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ABSTRACT

In this paper, the Mawhin’s continuation theorem in the theory of coincidence degree has
been used to investigate the existence of solutions for a class of nonlinear second-order
differential systems of equations in R™ associated with a multipoint boundary conditions at
resonance. This is the first time that a resonant boundary condition of multipoint with large
dimension of the kernel has been considered. An example has also been provided to illustrate
the result.

Keywords: Coincidence degree, Fredholm operator of index zero, multipoint boundary value
problem, resonance.

1. INTRODUCTION

In the theory of partial differential equations such as the method of separation of variables,
we encounter differential equations for several parameters with some requirement of solutions
which is called multi-point boundary condition. This then leads to an extensive development
of spectral theory with multi-parameter [1]. Many multi-point boundary value problems (for
short, BVPs) are established when looking for solutions to free-boundary problems [2]. Multi-
point BVPs can also arise in other ways like physics and mechanics [3, 4]. In recent decades,
the nonlinear multi-point BVPs especially at resonance have received much attention of many
mathematicians, for instance, with the results of higher order BVPs [5, 6], the fractional order
BVPs [7, 8], the positive solutions [9]. In particular, Phung P.D. et al. also had some
contributions on this topic [10-12].

This note is to study the existence of solutions to the m-point BVPs in R™
u”(t) = f(t,u(t),u’(t)),t (0,1,

u'(8) =0,u(d) = EZAU(Ui), (1.1)

where 6 is zero element in R™, f: R?™ — R™ satisfies the Carathéodory condition, that is,

(@ f(,u,v) is Lebesgue measurable for every (u,v) € R™ x R",
(b) f(t,,") is continuous on R™ x R™ for almost every t € [0,1],
(c) for each compact set K < R2", the function h (t) = sup {|f(t,u, v)|: (u,v) € K}

is Lebesgue integrable on [0, 1], where | - | is the max-norm in R™, and 14,75, ..., M-z €
(0,1),m = 3,and A4, 4y, ..., Ap,_, are square matrices of order n satisfying

(G1) The matrix | =Y " “7A is invertible,
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G2 (X A ) (X A) = (2 A) (X A ),

(G3) (Z A ) Z A or (Z L A) , here | stands for the identity matrix of order

In most of boundary conditions, the operator Lu = u'’ defined on some Banach spaces is
invertible. Such a case is the so-called non-resonant; otherwise, the more complicated one
called resonant.

In [13], Gupta first studied the existence of solutions for m-point BVP of the form
u”(t) = f(t,u(t),u’(t)),t € (0,2),

(0) =0.u®) = L equ(n),

at resonance with the resonant condition ¥.7%,% a; = 1. After that, Feng [14] and Ma [15]
also achieved these similar results with some improvement on the nonlinear term. The main
tool is Mawhin continuation theorem. This strongly depends on the dimension of ker L and
most of results consider only the case that dim ker L = 1, because of which constructing
projections P and Q (in Mawhin’s method) is quite simple. Therefore, the larger dimension of
ker L is, the more difficult the resonant problem is.

In this paper, we aim to generalize these works so that considering the multi-point BVPs
(1.1) with the difficulty of resonance that 1 < dimker L <n by using the Mawhin's
continuation theorem. In addition, an example to illustrate the main result, especially the
resonant conditions, was provided.

2. PRELIMINARIES

We begin this section by recalling some definitions and abstract results from the
coincidence degree theory. For more details on the Mawhin’s theory, we refer to [16, 17]. Let
X and Z be two Banach spaces.

Definition 2.1. ([Ch. 111-16, 17]) Let L:domL < X — Z be a linear operator. Then one says
that L is a Fredholm operator provided that

(i)  ker L is finite dimensional,
(i)  ImLis closed and has finite codimension.

Then the index of L is defined by
ind L =dimker L —codimIm L.

It follows from Definition 2.1 that if L is a Fredholm operator of index zero then there exist
continuous projections P: X — X and Q:Z — Z such that

ImP=kerL, kerQ=ImL, X =kerL®kerP, Z=ImL®ImQ.
Furthermore, the restriction of L on domL(ker P, L, :domL N ker P,— ImL, is invertible.
We will denote its inverse by K,. The generalized inverse of L denoted by
Koo =Kp (I —Q). On the other hand, for every isomorphism J : ImQ — ker L, the mapping
JQ + Ky :Z — domL is an isomorphism, and
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(JQ+Kyg) u=(L+37P)u, VuedomL.

