By (3.8) we have  1 2,
,n R R

u P 1n  . It follows from Lemma 2.3 that there exists a 

subsequence  
knu  of  nu  such that 

    1 2
1 ,

lim .
kn R R

k
u u P

→+
=   (3.10) 

Moreover, we have 

( ) ( )  1 1 2 00 , 0,1 .u t u R u t t   =    (3.11) 

From (H3), it is easy to see that    1 2 1 2, ,
:

R R R R
T P P→  is nondecreasing. Therefore, (3.11) 

deduces that 1 0Tu Tu  or 2 1u u . By induction, we have 

1 ,  1n nu u n+    . (3.12) 

Combining (3.10) and (3.12) gives us 

                                           1lim .n
k

u u
→+

=  (3.13) 

Letting n→+  in (3.9) we obtain 1 1,Tu u=  or 1u  is a positive solution of (1.2).  

Using the same technique by setting ( )  0 1, 0,1u t R t=    and considering a sequence 

 n
u defined by 1

,  1,2,...
n n

u Tu n
+
= = , we have 

 0
1 2,R R

u P  and 
 1 2,n R R

u P  and then 

2 2.Tu u=  This completes the proof of the theorem.        

Corollary 3.1. Let (H1) and (H3) hold. Assume that 

 

( ) 2

0,1

, 1
liminf sup

u t

f t u

u M


→+ 

 − +   and   
 

( )
0,1

0 0

, 1
limsup inf .

t
u m

f t u

u M + 
→

  

Then there exist two constants 1 2, 0R R   ( 1 2R R ) and the problem (1.2) has positive 

solutions 1 2,u u  for which 

( )  1 1 2 0 1 0 2  lim ,   ,  0,1 ,n

n
R u R and T u u where u t R t

→+
  = =   

and 

( )  0 01 2 2 2 1  lim ,   ,  0,1 .n

n
R u R and T u u where u t R t

→+
  = =   
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Clearly, this corollary is a direct consequence of Theorem 3.3.  

Now, we will give sufficient conditions for existence of infinitely many positive solutions. 

Theorem 3.3. Let (H1)-(H2) hold and suppose that there exists a sequence  
1n n

R


=
 with 

10 n nR cR +   and for all n , we have 

( ) ( )    2 2 1
2 1 2 1, ,  , 0,1 , ,n

n n

R
f t u u t u cR R

M
 −

− −+      (3.14) 

  ( ) ( )    2 2
2 2

0

, ,  , 0,1 , .n
n n

m

R
f t u u t u cR R

M



+      (3.15) 

Then BVP (1.2) has infinitely many positive solutions  n n
u


 satisfying 2 1 2n n nR u R−    

for all .n  

Proof. For each 𝑛 , put   0,1 :n nu C u R =   . Then 0 n  and 1,n n+    

.n   For 2 1nu P −   and  0,1 ,s  we have 

( )2 1 2 1.n ncR c u u s u R− −=   =  (3.16) 

Combining (3.14) and (3.16) deduces that 

 
( ) ( )( ) ( )  

1 1
2 1

2 1
0 00,1

max , , , ,  0,1n
n

t

R
Tx G t s g s u s ds G t s ds R u t

M

−
−


=   =   , 

that is, 

    2 1,  .nTu u u P −     (3.17) 

On the other hand, for 2nu P   and  0,1 ,s  we have 

( )2 2 .n ncR c u u s u R=   =  

Hence, by (3.15), 

( ) ( ) ( )( ) ( )
1

2
2

0 0
0

, , , .
mn

n

m

R
Tu t G t s g s u s ds G t s ds R u

M




=   =   

Therefore 

2,  .nTu u u P     (3.18) 

By (3.17), (3.18) and the first part of Theorem 2.1, it follows that T  has a fixed point nu  

in ( )2 2 1\n nP −   , and 2 1 2 .n n nR u R−    The proof is complete.    

Next we propose a different kind of sufficient conditions for the existence of three 

positive solutions via Leggett-Williams fixed point theorem. For this purpose we define a 

nonnegative continuous concave functional   on K  by setting 

( )
 

( )
0,1

min
t

u u t K


=  . 

It is obvious to see that ( ) ,  .u u u K     Then we have the following result. 

Theorem 3.4. Let (H1)-(H2) hold. Suppose that there exist positive constants ,  a b and d  

such that 
b

a b d
c

    and f satisfies the following conditions. 

(G1) ( ) 2,
d

f t u u
M

+  ,  for all ( )    , 0,1 0,t u d  , 
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(G2) ( ) 2,
a

f t u u
M

+  ,  for all ( )    , 0,1 0,t u a  , 

(G3) ( ) 2

0

,
m

b
f t u u

M



+  ,  for all ( )  , 0,1 0, .

b
t u

c

 
   

 
 

Then the BVP (1.2) has at least three positive solutions 1 2,u u  and 3u  satisfying 

 
( )1 2 3

0,1
,  min ,  

t
u a b u t a u


    with 

 
( )3

0,1
min .
t

u t b


  

Proof. First, for du K  then .u d  For all  0,1 ,t  by assumption (G1) and (2.4) we 

obtain 

( ) ( ) ( )( )
1

0

, , nTu t G t s g s u s ds=  ( )
1

0

,
d

G t s ds
M

  .
d

M d
M

 =  

Hence, Tu d  which implies : d dT K K→ . 

