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ABSTRACT 

In this paper, a nonlinear control scheme based on backstepping theory for dynamic 

voltage restorer (DVR) is proposed to mitigate the voltage disturbances for loads under grid 

voltage sags. A nonlinear model of system with pulse-width modulation (PWM) voltage-

source inverter (VSI) including the output inductor-capacitor (LC) filters in the dq0 

synchronous reference frames is derived. The controllers of three-phase line-to-neutral load 

voltages in dq0 components are designed by nonlinear control theory. With the proposed 

scheme, the load voltage is regulated to reach the rated value and its waveform becomes almost 

sinusoidal, in comparison with the proportional-integral (PI) controller under grid voltage 

sags. Simulations are implemented to verify the validity of the proposed method.  

Keywords: Dynamic voltage restorer, nonlinear load, backstepping theory, voltage sags, 

unbalanced load.  

1.  INTRODUCTION 

Recently, the issues of the power quality are paid much attention as the penetration of the 

renewable energy systems into the grid at the connection point increases quickly. The grid 

voltage disturbances such as voltage sags, swells, harmonics, unbalances, and flickers are 

considered as critical power quality issues in distribution systems. Also, the application of 

power electronics devices in industrial processes, these disturbances influence on the industrial 

loads. Among these disturbances, the voltage sags are a main reason of short-circuit faults [1-4].  

Several devices have been employed to improve the quality of the voltage in the 

distribution networks such as dynamic voltage restorer system, uninterruptable power supply 

(UPS), unified power quality conditioner (UPQC), static compensator (STATCOM). Among 

them, a DVR system is considered as the best solution in order to keep the load voltage at its 

rated value despite the sudden drop of the grid voltage. The DVR system is made up of a 

voltage-source inverter, output LC filters, and an isolated transformer connected in series 

between the source and the loads. Conventionally, both primary and secondary coils of the 

transformer are connected in Y-windings in distribution systems and the turns ratio is given as 

1:1 [5-7].    

As for control scheme, a cascaded PI (proportional integral) controller which consists of an 

outer voltage control and inner current control loops has been employed [8]. However, its control 

dynamic response is not so fast since the bandwidth of voltage control loop is limited [5]. In 

addition, there are the negative sequence and zero-sequence components in the source voltage 

during unbalanced sags conditions. For this, the dq components of the source voltage can be 
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AC (alternating current) signals. Usually, a typical PI controller cannot control the AC signals 

well. To overcome this problem, a resonant control has been applied to regulate the UPQC, so 

that the load voltages are much compensated in the cases of the unbalance and distortion of 

source voltage and load [9]. However, the algorithms with the PI and PR are both based on the 

linear control theory, where the performance of the DVR control with a nonlinear model between 

the inverter terminal voltages and the output capacitor voltages will be considerably deteriorated. 

Another issue is considering the nonlinearity of the UPS or DVR for control [10, 11]. Thus, the 

nonlinear control gives better performance than the control techniques based on the PI control. 

 In the paper, a control method based on backstepping technique has been applied to 

improve the operation of the three-phase four-wire (3P4W) DVR system under grid fault 

conditions. First, the nonlinear model of the system including LC filter is obtained in the dq0 

synchronous reference frame. Then, the controller design depending on the backstepping 

control is performed, in which the load voltages are kept almost sinusoidal. Simulation results 

for 3P4W DVR are provided to verify the validity of the proposed control scheme. 

2.  SYSTEM MODELING 

The three-phase split-capacitor inverter in Figure 1 can be represented in synchronous 

dq0 reference frame. Due to unbalanced load condition, the zero-sequence components are 

taken into account as [12, 13] 
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where Lf is the filter inductance, Ln is the neutral filter inductance, Cf is the filter 

capacitance, vdq and v0 are the dq0 axis inverter output voltages, vldq and vl0 are the dq0 axis 

phase load voltages, idq and i0 are the dq0 axis inverter output currents, ildq and il0 are the dq0 

axis load currents, and  is the grid angle frequency. 

From (1) to (3), a state-space modeling of the system is derived as follows:  
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Figure 1. Circuit configuration of three-phase four-wire DVR. 