Now let Q be an open bounded subset of X such that domL " Q = &.

Definition 2.2. ([Ch. 111-16, 17]) Let L be a Fredholm operator of index zero. The operator
N: X — Z issaid to be L-compact in Q if

e themap QN:Q—>Z is continuous and QN (5) is bounded in Z,
e themap K,,N :Q — X is completely continuous.

Moreover, we say that N is L-completely continuous if it is L-compact on every bounded set
in X.

Note that if L is a Fredholm operator of index zero and N is L-compact in Q then the
existence of a solution to equation Lu = Nu, ueQ is equivalent to the existence of a fixed

point of @ in Q, where
®=P+(JQ+KyqN.

This can be guaranteed by the following theorem due to Mawhin [16].

Theorem 2.1. Let Q e X be open and bounded, L be a Fredholm mapping of index zero and
N be L-compact on Q. Assume that the following conditions are satisfied:

i) LuzANu forevery (u,4)e((domL\ker L)maQ)x(O,l);

ii) ONu=0 for every uekerLnoQ,;
iii) for some isomorphism J:ImQ — ker L we have
degg (JON | ;2 kerL,6) 0,

where Q:Z — Z is a projection given as above.

Then the equation Lu = Nuhas at least one solution in domL Q.
Next, to achieve the existence of problem (1.1) by applying Theorem 2.1, we introduce the
spaces X =C1([O,1]; R”) endowed with the norm

Jul = masc{ful,. w1, |
where ||, stands for the sup-norm and Z = L*([0,1];R" ) endowed with the Lebesgue norm
denoted by ||, - Further, we use the Sobolev space defined by
Xo={ueX:u"eZ}cX.

Then we define the operator L:domLc X —Z by Lu=u", where
domL ={u e X, ' (0)=0u(1)=3 A (7 )}.
=
It is easy to see that Ue X, <> u(t)=u(0)+u’(0)t+17 Lu(t), where
1£2(t) = (t=s)"" 2(s)ds, for ke {L2}.
Thus, by substituting the boundary conditions, dom L is easily written by
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domL ={u e X, :u(t)=u(0)+12 Lu(t) with Mu(0)=g(Lu)}, (2.1)
where
« M=l —mZzA
o 9. Z—> FI;”l is a continuous linear mapping defined by
ZAIZ n)-1212(1), zeZ. (2.2)

Hence, it is not difficult to show that
kerLz{u e X :u(t)=c, te[0,1], CEkerM};kerM.
Moreover we have
ImL={zeZ:4(z)eImM}.
Indeed, let zeImL sothat z=Lu for some uedomL. From (2.1) we have
Mu (0)=¢(2)
which implies ¢(z)eImM. Conversely, if zeZ such that ¢(z)=M&elmM then it is
easy to see that z = Lu, where u € domL, defined by

u(t)=¢+122(t).
This shows that z e Im L.

Now we prove some useful lemmas. The methods of the proofs are similar to some previous
works [6, 10-12].

Lemma 2.1. Assume that (G1)-(G3) hold. Then the operator L is a Fredholm operator of index
zero.

Proof. Since ¢ is continuous and ImM is closed in R" it is clear that ImL is a closed

subspace of Z. Further, we have dimker L=dimker M <n<o. It remains to show that
codimImL =dimkerL. For this we consider the continuous linear mapping Q:Z —>Z

defined by, for ze Z,

Qz(t)=(1 - xM)Dg(z), te[0,1] (2.3)
where
1 if (G3), holds, that is, (miA,j SA,
= i=1 i=1
%, if (G3), holds, that is, ( J
and

D:Z(niani = |j .

