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ABSTRACT

In this paper, we study stability for parametric set optimization problems. We first
mention the concepts of solutions to such problems based on set less order relation between
sets. Then, we introduce the converse property of set-valued mappings. Under suitable
assumptions, the upper and lower semicontinuity of strong solution mappings are
established. Our results are new and different from the existing ones in the literature.
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1. INTRODUCTION

In recent years, set-valued optimization problems have been investigated by many
authors (see [1-3] and the references therein). These problems with set-valued objective
functions are extensions of vector optimization problems [4, 5] and arise from many fields
such as industrial transportation robots, economics or finance [6, 7]. In generally, there are
two approaches of set-valued optimization problems: vector criterion and set criterion. In the
first one, Gaydu et al. [3] looked for minimal elements of the union of all image sets, while
in the second one, Gutierrez et al. [2] and Mao et al. [8] considered set optimization
problems with efficient sets based on set less order relations between them. These order
relations have been independently introduced by Young in [9], Nishnianidze in [10] and
Kuroiwa in [11]. The solution concepts for set optimization problems are suitable for
studying the robust vector optimization problems.

One of the most important issues in optimization theory is stability analysis. There are
two main approaches of stability. Some authors study stability by using the concepts of
solution convergences in the sense of Painlevé-Kuratowski or Hausdorff [2, 3] while another
approach is investigating (semi)continuity of solution mappings. In [12], Anh et al.
considered sufficient/necessary conditions of the semicontinuity/continuity for the solution
mappings to quasi-equilibrium problems with variable cones. In [13], Xu and Li discussed
the upper, lower semicontiniuity of u-minimal and weak u-minimal solution mappings to
parametric set optimization problems. Recently, Mao et al. [8] studied semicontinuity of
solution mappings to set optimization problems with parametric feasible sets by using
improvement sets.

Motivated by the above observations, in this paper we study stability of the strong
solutions to parametric set optimization problems. Under suitable assumptions, the upper and
lower semicontinuity of strong solution mappings to these problems are established. Our
results are new and different from the existing ones in the literature.
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The rest of the paper is organized as follows. In Section 2, we introduce the concepts of
strong solution to set optimization problems and recall some necessary results needed in the
sequel concerning. The upper and lower stability results are presented in Section 3. Some
concluding remarks are included in the last section, Section 4.

2. PRELIMINARIES

Throughout this paper, unless otherwise specified, we use the following notations. Let
A, X, Y be normed spaces, C be a proper pointed solid convex closed cone in Y. Let
K:AA X and F: XxAA Y be set-valued mappings.

For any nonempty subsets A, B in Y, we define the set less order relation as follows:
A<B< AcB-C.
For any given A € A, we consider the following set optimization problem:
(P) Minimize F(x,A)
subject to x e K(A)

Definition 2.1. For each A € A, an element X, € K(A) is said to be a strong solution to (P)
if and only if F(x,,4) < F(x,4) forall xe K(4).

Foreach A € A, we denote the strong solution set of (P) by S(1).

Definition 2.2. Let Z, T be normed spaces. A set-valued mapping G:Z A T is said to be

(i) upper semicontinuous (usc, shortly) at xo if for any open superset W of G(xo), there
exists a neighborhood V of xo such that G(V) cW ;

(ii) lower semicontinuous (Isc, shortly) at xo if for any open subset W of T
withG(x,) "W =, there exists a neighborhood V of x such that
G(X)NW =, VxeV;

(iii) continuous at xo if it is both upper semicontinuous and lower semicontinuous at Xo.
Definition 2.3. Let Z, T and G be as in Definition 2.2. G is said to be

(i) Hausdorff upper semicontinuous (H-usc, shortly) at xo if for any neighborhood B of
the origin in T, there exists a neighborhood N of xo such that G(x) = G(x,)+ B for every

xeN;

(ii) Hausdorff lower semicontinuous (H-Isc, shortly) at X, if for any neighborhood B of
the origin in T, there exists a neighborhood N of xo such that G(X,) = G(x)+ B for every

xeN;:

(iii) Hausdorff continuous at xo if it is both Hausdorff upper semicontinuous and
Hausdorff lower semicontinuous at Xo.

We say that G satisfies a certain property on a subset M c X if G satisfies it at every
point of M.

Lemma 2.1. ([14]) Let G:Z A T be a set-valued mapping between two normed spaces.
Then the following assertions hold.
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(i) If G(Z) is compact, then G is usc at Z if and only if for any sequence {z,} = Z
converging to Z and t, € G(z,), there is a subsequence {tnk} that converges to some
t eG(2);

(ii) G is Isc at Z if and only if, for any sequence {z,} < Z converging to Z and
t €G(Z), there exists a sequence {t }, t €G(z,) suchthatt — 1.

