χ – AUTOMORPHISM INVARIANT MODULES SATISFY C3-CONDITION

Dao Thi Trang*, Nguyen Quoc Tien

Ho Chi Minh City University of Food Industry *Email: daothitrang1982@gmail.com Received: 9 April 2021; Accepted: 25 June 2021

ABSTRACT

In this article, we state the condition for an χ –endomorphism invariant module to be a C2 module and an χ – automorphism invariant module to be a C3 module. Finally, we discuss when an χ – automorphism invariant module is an χ – endomorphism invariant module. *Keywords:* Automorphism invariant, endomorphism invariant, injective envelope, general envelope.

1. INTRODUCTION

In [1], the authors defined the notions of χ – automorphism invariant modules and endomorphism-invariant modules where χ is any class of modules closed under isomorphisms. Clearly, an χ -endomorphism invariant module is χ -automorphism invariant, χ – automorphism invariant modules need not be χ – endomorphism invariant in general. Many interesting properties of χ – automorphism invariant modules investigated. Namely, that if $u: M \to X$ is a monomorphic χ – envelope of a module M such that M is χ – automorphism invariant, End(X)/J(End(X)) is a von Neumann regular right selfinjective ring and idempotents lift modulo J(End(X)), then End(M)/J(End(M)) is also von Neumann regular and idempotents lift modulo J(End(M)) and consequently, M satisfies the finite exchange property. Moreover, if every direct summand of M has an χ – envelope, then χ – automorphism-invariant M has a decomposition $M = A \oplus B$ where A is square-free, B is χ – endomorphism-invariant and M is clean. In [2], the authors defined the notions of χ – strongly purely closed modules. As a consequence, in this paper we study χ – automorphism invariant χ – strongly purely closed modules. We obtain that χ – strongly purely closed, χ – endomorphism invariant modules satisfy C2 condition ([Theorem 2.10]) and χ – strongly purely closed, χ – automorphism invariant modules satisfy C3 condition ([Theorem 2.13]). Throughout this article all rings are associative rings with identity and all modules are right unital. A submodule N of a module M is called essential in M (denoted as $N \leq^{e} M$) if $N \cap K \neq 0$ for any proper submodule K of M. Let χ be a class of right R – modules, we say that χ is closed under isomorphisms, if $M \in \chi$ and $N \cong M$ then $N \in \chi$. Let χ be a class of right R-modules which is closed under isomorphisms, a homomorphism $u: M \to X$ of right R-modules is an χ - envelope of a module M provided that: (1) $X \in \chi$ and, for every homomorphism $u': M \to X'$ with $X' \in \chi$, there exists a homomorphism $f: X \to X'$ such that u' = fu;

(2) u = fu implies that f is an automorphism for every endomorphism $f: X \to X$.

If (1) holds, then $u: M \to X$ is called an χ – preenvelope.

2. RESULTS

It is easy to see that the χ -envelope is unique up to isomorphisms. It has the following proposition.

Proposition 2.1 [3, Proposition 1.2.1] If $u: M \to X$ and $u': M \to X'$ are two different χ – envelopes of a right R – module M, then $X' \cong X$.

Proposition 2.2 [3, Theorem 1.2.5] Let $M = M_1 \oplus M_2$, and $u_i : M_i \to X_i$ are χ – envelope of M_i . Then, $u_1 \oplus u_2 : M \to X_1 \oplus X_2$ is an χ – envelope of M.

Let M, N be R – modules. We say that N is $\chi - M$ – injective if there exist

 χ – envelopes $u_N : N \to X_N$, $u_M : M \to X_M$ satisfying that for any homomorphism $g : X_N \to X_M$, there is a homomorphism $f : N \to M$ such that $gu_N = u_M f$:

$$\begin{array}{ccc} X_N & \stackrel{g}{\longrightarrow} & X_M \\ u_N & \uparrow & u_M \\ N & \stackrel{f}{\longrightarrow} & M \end{array}$$

If M is $\chi - M$ – injective, then M is said to be an χ – endomorphism invariant module. A class χ of right modules over a ring R, closed under isomorphisms is called an enveloping class if any right R – module M has an χ – envelope.

Lemma 2.3 Let χ be an enveloping class. If N is $\chi - M$ – injective, then N' is $\chi - M'$ – injective for any N' is a direct summand of N and any M' is a direct summand of M.