Since (G1) holds, the matrix D exists. It's necessary to note that if z(t): heR", Vte[0,1],
then
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m-2

A [ (

i=1

7S hds—_[(l—s)hds: Dh. (2.4)

0

o'-—._\‘f

From (G3), it's not difficult to show that xM and | —xM are two projections on R".
Moreover, one can prove, for two cases, that

(1-xM)D* =D (1 —xM). (2.5)

m-2
Indeed, if (G3), holds then 1 —xM =" A. By (G2) we get (2.5). Otherwise, we have
i=1

m-2
| —xM =%(| + ZAJ. Therefore

i=1

g gn ol B (5

i=1 i

{gin-ofe )

Hence (2.5) is proved. This follows from (2.4) — (2.5) that
Q*z(t)=(1-xM)Dg(Qz)=(1 —xM)DD'Qz = (1 —xM )Qz

=(1-xM) z(t)=(1 -&xM)z(t) =Qz(t), t[0,1].

Thus, the map Q is idempotent and consequently Q is a continuous projection. Now we prove
the following three assertions

i) kerQ=ImL,
i) Z=ImL®ImQ,
iii) ImQ=kerL,
which allow us to complete the proof of the lemma. In order to get i) we note that
D*M =MD", due to (2.5), which implies DM =MD. So a<ImM if and only if
Do eImM. Hence, for zeZ,
zekerQ < Dg(z)eker(l —xM) < Dg(z)eIm(xkM) < ¢(z)elm(M) < zelmL,

which  shows that kerQ=ImL. Hence, we also obtain ii), that is,
Z=kerQ®ImQ=ImL®ImQ. Now, let zeImQ. Assume that z=Qz,, forz, €Z. Then
we have

kMz(t)=xM (I —xM)D¢(z,)=6, te[0,1],
due to x«M is a projection. This implies Qz, e ker(xM )=ker M. Therefore z e kerL.

Conversely, for each zekerL, there exists SekerM such that z(t)=g for all t[0,1].
Then we have

Qz(t)=(1 -xM)Dg(z)=(1 —xM)D(D*B)=(1 -«M) = B=1(t), te[01],

Hence zelmQ and so we get ImQ=KkerL. Then Lemma 2.4 has proved.
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Now we define an operator P: X — X by setting
Pu(t)=(1 —«M)u(0), vte[0,1]. (2.6)

Lemma 2.2. We have
i) The mapping P defined by (2.6) is a continuous projection satisfying the identities
ImP=kerL, X =kerL @ ker P.

i) The linear operator K, :ImL —domL\ker P can be defined by
KPz(t)=K2M¢(z)+I0{z(t), t €[0,1], 2.7
Moreover K, satisfies

KP = (L |domLﬂkerP )_1 and ”KP Z" < C "2”1 ’

AESVALIRL

Proof. i) It is clear that P is a continuous projection. Further we have Im P = ker L. Indeed, if
velmP then there exists u e X such that

v(t)=Pu(t)=(1 - xM)u(0), vte[0,1]. (2.8)

where C =1+ «*|M

. is the maximum absolute column sum norm of

matrices).

Thus
kMv(t)=xM (1 —xM)u(0)=06
which implies that v € ker L, by the definition of ker L. Conversely if veker L then
v(t)=¢EekerM, vte[0,1].
Then we deduce that
Pv(t)=(1 —«M)v(0)=(1 —xM)&E=E=V(t), Vte[0,1].

This shows that v e Im P. Therefore we can conclude that Im P =ker L and consequently
X =ker L @ ker P.

i) Let zeImL. Thenwe have ¢(z)eImM which impliesthat ¢(z)=M g, where S eR".
It follows from (2.6) and (2.7) that
PK,z(t)=(1 —xM)K,z(0)=x> (1 —xM )M g(2)=6, Vte[0,1].
Thus K,z eker P.In addition, clearly ¢(z)eImM and xM is the projection, implying
Mxg(z)=xMg(z)=¢(z).
Then, it is easy to show that K,zedomL. So K, is well defined. On the other hand, if
uedomL ~kerP then u(t)=u(0)+ I Lu(t), with

{Mu(0)=¢(Lu),
u(O)e Im(/(M )
Thus
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KpLu(t)=x*Mg(Lu)+ 1% Lu(t) =(xM )’ u(0)+12 Lu(t) =u(0)+ 12 Lu(t) =u(t)
by M is a projection. This deduces that K, :(lec,MKQrF,)_l by LK,z(t)=z(t), t[0,1],
forall zeImL. Finally, from the definition of K, we have
(Kpz) (t)=1%2(t), te[0]. (2.9)
Combining (2.2), (2.7) and (2.9) we have
Ik, <M Je(2) + ]2,

SZCE S VAT R
o ko)) sl

These show that ||K,z|| < C||z], . The lemma is proved.
Lemma 2.3. The operator N : X — Z defined by

Nu(t)= f (t,u(t),u'(t)), ae., t<[0,1]
is L-completely continuous.