Lemma 2.2. ([15]) Let G be as in Lemma 2.1. Then the following assertions hold.
(i) If G is usc, then G is H-usc;
(i) If G is H-usc with compact-valued, then G is usc;
(iii) If G is H-Isc, then G is Isc;
(iv) If G is Isc with compact-valued, then G is H-Isc.

In the following sections, we always assume that S(A) is nonempty for all A in a
neighborhood of the reference point.

3. MAIN RESULTS

Lemma 3.1. Suppose that for any given 4 € A,

(i) F(, /T) is Hausdorff lower semicontinuous with compact values on X;
(ii) K(A) is compact.
Then, S(1) is a compact set.

Proof. We first show that S(A) is a closed set. Let an arbitrary sequence {xn} cS(1)
such that X, — X,. Since x € K(1) and K(Z) is closed, we obtain x, € K(1). Let an
arbitrary point y € K(1), we have

F(x,,A)cF(y,4)-C. (3.2)

For any neighborhood B_of the origin in Y, it follows from (3.1) and the Hausdorff
lower semicontinuity of F(:, 4) that, for n large enough

F(X,,A)cF(x,A)+BcF(y,1)-C+B. (3.2)

Noting that F(y,1)—C is closed, we conclude that F(x,,4) c F(y,4)—C. The

last inclusion implies that x, € S(4). Thus, S(A) is a closed set. Moreover, since K (1) is

compactand S(4) e K(1), we have S(4) is a compact set.

O

Theorem 3.1. Suppose that the following assumptions hold:
(i) F is Hausdorff continuous with compact values on X x A ;
(ii) K'is continuous with compact values on A.
Then, the solution mapping S is usc with compact-valued on A.
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Proof. By Lemma 3.1, S is compact-valued on A. Suppose in the contrary that S is not usc at
A, € A. Then there exist an open subset V of S(4,), two sequences {x,}< X and

{4,y A with 4, = 4, such that
X, €S(4,)\V, Vne¥. (3.3

Since K is usc with compact values, without loss of generality, we can assume that
X, = X, € K(4,). We claim that X, € S(4,). Indeed, if it is not true, then there exists

Y, € K(4,) such that
F(XOJ“O)¢ F(ymﬂ“o)_c- (3-4)

From the lower semicontinuity of K, there exists a sequence {y,} with y € K(4,)
such that y, —y,. For any neighborhood U of the origin &, in Y, there is a balanced

neighborhood U’ of 6, such that U'+U’cU . It follows from the Hausdorff upper
semicontinuity of F that for n sufficiently large,

F(yn’/ln)CF(yO’ﬂ'O)-i-U" (35)
Since X, € S(4,), we obtain
F(x,, 4,)cF(y,,4,)-C, Vne¥ . (3.6)

Taking into account (3.5), (3.6) with the fact that F is H-Isc,
F(X,4) c F(X, 4,)+U ' c F(y,,4)+U'-C+U"'c F(y,,4,)-C+U.

Noting that F(y,,4,)—C is closed and U is arbitrary, we conclude that
F (X, 4) < F(Y,,4,) —C, which contradicts (3.4). Thus, X, €S(4,) <V . Therefore,
X, €V for n large enough, which is a contradiction with (3.3). This brings the proof to its
end. o

The following example illustrates the essentialness of the Hausdorff continuity of F.

Example 3.1. Let X =A=;,Y=; %C=; 2, K(1)=[L1+4°] and

F () :{{(yp V) ei 2i(y,~D2+(y, ~1)? <T,x <2,
{(y,, y,) € 2 yf+y§ <1}, x>2.

It is easy to check that all assumptions in Theorem 3.1 are satisfied, excepted the
Hausdorff continuity of F. From the direct calculation, we have

S(1) = {[1,1+ %], A e (-1,);
[2,1+2%], A ¢ (-11).

Clearly, S is not usc. The reason is that F is not Hausdorff continuous.

Remark 3.1. Although the imposed assumption of Hausdorff continuity of F in Theorem 3.1
is essential, we can also replace it with the continuous condition of F. Indeed, since F is
lower semicontinuous with compact-valued, by Lemma 2.2, F is Hausdorff lower
semicontinuous. Similarly, the upper semicontinuity of F implies the Hausdorff upper
semicontinuity of F.
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Picking up the idea of Xu and Li [13], we introduce the definition of the converse
property of set-valued mappings as follows:

Definition 3.1. A set-valued mapping F : X x A A Y is said to have converse property at
(X, 4,) with respect to y, € X iff, either F(Yy,,4,) 1F(X,,4,) or for any sequences