3. CONTROL OF DYNAMIC VOLTAGE RESTORER  

3.1. Voltage references  

The in-phase compensation strategy is considered, in which the amplitude of the load 

voltage is exactly kept the same as before the sag. Also, the phase of the load voltage is similar 

to that of the source voltage after the sag. As shown in Figure 1, the load voltage ( ,L abcv ) is 

expressed as: 

                        
,a, ,
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,c, ,
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where , , ,, ,s a s b s ce e e  are the source phase voltage and , , ,, ,dvr a dvr b dvr cv v v  are the phase 

voltage injected by the DVR. 

The DVR control is performed in the electrically rotating reference frame, whereas the 

phase angle of the source voltage is applied for transforming the DVR output voltages and 

load voltages. To keep the load voltage to be rated value, the voltage references in the 

synchronous reference frame (dq0) are calculated as: 
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where , 0s dqe  is the components of the source voltage in dq0- axis, and 
*

, 0L dqv  is the 

components of the load voltage references in dq0-axis. 

The components of the load voltage references in dq0-axis are obtained as 
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3.2. Backstepping control 

From (5), the dynamic model in the dq0 coordinate system can be expressed as [14]: 
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According to a backstepping control strategy, the system states to track the reference 

commands are required with two stages [14]. The first stage is that the tracking error of the 

voltage X1 is minimized. The current X2 is controlled with the second stage. Also, the 

Lyapunov-based scheme has been applied to update the law of the unknown bounded 

disturbances. 

For the stage 1, the errors of the inverter output voltage and load current are expressed as  

*
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For tracking error, the derivative of (11) is expressed as 
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The control law can be designed as 
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Putting (17) into (16) yields: 
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The new error system can be represented as 
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All the roots of (21) have a negative real part, so the coefficient matrix A of the system 

is a Hurwitz matrix, and the system must be stable. 

The matrix P is defined to be definitely positive and the matrix 
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The whole system Lyapunov function is given by    
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The derivative of V along the trajectory is expressed as 
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By using the control law in (17), the converter system (9) and (10) has stability at the 

equilibrium E = 0.  

As backstepping obtains the goals of stabilization and tracking, the final control law can 

be achieved by replacing F1, H, G1,  , K and E into (17). 
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Figure 2. Block diagram of the proposed DVR control scheme. 
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Figure 2 shows the block diagram of the proposed controller, in which the dq0-axis load 

voltages are controlled by using backstepping control. The outputs of controller ( * * *, ,a b cv v v ) 

are applied for SVPWM-3D (space vector pulse-width modulation –three dimensions) [15]. 

4.  SIMULATION RESULTS 

PSIM simulations have been performed for the balanced/unbalanced and linear/nonlinear 

loads in order to verify the feasibility of the proposed method. The DC-link voltage at the input 

of inverter from a three-phase AC source is 400 V, the switching frequency of inverter is           

10 kHz. The filter inductor Lf is 1 mH and the filter capacitor Cf is 100 µF. The grid voltage 

is 220 Vpeak/60 Hz. The parameters of loads and controllers are shown in the Table 1 and Table 

2, respectively.   

The simulation for the PI control and proposed control method (backstepping control) 

under the conditions of grid voltage sags and different loads are shown from Figure 3 to 6, 

respectively. The grid fault is assumed to be unbalanced voltage sags, in which voltages of 

phases a, b, and c drop to 25%, 50% and 40%, respectively for 40 ms (from 1.53 to 1.57 

seconds). During the voltage sags, when the DVR is activated, the output voltages of the DVR 

are injected and load voltages should be kept unchanged, as if before pre-sag. Thus, the load 

voltages after the sag must be much sinusoidal and balanced. 