Proof. Let Q be a bounded set in X. Put R :sup{||u|| ‘u eQ}. From the assumptions of the
function f there exists a function m, € Z such that, for all ueQ we have

Nu(t)]=| f (tu(t),u' (1)) <mg (t), ae, te[01] (2.10)
It follows from (2.2), (2.13) and the identity
QNu(t)=(1 —xM)Dg(Nu) (2.11)

that QN (ﬁ) is bounded and QN is continuous by using the Lebesgue's dominated
convergence theorem. We now prove that K, ,N is completely continuous. Note that, for
every ueQ, we have

Koo Nu(t) =K, (1 - Q) Nu(t)
Ky (Nu— QN1
. N1~ ) Dp(N) 1)
= ENU() = S (1 - kM) Dy (Nu) + Mg (), (212)

and

(KnoNu) (t)=1% Nu(s)ds —t(1 —xM)Dg(Nu). (2.13)

)

Further, it follows from (2.13) and the definition of ¢ that
m-2 m-2
p(af=(1e Snlal il <(1+ S n
i=1 i=1

9

Mg || L (2.14)
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Combining (2.10) and (2.12) — (2.14) we can find two positive constants C,, C, such that

L (KP,Q Nu)' (t)

for all t €[0,1]and for all ue Q. This shows that

|Kp oNu (1) <C, [mg| <C, g, (2.15)

|Ke o Nu| <max{C,,C, }|m,],.
thatis, K, ,N(Q) isuniformly bounded in X. On the other hand, for t,, t, [0,1] with t, <t,

we have

|Kp o Nu(t,) = Ko oNu (t, ) \jdsﬂNu (7)|dz+|(t, =t,)(1 —xM ) Dg(Nu)|

<Cy [ mel, [t, — ],

and

‘(KPVQNU),(t) (Ky N jm $)ds+C, [m|. I, -t

which prove that the family K,,N (Q) is equi-continuous in X. Thanks to Arzela-Ascoli

theorem, K, ,N (Q) is a relatively compact subset in X. Lastly, it is obvious that K, ,N is

continuous. Therefore, the operator N is L-completely continuous. The proof of the theorem is
completed.

3. MAIN RESULTS

In this section we employ Theorem 2.1 to prove the existence of the solutions of problem
(1.1). For this aim we assume that the following conditions hold:

(B1) there exist the positive functions a, b, ¢eZ with (|l —xM], +C)(]a], +|b],) <1 such
that

| (t,u,v)| <a(t)|u]+b(t)]v]+c(t) (3.1)
forall t<[0,1] and u, ve R" where C is the constant given in Lemma 2.2;
(B2) there exists a positive constant A, such that for each uedomL, if
|u(t)|>A1, vt €[0,1], then

m-2

jdsj z,u(z),u'(z))dr e ImM; (3.2)

i=1
(B3) there exists a positive constant A, such that for any «eR" with a ekerM and
la| > A,, either

(a,QN(a))<0 or (@, QN (a))=0, (3.3)

where (.,.) stand for the scalar productin R".

10
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Lemma3.1. Let O ={uedomL\kerL: Lu=ANu, A<[0,1]}. Then Q, is bounded in X.

Proof. Let ue(. Assume that Lu=ANu for O0<A<1. Then it is clear that
Nu e ImL=kerQ, which implies ¢(Nu)eImM by the definition of ImL. On the other
hand, we have

TZ_;AIdSJj f (t,u(r),u’(r))dr:—qﬁ(Nu)— Midsjz f (t,u(f),uf(r))drl

Hence we deduce that
m-2 1 s
Ajdsj f (z',u(r),u'(r))dre ImM.
=1 0

i

By assumption (B2), there exists t, <[0,1] such that |u(t,)|<A,. Then we get

4

<A +|u

t
| and o (0] < [l (9 as <, <[Nul, . (34)
0

for all t €[0,1]. These give us
[Pul=[(1 — <M )u () <[t — <ML (A, +|Nul,). 35

On the other hand, it is noted that (Id, —P)uedomL Nker P since P is a projection on X.
Then

