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ABSTRACT

The paper aims to study various sufficient conditions for the existence of positive
solutions to the fractional differential equation

Du(t)=f(tu), 0<t<1, 1<a<2,

subject to the multipoint boundary condition
u'(0)=0, u(1)= Z%”(’L) :
i=1

The main tools used are Krasnosels’kii fixed point theorem, Leggett-Williams fixed point
theorem and the monotone iterative technique. In addition, the set of positive solutions is
proved to be compact.

Keywords: Multipoint, boundary value problem, resonance, positive solution, solution set.

1. INTRODUCTION

Fractional differential equations arise in various areas of physics and applied mathematics
and have been of great interest recently. It becomes a powerful tool in modeling of many
physical phenomena (for instance, see [1-9] and the references therein). In this article, we
consider the existence of positive solutions for fractional multipoint boundary value problem
at resonance:

Du(t)=f(tu), 0<t<1, 1<a<2,

0 (0)=0. u(l)=Y au(n).

i=1

(1.1)

where D is the Caputo fractional derivative,m >1,0<n, <n, <---<np <1, a,>0

and ia[ =1
i=1
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m

When & =2 the problem (1.1) is studied with non-resonant condition Z a, <1in[10],

i=1

m
and with resonant condition Zai =1 in [11, 12]. For the fractional case & € (1,2) , the
i=l1
problem at resonance is investigated in [13, 14] with the fractional derivative in Riemann—
Liouville sense.

In this note, by the condition Z a; =1, the associated homogeneous BVP (when taking
i=1

f = 0in the right hand side) has nontrivial solutions u(t) = c, for ¢ € R which the problem
(1.1) is so-called resonant. To handle the existence of such resonant BVPs, authors mainly
employ the Mawhin coincidence degree [15] which has been published recently [13, 14, 16-24].
Generally speaking, the problem non-resonant is easier to explore the existence of solutions,
especially positive ones. For most cases of resonant ones studied previously, only the
solvability is established, with no more deeper properties of solutions such as positiveness,
compactness which is considered chiefly on BVPs at non-resonance [10, 25, 26].

Motivated by that and inspired the perturbation technique proposed in [27], in this paper,
we will investigate the existence for positive solutions and the compactness of solution-set to
problem (1.1) at resonance.

We consider the Banach spaces C [0,1] and C [O,l] equipped with the norm

!

u

ee]| = max, , ‘u(l‘)‘ and ||u||2 = max{”u u””} respectively. Define a linear operator

b

L: D(L) c C? [0,1] - C[O,l] by setting Lu := D“u + f°u, where

D(L)= {x e C2[0,1]:4/(0) =0, u(1) = iaiu(ni),}

and £ > 0 is suitable constant such that L is invertible.

b

Inspired by the perturbation t Putting g(t,u(l‘)) :f(t,u(t))+ﬂ2u(t), we observe

that ©# is a solution of the resonant BVP (1.1) if and only if it is a solution of the following
non-resonant BVP

Du+ fu= g(t,u),O <t<l,

u'(0)=0, u(l):gal.u(ni).

Throughout the paper, we make the following assumptions.

(1.2)

} 1s a constant.

2 Oa
(H1) f E(,z

(H2) f: [0,1] X [0,-1—00) — R is a continuous function such that
f(t.x)==px, ¥t €[0,1], x €[0,+).

(H3) The function [ (t,x) is nondecreasing in X .
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2. PRELIMINARIES

To begin the section we recall some definitions of the fractional calculus. See [28-30]
for more details.

Definitions 2.1. Given f: [0,1] — R and > 0. Then

(1) The fractional integral of order o of the function f is given by

t

I”‘f(t)::ﬁ!(t—s)a_lf(s)ds for £ 0.

(ii) The Caputo fractional derivative of order a of f  is given by

()
Df(t)=1"" (fw)(t) - r(nl— a)!(t{s)(“ ZH ds for ¢ >0,

where 7 is the smallest integer greater than or equal to a .
Definitions 2.2. (i) The classical Mittag-Leffler function is defined by

2r (e (@70

where I stands for Gamma function.

(i1) The two-parametric Mittag-Leffler function is defined by

kzz(; ak+ﬂ)

The next two lemmas are the Green function associated with BVP (1.2) and some
estimates for it. The proofs can be found in [31].