Similarly, from (G2), we also have Tu a  for u a . 

Now we verify that ( ), , : .
b

u S b u b
c

 
  

     
  

 Indeed, let 0   be such that 

1c c  +   and put ( )  ,  0,1 .
b b b

u t t t
c c c 

 
= − − −  

+ + 
 It follows that 

b
u

c
=  and ( )

 
( )

0,1
min .
t

b
u u t b

c



= = 

+
 

Thus, 

( ), , : .
b

u S b u b
c

 
  

     
  

 

Next, we show that ( ) ,  , , .
b

Tu b u S b
c

 
 

    
 

 Indeed, for , , ,
b

u S b
c


 

  
 

 we 

deduce from (G3) and (2.4) that 

( )
 

( )
0,1

min
t

Tu Tu t


=
 

( ) ( )( )
1

00,1
min , ,
t

G t s g s u s ds


=  ( )
0

0

,
m

m

b
G t s ds

M




  .b  

Finally, suppose ( ), ,u S b d with .
b

Tu
c

  From (2.7), we obtain  

( )
 

( )
0,1

min .
t

Tu Tu t c Tu b


=    

Hence, applying Theorem 2.2 we get T has three fixed points 1 2,u u  and 3u with 

 
( )1 2 3

0,1
,  min ,  

t
u a b u t a u


    with 

 
( )3

0,1
min .
t

u t b


  

The proof is complete.          

The last part of our results is to investigate a topological property of solution-set: 

compactness. 

Theorem 3.5. Let (H1)-(H2) hold and assume that there exists a constant ( )0,1   such that 
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      0

1

m

f
M

  and 
2f

M


  − + . (3.19) 

Then the set of positive solutions of the problem (1.2) is nonempty and compact. 

Proof. Put  :S u P u Tu=  = . By Theorem 3.1, S is nonemty. Moreover, from (3.19) there 

has a constant 0R   such that  

( )( ) ( )   ( )2, ,  0,1 ,  .f t u t u t t u t R
M




 
 − +    
 

 

Hence 

       ( )( ) ( )( ) ( ) ( )   ( )2, , , 0,1 ,  .g t u t f t u t u t u t t u t R
M


= +      (3.20) 

Setting ( ) ( )     max , : , 0,1 0,N g t u t u R=    we get from (3.20) that 

    ( )( ) ( )  , + , 0,1 .g t u t u t N t
M


    (3.21) 

Let u S . By (3.21) and (2.4) we have 

( ) ( ) ( )( ) ( )
1 1

0 0

, ,u t G t s g s u s ds M u s N ds u MN
M




 
=  +  + 

 
  ,  for [0,1]t , 

which implies 

, .
1

MN
u u S


  

−
 (3.22) 

Using the compactness of the operator T  and (3.22) we deduce that sets ( )T S  and 

( )S T S  are relatively compact. Next, we show that S  is closed. To do this, we assume 

that  nu S  be a sequence such that ˆlim 0.n
n

u u
→+

− =  For  0,1t  then we have 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
1 1

0 0
ˆ ˆ ˆ, , , ,n n nu t G t s g s u s ds u t u t u t G t s g s u s ds−  − + −   

        ( ) ( )( ) ( ) ( )( )
1 1

0 0
ˆ, , , ,nG t s g s u s ds G t s g s u s ds+ −   

( ) ( ) ( )( ) ( )( )
1

0

ˆ ˆ, , .n nu t u t M g s u s g s u s ds − + −  

As g  is continuous, letting ,n→+ we obtain 

( ) ( ) ( )( )
1

0
ˆ ˆ, , 0u t G t s g s u s ds− = , 

which means 

( ) ( ) ( )( )
1

0
ˆ ˆ, , .u t G t s g s u s ds=   

Thus, û S . The proof is complete.       
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4.  CONCLUSION 

 

This report is dedicated to deal with the multiplicity of positive solutions to a Caputo-

fractional multipoint BVP at resonance including the existence of one positive solutions, three 

positive solutions, infinitely many positive solutions, two iterative sequences conversing 

solutions, and the compactness of the solution-set. The method is based mainly on fixed point 

theorems of Krasnosel’skii and Leggett-Williams. 

In a coming research, it is not trivial to consider the equation (1.1)1 combining with a 

different kind of boundary conditions due to the difficulty from the fractional calculations. 
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Bài báo nghiên cứu nhiều kiểu điều kiện đủ khác nhau cho sự tồn tại nghiệm dương của 

phương trình vi phân phân thứ 

( ) ( ), ,  0 1,  1 2,D u t f t u t =      

liên kết với điều kiện biên đa điểm 

( ) ( ) ( )
1

0 0,   1
m

i i

i

u u u 
=

 = = . 

Công cụ chính được sử dụng là định lý điểm bất động Krasnosels’kii, định lý điểm bất động 

Leggett-Williams và kỹ thuật lặp đơn điệu. Hơn nữa, tập nghiệm dương của bài toán cũng 

được chứng minh là compact. 

Từ khóa: Đa điểm, bài toán biên, cộng hưởng, nghiệm dương, tập nghiệm. 

 

 

 

 

 