Table 1. Parameters of loads 

Type of load Parameters 

Balanced linear load Ra = Rb = Rc = 10 Ω 

Unbalanced linear load Ra = 1 k Ω, Rb = Rc = 10 Ω 

Balanced nonlinear load 
L = 1 mH, C = 4700 µF,  

Rdca = Rdcb = Rdcc = 20 Ω 

Unbalanced nonlinear load 
L = 3 mH, C = 4700 µF,  

Rdca = 100 Ω, Rdcb = Rdcc = 20 Ω 

Table 2. Parameters of controllers 

Controller type Gains of controller 

PI control  

Current controller  
kp = 17.2  

ki = 13200 

Voltage controller  
kpv = 0.32  

kiv = 891 

Proposed control k11= k22 = k33 = 2.1×103, k1 = 0.5 × 109 

4.1. Grid voltage sags and balanced linear loads 

Figure 3A shows the performance of the DVR with the PI control under the conditions 

of grid voltage sags and linear loads. The DVR output voltage, load voltage, and load currents 

are shown in Figures 3A (b), (c), and (d), respectively. As can be seen, load voltage is 

sinusoidal but still has some ripples. It is demonstrated from Figures 3A (e) to (g) that, the 

measured values of the DVR voltage components in dq0 axis follow their references.  
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In the same simulation conditions, the control performance of the DVR with the proposed 

method is shown in Figure 3B. Figure 3B (c) shows the load voltages, which are kept at rated 

values even though the grid voltages drop, as shown in Figure 3B (a). The output voltages of 

the DVR to compensate for the voltage sags are shown in Figure 3B (b). It is illustrated in 

Figures 3B (e)-(g) that, the actual values of the dq0 axis DVR voltage components with the 

proposed strategy track their references well, respectively, which are much better than those 

of the PI ones (see in Figure 3B). Compared with the PI controller, the total harmonic distortion 

(THD) analysis for load voltage in the proposed controller gives better results with lower THD 

(see in Table 3). 
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Figure 3. Dynamic responses under the conditions of grid voltage sags and linear loads  

using two controllers: (A) PI controller and (B) Proposed controller. 

4.2. Grid voltage sags and unbalanced linear loads 

Figures 4A and 4B show the performance of the DVR with both PI and proposed 

controllers under the conditions of grid voltage sags and unbalanced linear loads, respectively. 

As can be seen clearly, the DVR output voltages in two controllers are shown in Figures 4A 
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(b) and 4B (b), respectively. The waveform of the load currents in both cases is unbalanced 

due to the influence of the unbalanced load (Ra = 1 k Ω, Rb = Rc = 10 Ω), as shown in Figures 

4A (d) and 4B (d). It is realized shows that the PI control method did not respond well. The 

load currents are illustrated in Figures 4A (d) and 4B (d). The actual values of the dq0 axis 

DVR voltage components in both controllers are shown from Figures 4A and 4B (e) to (g), 

respectively. As can be obviously seen from Figures 4B (e) to (g), the actual values of the dq0 

axis DVR voltage components in the proposed controller can track their references well, 

compared with those of the PI one. Also, the proposed controller gives lower THD for load 

voltage (Figure 4B (c)) which is listed in Table 3.  
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Figure 4. Dynamic responses under the conditions of grid voltage sags and nonlinear loads  

using two controllers: (A) PI controller and (B) Proposed controller. 

4.3. Grid voltage sags and balanced nonlinear loads 

Figures 5A and 5B show the performance of the DVR with both PI and proposed controllers 

under the conditions of grid voltage sags and balanced nonlinear loads, respectively. The output 
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voltages of the DVR in two controllers are illustrated in Figures 5A (b) and 5B (b), 

respectively. The waveform of the load currents is distorted due to the influence of the 

nonlinear load (see Figures 5A(d) and 5B(d)). For this reason, the performance of the PI 

control method did not respond well. As can be seen, the actual values of the dq0 axis DVR 

voltage components in the proposed controller which are shown from Figures 5B (e) to (g), 

respectively, follow their references well, compared with those of the PI one. Also, the proposed 

controller gives lower THD for load voltage (Figure 5B (c)) which is shown in Table 3. 
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Figure 5. Dynamic response under the conditions of grid voltage sags and balanced nonlinear loads 

using two controllers: (A) PI controller and (B) Proposed controller. 