Lemma 2.1. For h(l‘) IS C[O,l], then the problem
Du(t)+ pu(t)=h(t), 0<r<1,
4(0)=0, u(1)=$au(n),
i=1

has a unique solution

(a>0,ﬂeR).

2.1)

u(t):.[G(t,s)h(s)dS, (2.2)

where
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(1 —s)m*1 E,, (—ﬁz (1 —s)a)—ga[(n, —s)ai1 E,, (—/32(77,. —s)a), 0<s<n,

(=) " E,. (A (1-5)) - Z;,a (15" Eu(-F(n=9)"), m<s<m, (2.3)

i
i=

(=) B, (-8 0-5) )= Za(n~5) " Euu(-£(n-5)). 7 <5<,

k

(I_S)ailEa,a(—ﬁz(l—S)a), 7, <s<l.

here a, = ial.Ea (—ﬂznl.a ) -E, (—[32 )

at—a
a1

Lemma 2.2. For given 3" € [0 } , we have that

(i) there exist ¢,, ¢, >0 such that
¢ (1-5)" <G(t,s)<c, (1-5)", V1, s €[0,1].
(ii) There exist M, M, >0 such that
0<G(1,s)<M, Vt,s€e[0,1], (2.4)
and

G(t,s)ZMO, Vte[O,l], se[O,nm]. (2.5)

c
Now put ¢ =—L . Let K be a cone in C [0,1] which consists of all nonnegative functions
G

and put Pz{u eK:u(t)Zc”u

, Vte [O,l]}. Obviously, P is a cone in C[O,l]. For
u € P, denote F(u)(t) = g(t,u(t)) and define a map 4 as follows
Ah(t)= [ G(2.5)h(s)ds . for he C[0,1],t €[0,1].

Then we have the following lemma.
Lemma 2.3. The operator T = Ao F : P— P is completely continuous.

Proof. From (H2) we deduce that the operator /' : P — K is continuous. So, the operator
T =AoF:P— K is completely continuous. Moreover, for each u € P, by Lemma 2.2-(i)

we have
Tu(r) = [ G(e.5)F (u)(s)ds 2 ¢, [ (1=5)"" F (u)(s)ds. 2.6)
||Tu|| = I,ggﬁj.;G(t’S)F(u)(S)dS < czj(l —S)D’_I F(u)(s)ds (2.7

0

c
Combining (2.6)-(2.7) and ¢ = —-, we obtain
)
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Tu(t) 2 c||Tul|. (2.8)
Therefore, Tu € P. The proof is complete.

It is noted that a nonzero fixed points of the operator 7is a positive solutions of BVP (1.2).

To conclude this section, we recall some well-known fixed point theorems for main tools
to establish our results in the next section.

Theorem 2.1. (Krasnosel skii, [32]) Let X be a Banach space, and let P — X be a cone.
Assume €, Q, are two open bounded subsets of X with 0€€, CQ, and let

T:Pn (g_lz \Ql) — P be a completely continuous operator such that
(i) [T <u
i |7l

uePNoQ,, and ||Tu|| > ||u

uePMoQ,, or

,uePnMoQ,.

uePNOQ,, and ”Tu” < ||u

Then T has a fixed point in Pﬂ(f_lz \Ql).

Theorem 2.6. (Leggett-Williams, [33]) Let K be a cone in a Banach space X,
K. = {u ek: ||u|| < c} and y be a nonnegative continuous concave functional on K with

j/(u)S”u” for all ueK,.. Assume that S(}/,b,d)Z{ueK:b<}/(u),

u”Sd} and

T:Kc—>K: is a completely continuous map such that there exist the constants
0<a<b<d<c satisfying the conditions

(i) {ueS(y.b.d):y(u)>b}#Band y(Tu)>b for ueS(y.b,d),
(i) |Tul| < a for |u| <a,

i) y(Tu)>b for ueS(y,b,c) with ||Tu|>d.

Then T' has at least three fixed points u,,u, and U with

|| < a.b <y (uy),a <|lus| with y(uy)<b.

3. MAIN RESULTS

We begin our results with one for the existence of one positive solution via Krasnosel’skii
fixed point theorem.