Proof. Let $N = N' \oplus K, M = M' \oplus L$ for some submodules K of N and L of M. Let $u_{N'}: N' \to X_{N'}, u_K: K \to X_K, u_{M'}: M' \to X_{M'}, u_L: L \to X_L$ be χ -envelopes of N', K, M', L, respectively. We have $u_{N'} \oplus u_K: N \to X_{N'} \oplus X_K$ is an χ -envelope of N and $u_{M'} \oplus u_L: M \to X_{M'} \oplus X_L$ is an χ -envelope of M. Let $\alpha: X_{N'} \to X_{M'}$ be any homomorphism, and $\pi: X_{N'} \oplus X_K \to X_{N'}$ be the canonical projection, $i: X_{M'} \to X_{M'} \oplus X_L$ be the inclusion map. Let $g = i\alpha\pi: X_{N'} \oplus X_K \to X_{M'} \oplus X_L$. Since *N* is $\chi - M$ -injective, there exists an homomorphism $f: N \to M$ such that $g(u_{N'} \oplus u_K) = (u_{M'} \oplus u_L)f$.

$$\begin{array}{ccc} X_N & \stackrel{g}{\longrightarrow} & X_M \\ u_{N'} \oplus u_K & \uparrow & u_{M'} \oplus u_L \\ & & & & & \uparrow \\ & N & \stackrel{f}{\longrightarrow} & M \end{array}$$

It follows that $gu_{N'} = u_{M'}f$. Now, take $\pi_{M'}: M' \oplus L \to M'$ the canonical projection and $i_{N'}: N' \to N' \oplus K$ the inclusion map. Let $g' = \pi_{M'}fi_{N'}: N' \to M'$, then we can check that $\alpha u_{N'} = u_{M'}g'$.

$$\begin{array}{ccc} X_{N'} & \stackrel{\alpha}{\longrightarrow} & X_{M'} \\ {}^{u_{N'}} \uparrow & {}^{u_{M'}} \uparrow \\ N' & \stackrel{g'}{\longrightarrow} & M' \end{array}$$

Therefore, N' is $\chi - M' -$ injective. \Box

The following corollaries are straightforward and we can omit their proofs.

Corollary 2.4 If N is an $\chi - M$ – injective module and L is a direct summand of M, then N is an $\chi - L$ – injective module.

Corollary 2.5 Every direct summand of an $\chi - M$ – injective module is also an $\chi - M$ – injective module.

Corollary 2.6 Any direct summand of an χ – endomorphism invariant module is χ – endomorphism invariant.

Corollary 2.7 Assume that $M = M_1 \oplus M_2$. If M is χ – endomorphism invariant, then M_1 is an $\chi - M_2$ – injective module and M_2 is an $\chi - M_1$ – injective module.

Definition 2.8 An R-module M is called χ -strongly purely closed if every submodule A of M and any homomorphism $f: A \to X$, with $X \in \chi$, extends to a homomorphism $g: M \to X$ such that gi = f in which $i: A \to M$ is the inclusion map

A module M is called satisfying C2 condition if every submodule A of M such that A is isomorphic to a direct summand of M, then A is a direct summand of M.

Theorem 2.10 Let χ be an enveloping class and M is an χ -strongly purely closed module. If M is an χ -endomorphism invariant module then M satisfies C2 condition.

Proof. Let A be a submodule of M, and B is a direct summand of M such that $A \cong B$. Let $\varphi: B \to A$ be an isomorphism. Let $u_B: B \to X_B$ be an χ -envelope of B, $u_M: M \to X_M$ be an χ -envelope of M. Since M is an χ -strongly purely closed module, the homomorphism $u_B \varphi^{-1}: A \to X_B$ extends to a homomorphism $\beta: M \to X_B$ such that $u_B \varphi^{-1} = \beta i$. Since $u_M: M \to X_M$ is an χ -preenvelope of M, there exists $k: X_M \to X_B$ such that $\beta = k u_M$.

Since *M* is an χ – endomorphism invariant module and *B* is a direct summand of *M*, *M* is $\chi - B -$ injective by Corollary 2.4. Therefore, there exists $f : M \to B$ such that $ku_M = u_B f$

$$\begin{array}{ccc} X_M & \stackrel{k}{\longrightarrow} & X_B \\ \downarrow^{u_M} & \downarrow^{u_B} \\ M & \stackrel{f}{\longrightarrow} & B \end{array}$$

Now, we have $u_B \varphi^{-1} = \beta i = k u_M i = u_B f i$

As u_B is a monomorphism, so $\varphi^{-1} = fi$. It follows that $i\varphi$ is a split monomorphism. It means that $Im(i\varphi) = A$ is a direct summand of M. \Box

Definition 2.11 A right R – module M having an χ – envelope $u: M \to X$ is said to be χ – automorphism invariant if for any automorphism g of X, there exists an endomorphism f of M such that uf = gu.

$$\begin{array}{ccc} X & \stackrel{g}{\longrightarrow} X \\ u & \uparrow & u \\ M & \stackrel{f}{\longrightarrow} M \end{array}$$

Lemma 2.12 Let $M = M_1 \oplus M_2$ be an χ -automorphism invariant module. Then M_1 is $\chi - M_2$ -injective.