(1~ P)u|=]Ko L (1 —P)ui] <K, Lu|<CNul,, (36
where the constant C is defined as in Lemma 2.5 and Id, is the identity operator on X.
Combining (3.5) and (3.6) obtains
Jull=[[Pu+(1dy —P)u] <[Pu] +[(1dx —P)ul<A, I - &M

*+m|—KM

. +C)[Nul,. 3.7)
By (B1) and the definition of N we have

1
INul, < [[ (s.u(s).u'(s))]ds <al, Jul, + [0, Ju"l,, +lcl, <(al, +[bf), Jul +[<cl, - (38)
0

Combining (3.7) and (3.8) gives us

Al —xM
I, < 2=
Pa-(1-xM

 (lal, +lb) I,
- +C)(lel, + bl

The last inequality and (3.4) deduce that

sup||uf| = sup max {||u||w Jul } < o0,
uey ue)y

Therefore Q, is bounded in X . The lemma is proved.

Lemma 3.2. The set Q, ={uekerL:NuelmL} is abounded subset in X.

11
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Proof. Let ue(,. Assume that u(t)=c, vte[0,1], where ceker M. Since NueImL we
have ¢(Nu)eImM. By the same arguments as in the proof of Lemma 3.1 we can point out

that there exists t, <[0,1] such that |u(t, )|<A,. Therefore
Jull =l =Ju(to ) =lc| < As.
So Q, is bounded in X. The lemma is proved.
Lemma 3.3. The sets ; ={uekerL:—Au+(1-1)QNu=6,1<[0,1]} and
Q; ={uekerL:Au+(1-2)QNu=6,1<[0,1]}
are bounded in X provided that the first and the second part of (3.3) is satisfied, respectively.

Proof. Case 1: (a,QNa)<0. Let ueQ;. Then there exists a<ckerM such that
u(t)=e,vte[0,1], and

(1-2)QNa =Aa. (3.9
If =0 then it follows from (3.9) that NaekerQ=ImL, which means ueQ,. Using

Lemma 3.2 we deduce that |u|<A,.On the other hand, if 1<[0,1]and |a|> A, then, by
assumption (B3), we get a contradiction

0<A|af =(1-4){e,QNa) <O0.

Thus |ul|=|a|< A, or Q; isbounded in X .

Case 2: <a,QN a) > 0. In this case, using the similar arguments as in Case 1 we show that
Q, is also bounded in X.

Theorem 3.1. Let the assumptions (B1)-(B3) hold. Then the problem (1.1) has at least one
solution in X.

Proof. We prove that all of the conditions of Theorem 2.1 are satisfied, where Q be open and
bounded such that U?_, Qi < Q.. It is clear that the conditions (1) and (2) of Theorem 2.1 are

fulfilled by using Lemma 3.1 and Lemma 3.2. So, it remains to verify that the third condition
holds. For this, we apply the degree property of invariance under a homotopy. Let us define
H (u,4)=+Au+(1-2)QNu, where we choose the isomorphism J:ImQ —kerL is the

identity operator. By Lemma 3.3, we have H (u, )= @ for all (u,1)e(ker LoQ)x[0,1],
so that
deg (QN |, s 2Nker L, ) =deg(H (.,0), QNker L, #) =deg(H (.,1), QNker L,6)
=deg(£1d,QNkerL,8) =+1=0.

Hence, Theorem 3.1 is proved.

In order to end this paper, we provide an example dealing with the solvability of a second
order system of differential equations associated with four-point boundary conditions by
applying the above results.

Example 3.1. Consider the following boundary value problem

12
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X"(t)=f(t,x(t),y(t),X(t),y'(t)).te(0,1),

v(0)= 1, (6x(0), (1), X (1) (1) = (0.).

x'(0)=y'(0)=0, (3.10)
x(1)=—4x(1/3)+2y(1/3)+6x(1/2)-4y(1/2),
y(1)=—x(1/3)—-y(1/3)+2x(1/2),

where the functions f,:[0,]xR* —>R (i=1, 2) are given by

t+2 t°
f(6X, Y%, Y, )= —— nf1+ X2 +yv?), 3.11
O Y R PN LA (6 + 7 ) (3.11)
t+2 t°
f tl ’ ] ] e —— - 2 2, 312
L (6% Y %, Y,) 180ﬁ(l><1|+|y1|)+6ch/><2 +Y3 (3.12)

forall t<[0,1] and (x.,y,), (X,.Y,)€R®

In what follows we prove that problem (3.10) has at least one solution by using Theorem 3.1.