Theorem 3.1. Let (H1)-(H2) hold. Assume that there exist two constants R, R, >0 such that
R, <cR, and either

Fltu)+ fou < % v(ru) e [0.1]x[cR, R ],
(3.1)
f(tu)+pu> Mi, V(t,u)€[0,1]x[cR,,R,],

0"f'm
or
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Fta)+ fru> 2 v (tu)e[0.0]x[cR.R].
M, (3.2)

f(t,u)+ LPu < %, ‘v’(t,u) € [O,l]x[ch,Rz].
Then BVP (1.2) has a positive solution.
Proof. Let Q, = {u € C[O,l] : ||u|| < Rl},Q2 = {u € C[O,l] ; ||u|| < Rz}. Then €2, €, are
open bounded subsets of C[O,l] with 0 € QI,STI cQ,.
Case (3.1). For u € P with ||u|| = R, we have

0<g(tu(t))=f(tu(t))+ pu(t)< Hl =1 for¢t €[0,1]. (3.3)
From (3.3) and (2.4) we obtain
u |
||| = ?Elglﬁjo G(Z,S)g(s,u(s))ds < |L/[_”{§[glﬁjo G(t,s)ds <*— ” ” M = ul.
Thus,
(3.4)

On the other hand, for ¥ € P with ||u|| =R,, we have u(t) € [cR,, R,] and then
g(t.u(2))=f(tu(t))+ Bu(t)=
It follows from (3.5) and (2.5) that

Tu(t) :J.;G(t,s)g(s,u(s))ds > MR; IOU"’G(t,s)ds >R, =|ul,
0%fm

, fort € [0,1]. (3.5)

0°fm

Therefore

7] = ]

(3.6)

By (3.4), (3.6) and the first part of Theorem 2.1, T has a fixed point in P M (K_lz \ QY ) ,

that is, a positive solution to BVP (1.2).

Case (3.2). Using the similar argument and by applying the second part of Theorem
2.1, we obtain the same result as above. The theorem is proved. |
Using the monotone iterative technique, we get the following result.
Theorem 3.2. Let (HI) and (H3) hold. If there exist two constants R, R, with 0<R, <R,

such that

supg(t,Rz)S%, ir[lf]g(t,ch)Z R (3.7)

1<]0,1] <01 My,
Then the problem (1.2) has positive solutions u,,u, with
R < ||u1|| <R, and lim T"u, =u,, where u,(t)=R,, t €[0,1],
n—>+00
and

R, <||u2||<R and lim T"u, =u,, where uo( ):Rl, te[O,l].

n—>+o0

Proof. Define [ERDRZ] = {u eP:R < ||u|| < Rz}- Suppose U € fleaRz] , then
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CR < c||u|| < u(t) < ||u|| <R, Vte [0,1].

From (H3) we have
1 1 R, ¢l
Tu(t) = IO G(l,s)g(s,u(s))ds < IO G(t,s)g(s,R2 )ds < ﬁIOG(Z,S)dS <R,
and
Tu(t) = J.;G(t,s)g(s,u(s))ds > j;G(r,s)g(s,ch)ds > Mfi]m I;G(t,s)ds >R,
Hence
TP[Rl’Rz] - P[RI’RZ]. (3.8)
Let u, (t) =R,, te [O,l] and so U, € P[RI,RZ]' Put
u, =Tu,=T"u,n=12,.. (3.9)

By (3.8) we have u, € RoRs]? Vn=>1. It follows from Lemma 2.3 that there exists a

subsequence {unk} of {un} such that
limu, =u €fy oo (3.10)

k—+o0

Moreover, we have
0£u1(t)£||ul||£R2 :uo(t),Vte[O,l]. (3.11)
From (H3), it is easy to see that 7 : P} RoR] P[ #.x,] 18 nondecreasing. Therefore, (3.11)

deduces that Tu; < Tu, or u, <u,. By induction, we have

u,,<u, Vnx1. (3.12)
Combining (3.10) and (3.12) gives us
klim u, =1u,. (3.13)
—>+o0

Letting 7 — o0 in (3.9) we obtain Tu, =u,, or u, is a positive solution of (1.2).