Proof. Let $u_1: M_1 \to X_1, u_2: M_2 \to X_2$ be χ - envelopes of M_1, M_2 , respectively. Thus, $u = u_1 \oplus u_2: M \to X = X_1 \oplus X_2$ is an χ - envelope of M. For any homomorphism $g: X_1 \to X_2, \ \overline{g}: X \to X$ via $\overline{g}(x_1 + x_2) = x_1 + x_2 + g(x_1)$ is an isomorphism of X. Since X is an χ - automorphism invariant module, there exists $h: M \to M$ such that $\overline{g}u = uh$. Let $f = \pi_2(h-1)i_1$, where $\pi_2: M \to M_2$ is the canonical projection and $i_1: M_1 \to M$ is the inclusion map, then we have $u_2 f = gu_1$

$$\begin{array}{ccc} X_1 & \stackrel{g}{\longrightarrow} & X_2 \\ u_1 \uparrow & & u_2 \uparrow \\ M_1 & \stackrel{f}{\longrightarrow} & M_2 \end{array}$$

Therefore, M_1 is $\chi - M_2$ – injective. \Box

Theorem 2.13 Let χ be an enveloping class and M is an χ -automorphism invariant module. If M is an χ -strongly purely closed module, then M satisfies C3 condition.

Proof. Assume that A, B are direct summands of M with $A \cap B = 0$. Let A' be some submodule of M such that $M = A \oplus A'$. We claim that, there exists $M' \leq M$ such that $M = A \oplus M'$ and $B \leq M'$. Let $\pi: M \to A$, $\pi': M \to A'$ be the projections. Since $A \cap B = 0$, $\pi'|_B: B \to A'$ is a monomorphism. Moreover, M is an χ -strongly purely closed module, A' is too. It follows that $u\pi'|_B: B \to X_{A'}$ is a preenvelope, where $u: A \to X_A$ and $u': A' \to X_{A'}$ are envelopes.

By definition of preenvelope, there exists $h: X_{A'} \to X_A$ such that $hu'\pi'|_B = u\pi|_B$.

$$\begin{array}{ccc} X_{A'} & \stackrel{h}{\longrightarrow} & X_A \\ u' & & u \\ A' & \stackrel{g}{\longrightarrow} & A \end{array}$$

Since A' is $\chi - A - \text{injective}$ by Lemma 2.12, there exists $g: A' \to A$ such that hu' = ug. Therefore $u\pi|_B = hu'\pi'|_B = ug\pi'|_B$. As u is a momomorphism, $\pi|_B = g\pi'|_B$. Let $M' = \{a' + g(a')|a' \in A'\}$. For every $b \in B$, we have $b = \pi'(b) + \pi(b) = \pi'(b) + g\pi'(b)$. It follows that $b \in M'$. Then $B \leq M'$. It is easy to see that $A \cap M' = 0$ and for every $m \in M$,

$$m = a + a' = a - g(a') + (a' + g(a')) \in A + M, (a \in A, a' \in A').$$

Thus M = A + M', and so $M = A \oplus M'$. On the other hand, we have $M = B \oplus B'$ for some $B' \leq M$, then $M' = B \oplus (M' \cap B')$. We deduce that $M = A \oplus M' = A \oplus B \oplus (M' \cap B')$. It means that $A \oplus B$ is a direct summand of M.

We will say that M is χ -extending invariant (or χ -extending) if there exists an χ -envelope $u: M \to X$ such that for any idempotent $g \in End(X)$ there exists an idempotent $f: M \to M$ such that $g(X) \cap u(M) = uf(M)$ or uf = guf.

Theorem 2.14 Let M be an χ -extending invariant modules and $u: M \to X$ is a monomorphic χ -envelope with u(M) essential in X. Assume End(X)/J(End(X)) is a von Neumann regular, right self-injective ring and idempotents lift modulo J(End(X)). If M is χ -automorphism invariant, χ -strongly purely closed module then M is an χ -endomorphism invariant module.