First we put
n=1/3 n,=1/2, A = 2 AZ——6
' L ’ -1 -1/ 2 0

and define the function f :[0,1]xR*xR?* — R?* by

f(tu,u)=(f(tu,u,), f,(tu,u,)), (3.13)

for all te[0,1] and u, =(x,,¥,), U, =(X,,y,) € R®. Then problem (3.10) has one solution if
and only if problem (1.1) (with m=4, n,, n,, A, A, andfdefined as above) has one solution.
So we need only show that the conditions of Theorem 3.1 hold.

Indeed, it is clear that 1 — (77 A +72A, ) is invertible,

4/3 —4/3}

(7712A1+7722A2)(A1+A2)=(A1+A2)(7712A1+'722A2):{2/3 —2/3

and

(s -nea-|: 7|

On the other hand, from (3.11) - (3.13), the function f satisfies Carathéodory condition. Next
we verify conditions (B1) - (B3). It follows from (3.11), (3.12) and (3.13) that

|f (t,u,v)| <a(t)|ul+b(t)M,
forall t [0,1] and u, veR?, where

t+2 t°
a(t)zw,b(t)zﬁ

Since a, be'([0,1;R*) and (|I &M, +C)(|la], +[b],) =41/90<1 condition (B1) is
satisfied. In order to check (B2) we note that

13
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f(tu(t),u'(t))< f, (tu(t),u'(t)), tefo,1,

forall u=(x,y)edom(L). This implies that

Y Afds[f, (t,u(t),u’(t))dtig,ﬁjdsi f, (tu(t),u’(t))dt.

Therefore

m2 1 s

ZAIdsIf(t,u(t),u’(t))dtelm(M)

i=1 i 0

due toIm(M)={(q,q):qeR}. It means that (B2) holds. Finally, we note that

b - ~120/13 84/13
% | —42/13 6/13 |

Then
Qz(t)=(I —KM)D¢(Z):[—_162 162}5(2),

for all ze L*([0,1];R?), where

1/3 s 12 s

Aljdsj dr+A2jdsj )dz - jdsj
Let o =(2a,a)eker(M), we have

Ne=(f,(t:2,0), f, (t,2,0)) =2 (a[a]),

602
and
J’ 552 55\/' 132
¢(Na) 77760 7776| | 15552 1215| |
So we obtain
47J_
Thus,

(@, QNa) =2 (" - ala).

This shows <a, QN a> >0 forall aeR, that means (B3) is satisfied. Thanks to Theorem
3.4, the problem (3.10) has at least one solution.

4. CONCLUSION

This note is dedicated to deal with the existence of a multi-point BVP for second-order
differential systems at resonance in the case of various kernel spaces. This provides a technique

14
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to construct the two projections in the method of Mawhin’s coincidence degree when
dimension of the kernel is large as well as to prove an operator with complicated boundary
condition is Fredholm of index zero.

In a forthcoming research, it is possible to extend to a wider class of resonant conditions

on the matrices 4; and with a more general boundary condition.
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TOM TAT

TINH GIAI PUQC CUA BAI TOAN BIEN DA BPIEM CONG HUONG
VOI NHAN THAY DOI

Phan Pinh Phung
Truwong Pai hoc Cong nghiép Thwee pham TP.HCM
Email: pdphungvn@gmail.com

Trong bai bao nay tac gia st dung dinh ly lién tuyc Mawhin trong ly thuyét béc coincidence dé
nghién clru sy ton tai nghiém cho mét 16p hé phuong trinh vi phén cép hai phi tuyén trong R"
két hop véi bién da diém trong diéu kién cong huong. Day 1a két qua dau tién nghién ctru diéu
kién bién cong huong loai da diém véi sé chiéu ciia hat nhan 16n. Téac gia ciing xdy dung mot
vi du dé minh hoa két qua.

Tir khéa: Bac coincidence, toan tir Fredholm chi sd 0, bai toan bién da diém, cong hudng.
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