Using the same technique by setting u, (l‘ ) =R,,Vte [0,1] and considering a sequence

{u} defined by u,, =Tu,, n=12,..., we have u, € P, %] and u, € P, &) and then

[1)2 []’2

Tu, =u,. This completes the proof of the theorem. |
Corollary 3.1. Let (HI) and (H3) hold. Assume that
o Lu 1 . . tLu 1
liminf sup L) <-p*+— and limsup inf f( ) > .
U= don] U M umor 0]y Mn,

Then there exist two constants R,R, >0 (R, <R,) and the problem (1.2) has positive

solutions U, ,uU, for which
R <|u,|< R, and Lim T"u, =u,, where u,(t)=R,, t €[0,1],
and

R <|u,|< R, and Lim T"uo =u,, where uo(t)=R,, t €[0,1].
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Clearly, this corollary is a direct consequence of Theorem 3.3.
Now, we will give sufficient conditions for existence of infinitely many positive solutions.

Theorem 3.3. Let (H1)-(H2) hold and suppose that there exists a sequence {Rn }::1 < R with

O0<R, <cR ., andforall neN, we have

F(tu)+ B s%, V(tu) e[0.1]x[cR,, . Ry, .. (3.14)

f(t,u)+,82u2];2” , V(t,u)€[0,1]x[cR,,.R,, ]- (3.15)

0'f'm

Then BVP (1.2) has infinitely many positive solutions {un }neN satisfying R,, | < <R,
forall neN.

Proof. For each n, put €, ={ueC[0,1]:”u”<Rn} . Then 0€Q, and Q. cQ .,

un

VneN. Forue PNoQ),, | and s e [0,1], we have
cR, = c||u|| <u (s) < ||u|| =R, .. (3.16)
Combining (3.14) and (3.16) deduces that

||Tx|| = ﬂgt}ﬁ_’:G(t,s)g(s,u(s))ds < %J-;G(t,s)ds <R, = ||u , 1€ [O,l],
that is,
|Tu|| < |u], YuePnoQ,,,. (3.17)

On the other hand, for u € PN OS2, and s € [0,1], we have
CR, = c||u|| < u(s) < ||u|| =R,,.
Hence, by (3.15),
Tu(t) = IIG(t s)g(s u(s))ds > i‘[n G(t,s)ds > R,, =|u|
0 ’ ’ M 0 ’ 2n )

Onm
Therefore
||Tu||2||u , Vue PMoQ,,. (3.18)
By (3.17), (3.18) and the first part of Theorem 2.1, it follows that 7" has a fixed point u,,
in PU (S_lzn \Qz,H) ,and R, | < ||u,7 || <R,,. The proof is complete. |

Next we propose a different kind of sufficient conditions for the existence of three
positive solutions via Leggett-Williams fixed point theorem. For this purpose we define a
nonnegative continuous concave functional ¥ on K by setting

y/(u) =min u(t)‘ ek.

1€[0,1]

It is obvious to see that }/(u) < ||u , Vu € K. Then we have the following result.

Theorem 3.4. Let (H1)-(H2) hold. Suppose that there exist positive constants a, b and d

b
such that a <b<—<d and f satisfies the following conditions.
C

(G1) f(tu)+fu< %, for all (t,u) €[0,1]x[0,d],
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(G2) f(t,u)+ fu <ﬁ, for all (t,u) €[0,1]x[0,a],

, forall (l,u) € [O,I]X[O,é}.

c

b
2
(G3) f(tu)+ fu> 7

0"fm

Then the BVP (1.2) has at least three positive solutions u,,u, and U, satisfying

, a <|us|| with tIEI[l(l)Ill]‘%(t)‘ <b.

Juf} <. < minfs (1

Proof. First, for u € Kq then ||u|| <d. Forall te [0,1], by assumption (G1) and (2.4) we

obtain
1

jG(t,s)g(s,un (s))ds

0

Hence, ||Tu||£d which implies T:Ki—Ka.

1u(o)-

d d
SH!}G(I,S)‘dS SMMzd.