Proof. Let g be any endomorphism of X. By [1, Theorem 3.14], End(X) is clean, so g = e + f in which e is an idempotent endomorphism of X and f is an automorphism of X. Since M is an χ – automorphism coinvariant module, there exists a homomorphism $\alpha: M \to M$ such that $fu = u\alpha$. On the other hand, since M is an χ – extending invariant modules and e is an idempotent endomorphism of X, there exists an idempotent endomorphism Χ such that $e(X) \cap u(M) = ue'(M)$. e' of Therefore $A = u^{-1}(e(X)) \cap M = e'(M)$ is a direct summand of M. Since (1-e) is also an idempotent endomorphism of X, $B = u^{-1}((1-e)(X)) \cap M$ is a direct summand of M. It is easy to see that $A \cap B = 0$. By Theorem 2.13, $A \oplus B$ is a direct summand of M. Let $M = A \oplus B \oplus C$ for some $C \le M$, then $M = A \oplus A'$ where $A' = B \oplus C \ge B$. Let $\pi: A \oplus A' \to A$ be the canonical projection. We show that $eu = u\pi$.

Assume that, there exists $0 \neq m \in M$ such that $(eu - u\pi)(m) \neq 0$. Since $u(M) \leq^e X$, there exists $m_1 \in M$ such that $u(m_1) = (eu - u\pi)(m) \neq 0$. Hence $u(m_1 + \pi(m)) = eu(m) \in e(X)$, and so $m_1 + \pi(m) \in A$. Moreover, $eu(m_1 + \pi(m)) = e^2u(m) = eu(m)$, so $eu(m_1 + \pi(m) - m) = 0$. Now,

 $u(m_1 + \pi(m) - m) = (1 - e)u(m_1 + \pi(m) - m) \in (1 - e)(X),$ so $m_1 + \pi(m) - m \in B.$

Let m = a + a', where $a \in A, a' \in A'$, then $m_1 + \pi(m) - a - a' \in B \le A'$ and $\pi(m) = a$. Therefore $m_1 + \pi(m) - a \in A' \cap A = 0$. Thus $m_1 = 0$, a contradiction.

Let $h = \alpha + \pi \in End(M)$, it follows that $gu = (e + f)u = eu + fu = u\pi + u\alpha = u(\pi + \alpha) = uh.$

That means M is an χ – endomorphism invariant module. \Box

3. CONCLUSION

The article has just provided some general results about χ – automorphism invariant modules satisfying the C-conditions. And stating the condition so that χ – automorphism invariant modules is χ – endomorphism invariant. In the case of class χ is a class of specific modules such as the class of injective modules, the class of all pure-injective modules, we will have the corresponding specific results as well known for injective modules, pure-injective modules. We guarantee that the results in the paper belong to us and are completely different from existing ones.

Acknowledgments: This work was funded by Ho Chi Minh City University of Food Industry (Contract number 11/HD-DCT dated January 20, 2021.

REFERENCES

- 1. Asensio P.A.G., Tütüncü D.K. and Srivastava A.K. Modules invariant under automorphisms of their covers and envelopes, Israel Journal of Mathematics **206** (2015) 457-482.
- 2. Asensio P.A.G, Kalebogaz B., Srivastava A.K. The Schröder-Bernstein problem for modules, Journal of Algebra **498** (2018) 153-164.
- 3. Xu J. Flat covers of modules, Lecture Notes in Mathematics 1634, Springer-Verlag, Berlin (1996) 162p.
- 4. Abyzov A.N, Le V.T., Truong C.Q, Tuganbaev A.A. Modules invariant under the idempotent endomorphisms of their covers, Siberian Mathematical Journal **60** (2019) 927-939.
- 5. Er N., Singh S., Srivastava A.K. Rings and modules which are stable under automorphisms of their injective hulls, Journal of Algebra **379** (2013) 223-229.

TÓM TẮT

MÔ-ĐUN BẤT BIẾN DƯỚI CÁC TỰ ĐẰNG CÂU CỦA BAO TỔNG QUÁT

Đào Thị Trang*, Nguyễn Quốc Tiến Trường Đại học Công nghiệp Thực phẩm TP.HCM *Email: daothitrang1982@gmail.com

Trong bài viết này, chúng tôi nêu điều kiện để một môđun χ – bất biến tự đồng cấu thỏa điều kiện C2 và môđun χ – bất biến tự đẳng cấu thỏa điều kiện C3. Cuối cùng, chúng tôi thảo luận khi nào một môđun χ – bất biến tự đẳng cấu là một môđun χ – bất biến tự đẳng cấu là một môđun χ – bất biến tự đồng cấu.

Từ khóa: Bất biến tự đẳng cấu, bất biến tự đồng cấu, bao xạ ảnh, bao tổng quát.