{X.}, {y.} and {4 }with X, =X, ¥, = Yo, 4, — 4, there exists me¥ such that
F(Y, 4,) <F(X,, 4,)

Example 3.2.Let X =A=;,Y=;%C=; 2 and

FOCA) ={(Y Ya) €1 7 (Y= %) +(y,—%)° =1
It is easy to check that F has converse property at every (x,4) € X x A with respect to
each ye X,y #X.
The following Theorem illustrates the lower semicontinuity of the solution mapping.
Theorem 3.2. Suppose that the following assumptions hold:
(i) K is continuous with compact values on A;
(i) F has converse property on X x A with respect to each y e X .
Then, the solution mapping S is Isc on A.
Proof. Suppose that S is not Isc at A,, then there exist an open subset W with
S(4) 1 W =, asequence {4,} satisfying A, — A4, such that
SA)IW=U, Vne¥. (3.7)
Taking any fixed point X, € S(4,) 1 W, since X, € K(4,) and K is Isc at 4,, there
exists a sequence {x.} with x, € K(4,) such that x, — x,. For each ne¥, let the
arbitrary point y, € K(4,). Since K is usc with compact values, without loss of generality,
we can assume that y, — Y, € K(4,) . Because X, € S(4,), we obtain

F(X, 4) = F(Ye,4)-C
It follows from (ii) that there exist three subsequences {xnk} of {x,}, {ynk} of {y,}

and {/Ink} of {4,} such that F(x,,4, )< F(y,.4,)—C for all k. This means that
Xp, eS(ﬂnk). Noting that X, €W, we obtain X, €W for k large enough. This gives a
contradiction with (3.7). Therefore, S is Isc at A, and the proof is completed. O

The following example shows that assumption (ii) in Theorem 3.2 is essential.
Example3.3.Let X =A=;,Y=; %C=; 2, K(1)=[0,4%+1] and

F(X,ﬁ):{{(tl’b)ei 2:XSt12+t22 < U{(0,0)}, 1 = 0;
{t,t)e; ? 7 +t2 <1}, 1-0.

It is easy to check that the assumption (i) in Theorem 3.2 is satisfied. By direct
calculating, we obtain
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[0,1], A=0;

SA)= {(1,12 +1],4#0.

Clearly, Sis not Isc at 4, =0. The reason is that the assumption (ii) is violated. Indeed,

let x,=1Yy,=4,=0, we have F(y,,4,)<F(X,4,). Let X, :1+1,yn _1 for all
n n

n>1 and a sequence {4} with A — A, 4 #4. Then, F(x,4,)={(0,0)} and

F(y,,A4)={t,t,)e; ’ :lstf+t22 <13U{(0,0)}. Thus, we can not find any me¥
n

such that F(y,,4,) < F(x,.4,)-

From Lemma 3.1, Theorem 3.1, Theorem 3.2 and Remark 3.1, we obtain the following
Corollary.
Corollary 3.1. Suppose that the following assumptions hold:

(i) F is continuous with compact values on X x A ;

(ii) K is continuous with compact values on A;

(iii) F has converse property on X x A with respect to each y € X .

Then, the solution mapping S is continuous with compact-valued on A.

Remark 3.2. Taking into account Lemma 2.2, we also conclude that if all assumptions in
Corollary 3.1 are satisfied, then the solution mapping S is Hausdorff continuous with
compact-valued on A.

4. CONCLUSION

In this paper, we focus our attention on the stability of strong solutions to parametric set
optimization problems. This kind of solutions is different from the one that based on
improvement sets. To the best of our knowledge, the (semi)continuity of strong solution
mappings to such problems in the set criterion is not available in the literature. So, our
results are new and complement some previously known ones.
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TOM TAT

TINH ON BINH CUA NGHIEM MANH CUA BAI TOAN TOI UU TAP
Dinh Vinh Hién
Truong Pai hoc Cong nghiép Thuc pham TP.HCM
Email: hiendv@hufi.edu.vn

Bai b4o nay nghién ctu tinh on dinh cua bai toan téi vu tap chara tham sb. Trudc hét,

tac gia dé cap cac y tuong vé nghiém cua bai todn dya trén quan hé thu ty giita cac tap hop,
sau do gigi thiéu tinh chit nguoc cua 4nh xa da tri. Duéi céc gia thiét thich hop, tinh nua lién
tuc trén va nua lién tuc dudi caa anh xa nghiém duoc thiét 1ap. Cac két qua trong nghién cau
nay 1a mai va khac véi cac két qua da co.

Tur khoa: Bai toan toi wu tap chira tham s, quan hé thi ty gitra céc tap hop, tinh chat nguoc,
tinh ntra lién tuc trén, tinh ntra lién tuc dudi.