Similarly, from (G2), we also have ||Tu|| <a for ||u|| <a.

b
Now we verify that {u € S(}/,b,—j : y(u) > b} # . Indeed, let & >0 be such that
c

b b b
c<c+ée<1 and put u(t)=—(—— N jt— . te[O,l]. It follows that
c c+e ct+e

> b.

b .
i = and (u) = minfu (1) = ——

{u . S(y,b,%) 3 (u) >b} )

b b
Next, we show that }/(Tu)>b, VueS(}/,b,—j. Indeed, for ueS(j/,b,—j, we
c c

Thus,

deduce from (G3) and (2.4) that
7(Tu) = min|Tu (1) = min [ |G (.)

t<[0,1] 1€[0,1]

ds > b.

b g
g(s,u(s))ds > Mo j: ‘G(z‘,s)

Finally, suppose u € S(]/,b,d) with ||Tu|| > é From (2.7), we obtain
C
y(Tu)= E[%% Tu(t)‘ > ¢||Tul|> b.
Hence, applying Theorem 2.2 we get T has three fixed points #,,u, and u,; with

]‘uz(t), a <|lus| with mi ]‘u3(t)‘ <b.

1e[0,1

||u1|| <a, b< 2%3,1

The proof is complete. |
The last part of our results is to investigate a topological property of solution-set:
compactness.
Theorem 3.5. Let (H1)-(H2) hold and assume that there exists a constant Y € (0,1) such that
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1 -
foz— - and f s-ﬂ%ﬁ. (3.19)

Then the set of positive solutions of the problem (1.2) is nonempty and compact.
Proof. Put S = {u eP:u=T u} . By Theorem 3.1, S is nonemty. Moreover, from (3.19) there
has a constant R > O such that

f(t,u(t))g(—ﬂz +ﬁu(z), veelod], u(r)= R
Hence
g(t,u(t)):f(t,u(l))+,82u(t)£ﬁu(t), vie[0,1], u(t)zR  (3.20)
Setting N:max{g(t,u):(t,u) e[O,l]x[O,R]} we get from (3.20) that
g(t,u(t))ﬁﬁu(tﬁ-N, Vte[O,l]. (3.21)
Let u €S .By (3.21) and (2.4) we have
1 1
()= [G(1:5)g (sou(s))ds < M| (ﬁu(s)+NJdS <« MV for t<[0,1],
0 0
which implies
e <MV ues. (3.22)
I-y
Using the compactness of the operator 7' and (3.22) we deduce that sets T (S ) and

ScT (S ) are relatively compact. Next, we show that .S is closed. To do this, we assume

that {u”} C S be a sequence such that ILIP ||un —12” =0. For te [O,l] then we have

(1)~ [ G(t.5)g (s.0(s))ds| [a(r) ~u, () +|u, (1) - [, G (t.5) g (s.1,(s)) s
+U; G(t,s)g(s,un (s))ds - I;G(t,s)g(s,ﬁ(s))ds

u(t)-u, (t)| +Mj;‘g(s,un (S)) —g(s,ﬁ(s))‘ ds.

As g is continuous, letting n» — +oo, we obtain

u (t) - J.; G(t,s)g(s,ﬁ(s))ds

<

-0,

which means

i(t)= [ G(r.5)g(s.i(s))ds.

Thus, # € S . The proof is complete. |
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4. CONCLUSION

This report is dedicated to deal with the multiplicity of positive solutions to a Caputo-
fractional multipoint BVP at resonance including the existence of one positive solutions, three
positive solutions, infinitely many positive solutions, two iterative sequences conversing
solutions, and the compactness of the solution-set. The method is based mainly on fixed point
theorems of Krasnosel’skii and Leggett-Williams.

In a coming research, it is not trivial to consider the equation (1.1); combining with a
different kind of boundary conditions due to the difficulty from the fractional calculations.
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Bai bao nghién ctru nhiéu kiéu diéu kién du khac nhau cho sy ton tai nghiém duong cua
phuong trinh vi phén phan thi
Du(t)=f(tu), 0<t<1, 1<a<2,
lién két véi diéu kién bién da diém

u'(0)=0, u(l)= ;aiu(ni) :

Cong cu chinh duoc sir dung 1a dinh 1y diém bt dong Krasnosels’kii, dinh 1y diém bit dong
Leggett-Williams va k¥ thuat ldp don di¢u. Hon nira, tdp nghiém duong cua bai toan ciling
duoc chirng minh la compact.

Tir khéa: Pa diém, bai toan bién, cong hudng, nghiém duong, tap nghiém.

53