4.4. Grid voltage sags and unbalanced nonlinear loads 

Figure 6A shown the performance of the DVR with the PI control under the conditions 

of grid voltage sags and unbalanced nonlinear loads. The DVR output voltage is shown in 

Figure 6A (b) and the load voltage is sinusoidal but still has some ripple, as shown in Figure 



Nonlinear control of three-phase four-wire dynamic voltage restorer under grid voltage … 

 

21 

6A (c). The load currents are illustrated in Figure 6A (d). It is illustrated from Figure 6A (e) 

to (g) that, the actual values of the dq0 axis DVR voltage components track their references. 
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Figure 6. Dynamic responses under the conditions of grid voltage sags and unbalanced nonlinear 

loads using two controllers: (A) PI controller and (B) Proposed controller. 

Under the same simulation conditions, the control performance of the DVR with the 

proposed method is shown in Figure 6B. Figure 6B (c) shows the load voltages, which are kept 

at nominal values even though the grid voltages drop, as shown in Figure 6B (a). The output 

voltages of the DVR to compensate for the voltage sags are shown in Figure 6B (b). It is 

illustrated in Figure 6B (e)–(g) that, the actual values of the dq0 axis DVR voltage components 

with the proposed strategy track their references well, respectively, which are much better than 

those of the PI one, as shown in Figure 6B. In comparison with the PI controller, the THD 
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analysis for load voltage is shown in Table 3, in which the proposed controller gives better 

results with lower THD. 

Table 3. Comparison of THD of three-phase load voltages using PI and proposed controllers  

Controller type 

THD (%) 

PI control  Proposed control  

Phase A Phase B Phase C Phase A Phase B Phase C 

Balanced linear load 2.37 1.70 2.15 2.19 1.24 1.81 

Unbalanced linear load  2.36 1.69 2.11 2.18 1.23 1.81 

Balanced nonlinear load 2.53 2.08 2.33 2.40 1.40 1.92 

Unbalanced nonlinear load 2.44 2.24 2.75 2.23 1.33 1.84 

5. CONCLUSION 

The paper proposed a novel voltage control of three-phase four-wire DVR based on the 

backstepping technique. The effectiveness of the proposed control strategy was verified 

through simulation tests, where the load voltage is almost sinusoidal and in-phase with the 

soure voltage even under the conditions of grid voltage sags and different types of loads 

(balanced/unbalanced linear load, balanced/unbalanced nonlinear load). The feasibility of the 

proposed control is verified by simulation results, which show the better performance than the 

PI method. Also, with the proposed scheme, three-phase four-wire dynamic voltage restorers 

(DVR) can be extended to apply for both unbalanced and distorted source voltages effectively 

in the upcoming research. 
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ĐIỀU KHIỂN PHI TUYẾN BỘ LƯU TRỮ ĐIỆN ÁP ĐỘNG BA PHA BỐN DÂY  

TRONG TRƯỜNG HỢP SỤT ÁP LƯỚI  
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Trường Đại học Công nghiệp Thực phẩm TP.HCM 

*Email: luongvt@hufi.edu.vn 

Trong bài báo này, một chiến lược điều khiển phi tuyến dùng kỹ thuật điều khiển cuốn 

chiếu (backstepping) cho bộ lưu trữ điện áp động (DVR) được đề xuất để giảm thiểu nhiễu 

điện áp cho tải trong trường hợp sụt áp lưới. Mô hình phi tuyến của hệ thống với bộ nghịch 

lưu nguồn áp (VSI) điều chế độ rộng xung (PWM) bao gồm các bộ lọc điện cảm-tụ điện (LC) 

lắp đặt ở ngõ ra được xây dựng trong hệ tọa độ quay dq0. Bộ điều khiển điện áp tải theo 

phương dq0 được thiết kế theo lý thuyết điều khiển phi tuyến. Với chiến lược đề xuất, điện áp 

tải được điều khiển để đạt giá trị định mức và dạng sóng điện áp của tải gần như trở thành hình 

sin, so với việc dùng bộ điều khiển tích phân tỷ lệ (PI) trong trường hợp sụt áp lưới. Mô phỏng 

được thực hiện để kiểm chứng tính khả thi của phương pháp đề xuất. 

Từ khóa: Tải phi tuyến, bộ nghịch lưu ba pha, điều khiển cuốn chiếu, tải không cân bằng. 
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